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Abstract: In this work, the corrosion properties of 316L stainless steel (SS) obtained by selective
laser melting (SLM) are analyzed. The electrochemical results of samples manufactured with an
energy density between 40 and 140 J/mm3 are compared using different hatch distances and laser
speeds. The analysis correlates the impact of the microstructure and processing defects of SLM
316L stainless steel on its behavior against corrosion. The optimal manufacturing conditions were
selected considering the electrochemical results. Although the samples obtained with an energy
density close to 90 J/mm3 show a high resistance to corrosion, their performance depends on the
combination of selected parameters, obtaining the best results for an intermediate laser speed and a
low hatch distance. These manufacturing conditions produce a higher breakdown potential, a faster
repassivation of the steel and reduce the current density on electrochemical test.

Keywords: SLM; 316L; corrosion; impedance

1. Introduction

Additive manufacturing (AM) is an attractive technique that makes it possible to create
complex free-form objects with a 3D model by using additive manufacturing technology.
Traditionally, the AM process was used to create visualization model products, but this
technology developed over time, improving the properties, accuracy, and overall quality of
materials, allowing suitable outputs for end use [1].

AM has a number of advantages, such as the possibility of manufacturing complex
parts, efficient use of materials without subsequent machining, suitability for low produc-
tion volumes, manufacturing with a wide variety of metal alloys, and the search for new
alloys. There are different AM techniques that can be included in the following methods:
fused deposition modeling (the most common used for polymer filaments), powder bed
fusion, inkjet binding and contour crafting, stereolithography, direct energy deposition and
laminated object manufacturing [2,3]. The advantages, disadvantages, fields of application
and materials used in each method can be found in the review of Ngo, T.D et al. [2]

The SLM technique used in this study belongs to the powder bed fusion method.
In SLM, specimens are manufactured using laser scanning, which selectively melts and
joins successive layers of powder [4,5]. The build parameters employed (laser power,
scanning speed, layer thickness, laser scanning path, hatch space, powder size, etc.) produce
substantial changes in sample properties and their optimization is essential for obtaining
samples with adequate properties. The SLM process involves a rapid heating and fast
cooling rate [6], which result in unique microstructures with refined grain structures [7]. The
process also generates metallurgical defects such as a lack of fusion, porosity by entrapped
gas, dislocation networks, residual stress, solute segregation, surface roughness, among
others, which can result in worse properties than traditional manufacturing methods [7–9].
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In the recent years, the AM of AISI 316L has been extensively studied. Although it is a
steel for applications where a high resistance to corrosion is necessary, most of the studies
are based on the assessment of the microstructural and mechanical properties [10–17]. The
microstructure of AM 316L SS consists of very fine interconnected cellular or columnar
sub-grains inside each individual large grain of austenite (δ-ferrite may be present in
intercellular regions) [18]. The optimal AM conditions can produce near-full density
samples with a higher tensile strength and ductility than those produced via conventional
manufacturing processes [13,19].

With regard to corrosion resistance, there is also a wide variety of studies on AM
316L, although the results are not conclusive. As occurs in the mechanical performance,
the corrosion resistance behavior is highly conditioned by the manufacturing conditions.
Table 1 summarizes some of the most representative corrosion studies of SLM 316L SS
and the analyzed manufacturing parameters. Some of these studies indicate that AM
improves the corrosion resistance of SS compared with wrought samples [20–29], although
similar behavior has also been reported [30,31], with even worse performances for SLM
316L SS [32–35]. The higher corrosion resistance is associated with the rapid cooling
of AM, which reduces nucleation and crystal growth. This produces a homogeneous
distribution of alloying elements, avoiding the formation of chromium-depleted regions
and reducing inclusions such as MnS, minimizing the nucleation of pits [12,20,21,32]. The
worst corrosion resistance has been associated with the presence of small amounts of
δ-ferrite, microsegregation and a high level of porosity [22].

Table 1. Summary of the bibliographic results related to the corrosion behavior of 316L manufactured
by SLM.

Ref. Laser Power
(P) (W)

Scanning
Speed

(v) (mm/s)

Hatch
Spacing
(h) (µm)

Layer
Thickness (t)

(µm)

Energy
Density 1

(E) (J/mm3)
Corrosion Results Grinding

Level
Relative
Density

[20] 175 730 120 30 66.6
SLM Epit: 740 mV vs. SCE.
Passivity > wrought 316L

(0.6 M NaCl)

0.04 µm
colloidal silica -

[21] - - – -
SLM Epit 700 mV > wrought

316L
(0.9 wt% NaCl)

#800 grit SiC 99.4%–99.6%

[22] 180 600 20 25 600
SLM Epit 900 mV > wrought

316L
(3.5 wt% NaCl)

1 µm surface
finishin -

[23] 165–285 860–1160 110 40 39.1–75.3
SLM Epit 300 mV > wrought

316L
(NaCl 0.1M solution)

1 µm -

[24] 90 1000 105 30 28.6
SLM Epit > wrought 316L

(high variability)
(NaCl 0.1 M solution)

- -

[25] 180 600 36 25 333
SLM Epit = 1.4 V vs. Ag/AgCl

(3 M KCl) >> wrought 316L
(3.5 wt% NaCl)

-

[26] 200 - 100 30 -
SLM Epit = 920 mV vs. SCE >>

wrought 316L
(0.9 M NaCl)

1200 grit SiC -

[27] 150 800–1400 25 25 171–300
SLM Epit 300 mV > wrought

316L
(3.5 wt% NaCl)

2000 grit
SiC -

[28] 285 960 110 40 67
SLM Epit 100 mV > wrought

316L
(3.5 wt% NaCl)

- -
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Table 1. Cont.

Ref. Laser Power
(P) (W)

Scanning
Speed

(v) (mm/s)

Hatch
Spacing
(h) (µm)

Layer
Thickness (t)

(µm)

Energy
Density 1

(E) (J/mm3)
Corrosion Results Grinding

Level
Relative
Density

[29] 200 800 - 120
SLM Epit 200 mV > wrought

316L
(simulated body fluid

2000 grit SiC -

[30] 200 800 100 30 83.3 SLM ≈ Epit vs. wrought 316L
(3 wt% NaCl solution) 2400 grit SiC 99.58%

[31] 150–200 300–600 10–50 50 100–1333
SLM Epit: 560 mV vs.

Ag/AgCl, ≈ wrought 316L
Ringer’s solution pH 6.9 ± 0.2.

0.04 µm
Colloidal silica 98%

[32] 200 - 100 30 - SLM Epit < wrought 316L
pH (1, 2 and 3)

1 µm
diamond

suspension
-

[33] 150 125–200 90 50 167–267 SLM Epit < wrought 316L
(0.9 wt% NaCl) 1200 grit SiC 98.3%

[34] 195 1083 25 25 288
SLM < wrought 316L

0.5 M H2SO4, 50 ppm Cl− and
2 ppm F−

2000 grit
SiC -

[35] 200 590 50 50 135.6
SLM 316L: low passivity and

high anodic current
(0.1 M HCl)

0.25-µm
diamond

suspension
-

1 Calculated taking into account Equation (1) (E = P/(v·h·t).

Despite all of these studies, it is not clear which are the best manufacturing conditions
to produce the optimal corrosion resistance properties, since the works with the best results
only partially indicate the manufacturing conditions or uniquely show the results for a
fixed condition. For this reason, more studies are necessary to deepen the knowledge of AM
and to improve the corrosion resistance properties of specimens. The present study aims
to evaluate the corrosion behavior of SLM 316L SS building with different input energy
density, hatch spacing and traverse speed. Several conditions were compared to select the
optimal manufacturing parameters.

2. Materials and Methods

The powder used for the SLM builds was EOS stainless steel 316L. The chemical
composition corresponds to ASTM F138 material standard (UNS S31673). The particle
size is in the range between 5 and 40 µm, and its chemical composition is shown in
Table 2 as indicated in the material data sheet provided by the EOS GmbH (Germany). A
micrograph of the powder is depicted in Figure 1, where the spherical morphology and
size distribution of the powder particles can be observed. Additionally, for a comparative
purpose a commercial wrought 316L SS with a similar composition was used.

Table 2. Chemical composition (wt%) of the EOS 316L stainless steel powder.

Cr Ni Mo C Cu Mn N P S Si Fe

17–19 13–15 2.25–3 0.03 0.5 2 0.1 0.025 0.01 0.75 Balance
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Figure 1. SEM micrograph of 316L stainless steel powder provided by the EOS GmbH (Germany).

SLM 316L SS were manufactured by 3D printer EOS M290 equipped with a 400 W fiber
laser. Cubic samples with 10 mm × 10 mm × 10 mm dimensions were produced, keeping
the laser power (370 W) and the layer thickness (0.04 mm) constant. The scanning strategy
followed a zigzag pattern with 67◦ laser beam rotation between each of the layers. The
hatch distance and the laser speed were varied in order to change the processing conditions.
The processing parameters are listed in Table 3. The samples are labeled in alphabetical
order with a letter and the energy density used in their manufacture (rounded value).

Table 3. The SLM parameters used for manufacturing the different 316L SS specimens. Laser power
was kept fixed at 370 W and the layer thickness was 0.04 mm.

Sample A41 B84 C93 D93 E93 F98 G103 H122 I138

Laser speed (mm/s) 1200 550 625 500 555 496.74 450 400 608
Hatch distance (mm) 0.19 0.2 0.16 0.2 0.18 0.19 0.2 0.19 0.11

E (J/mm3) 40.57 84.09 92.5 92.5 92.59 98.01 102.78 121.71 138.31

The energy density E ( J
mm3 ) shown in Table 3 was calculated by taking into account

Equation (1), where P is the laser power (W), v is the scanning speed (mm/s), h is the hatch
distance (mm) and t is the layer thickness (mm) [36]:

E =
P

v·h· t
(1)

Cubic samples were cut to analyze the cross section parallel to the build direction (i.e.,
XZ-plane). Before microstructure examinations and the hardness and corrosion tests, all
samples were subjected to the metallographic preparation: grinded with successive grades
of SiC papers up to 1200 and polished with diamond suspensions (6 µm, 3 µm and 0.04 µm
(colloidal silica)). Afterwards, the samples were degreased ultrasonically in acetone for
5 min, rinsed in water and dried.

The porosity of specimens was analyzed from several optical images of polishing
surface at different magnifications using the ImageJ software 1.53k version (MD, USA) [37].
To reveal the microstructure, the specimens were etched in 5 mL HCl, 1 g picric acid,
and 100 mL 95% ethanol (Vilella’s reagent). The microstructure was characterized by
optical microscopy (Olympus GX51) equipped with an Image Analysis software from
Olympus®(Olympus Corporation, Tokyo, Japan) and a scanning electron microscopy
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(SEM) model JEOL 5410 equipped with an energy dispersive spectroscopy probe (EDS)
from OXFORD®instrument (Abingdon, England).

Electrochemical experiments were performed at room temperature in 3.5 wt% NaCl
solution, using a conventional three-electrode cell, where the working electrode was 316L
stainless steel (0.5 cm2 of exposed area). A graphite sheet was used as counter electrode and
a saturated calomel electrode (SCE) as reference electrode. An AUTOLAB 30 Potentiostat
with FRA module (from EcoChemie®, Metrohm AG, Herisau, Switzerland) was used for
potentiodynamic and electrochemical impedance measurements. After 3600 s stabilization
period, the electrochemical impedance spectra were recorded at the open circuit potential
(OCP) from 100 kHz down to 10 mHz, at 10 mV rms signal amplitude. Then, the cyclic
potentiodynamic polarization was started at a cathodic potential at −0.05 V vs. OCP,
scanning up to 1.2 V vs. SCE (with a scan rate of 1 mV/min) and with a limiting current
density of 1 mA/cm2 to avoid overgrowth of pits. Subsequently, the scan was reversed
in the anodic direction down to −0.5 V vs. SCE and continued in a forward direction up
to the initial potential. To verify the reproducibility of the obtained results, at least three
replications were made for each specimen.

Vickers micro-hardness measurements (HV0.2) were performed on the cross section of
the samples with an ENCOTEST DuraScan microhardness tester (Emco-test Prüfmaschinen
GMBH, Kuchl, Austria) according to UNE-EN-ISO 6507-1:2006. The hardness value for
each material was the average value of 30 indentations in parallel directions to the building
direction.

3. Results and Discussion
3.1. Microstructural Characterization

Figure 2 shows the optical micrographs of the polished XZ plane of different SLM 316L
SS samples. The presence of porosity can be clearly seen in most samples. However, it is
worth highlighting the low porosity of samples B, C, and D obtained with an intermediate
energy density, close to 90 J/mm3. The porosity of the samples was estimated based on
several optical micrographs from each sample by ImageJ software. This analysis was not
performed on a micrometer scale, since the impact of submicron pores in determining
porosity is numerically negligible [23].

Table 4 displays the porosity values, which are less than 0.7% for all samples, and
even below 0.2% for samples C93 and D93. Two types of pores can be identified in the
micrographs: irregular and spherical. Irregularly shaped pores appear in SLM at the melt
pool boundaries due to lack of fusion. The gas between powder particles is not entirely
released. This porosity is produced when the low energy density or insufficient overlap
between the scan tracks are used [6,24], and can be easily identified in the sample A41,
which shows large pore sizes of up to 150 µm and are irregular in shape. Spherical pores
appear inside the melt pools and are generated due to the entrapment of gases during the
solidification due to the high energy density [6,16,24]. Spherical porosity is present in all
SLM samples, although it is especially important in the samples H122 and I138, which were
obtained with a higher energy density, and where a high amount of pores with diameters
up to 50 µm can be appreciated.

Table 4. The porosities of SLM 316L samples determined using optical microscopy.

Sample A41 B84 C93 D93 E93 F98 G103 H122 I138

Porosity (%) 0.46 0.28 0.16 0.17 0.22 0.26 0.53 0.54 0.65
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Figure 2. Optical micrographs of the polished surface of SLM samples showing the porosity.

Figure 3 shows the optical micrographs of the XZ cross section of SLM 316L SS
specimens after metallographic etching to reveal their microstructure. A complex network
of overlapped melt pools is clearly identified in all samples. Sample A41 exhibits the more
irregular melt pools and large defects due to the lack of fusion. The other SLM samples
present a similar microstructure with well-defined melt pools and without qualitative
differences. The cut of the cubic specimens produces large differences in the size of the melt
pool cross section because of the laser-scanning pattern used, with angle variations in each
layer. Taking this into account, it can be noted that the samples with more homogeneous
microstructures are C93 and D93. The sample H122 shows the narrowest and deepest melt
pools. This pattern can be seen more clearly by comparing the micrographs at a lower
magnification, as shown in Figure 4. The morphology of the melt pools for sample H122 is
produced by the “keyhole-mode” melting mechanism [38]. Keyhole-mode laser melting
is more likely at high energy density and low speeds and results in a trail of voids in the
wake of the laser beam [39]. Therefore, it is expected that sample H122 shows low corrosion
resistance.
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Figure 4. Optical micrographs of the cross section (XZ plane) of C93 and H122 SLM samples after
etching at ×100 magnification.

The microstructure characterization of SLM specimens by SEM clearly reveals the
melt pools with cellular and columnar substructures, as can be seem in Figure 5a. This
morphology has been reported previously by several authors [14,25,26,35]. Additionally, in
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Figure 5d, which corresponds to sample A41, the presence of non-melted powder particles
can be observed. The unmelted particles exhibit a dendritic microstructure, which is
completely removed after laser fusion. In the specimens manufactured with a higher
energy density, no unmelted particles were found. At higher magnifications, the cellular
and columnar morphology present in the interior of the melt pools can be seen more clearly
(Figure 5b,c). The size of cellular structure is highly variable, from 0.5 up to 2 µm [25,35].
This variability is related to the high temperature gradients and different solidification
rates produced by the rapid movement of the laser beam [14]. Due to this variability, no
significant differences were found between microstructures of SLM specimens.

The contrast between the cell boundary and its interior indicates a higher resistance
of the boundary to the etching solution, suggesting a different composition [40]. The
difference is attributed to the microsegregation of Mo and Cr [14,35], although several
works have not found composition differences between both zones [9]. Considering the
work of Rännar et al. [40], where a thickening of the cell boundary is observed for a lower
cooling rate, the difficulty in identifying microsegregation is most likely due to the different
manufacturing conditions. Rapid cooling produces a slight microsegregation and makes its
analysis difficult. In our case, we were not able to identify differences in the composition of
both zones by EDS.
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3.2. Hardness Measurements

Although the mechanical characterization of the samples is not the objective of the
present work, microhardness measurements were carried out to check whether the selection
of the parameters that give rise to a better corrosion resistance also produces a higher
hardness of the samples. In addition, hardness measurements can also determine the
mechanical properties heterogeneity of the samples.

Figure 6 depicts a whisker plot of the microhardness values measured parallel to
the building direction. Hardness was also measured perpendicular to the manufacturing
direction, but no differences were found [10].
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All SLM samples, with the exception of A41 H122 and I138 samples, show hardness
values close to 230 HV, and the statistical analysis of the results indicates that there are
no differences between them. These results are similar to those of other AM of 316L
studies with hardness values between 210–240 HV [10,41–43]. The lower hardness values
of samples manufactured with low and high energy densities (A41 H122 and I138) is due to
their greater porosity, which yields the collapse of the material under load, also producing
a greater deviation in the measurements [42].

3.3. Electrochemical Analysis

The impedance measurements were carried out after 1 h of immersion in the 3.5%wt.
NaCl solution to stabilize the OCP and reach equilibrium. Despite the stabilization period,
it was not possible to obtain a good repeatability of the impedance measurements to ade-
quately analyze the results. A minimum of five impedance measurements were performed
for each sample. Figure 7a depicts the Nyquist plots obtained for SLM 316L SS samples
and wrought 316L SS. Two curves are included for each SLM sample corresponding to the
maximum and minimum impedance values measured.
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Figure 7. (a) Experimental Nyquist plots obtained for SLM 316 SS specimens after one hour of
immersion in 3.5% NaCl solution (maximum and minimum values are displayed for each sample).
(b) The EEC model used to simulate the impedance spectra.

As can be seen, all Nyquist plots exhibit one capacitive loop. As expected, the samples
that present a higher impedance correspond to those manufactured with intermediate
energy density. Lower impedance values were obtained for A41, H122 and I138 samples.
Therefore, the high variability of the impedance values is related to the porosity present
in the AM samples [30]. As indicated before, all samples present porosity, and so the
high variability is consistent with the impedance results, since EIS is very sensitive to
small defects present on the surface or pits that can be activated during the measurement.
The pores can be very close to the surface so that the ingress of electrolyte during the
stabilization period can significantly reduce the measured impedance.

The impedance results were fitted using an equivalent electrical circuit (EEC) depicted
in Figure 7b. This EEC has already been used by other authors for 316L SS [26,44]. In this
model, Re is the solution resistance, CDL the double layer capacitance, and RCT the charge
transfer resistance. The impedance (Z) of the proposed EEC is given by Equation (2), where
ω = 2πf, j = −11/2 and α is a Cole–Cole parameter, which accounts for the dispersion of the
time constant:

Z = Re +
RCT

1 + (jwRCTCDL)
α (2)

The fitted parameters values for the SLM samples are displayed in Figure 8, highlight-
ing the high deviation that shows both parameters, RCT and CDL, for all samples, which
can be attributed to the presence of the porosity. In the same way as the hardness tests,
the samples that exhibited a higher resistance are those manufactured with intermediate
energy density. The low RCT values are correlated with defects in AM specimens [30,37].
In addition, the lower values of the double-layer capacity correspond with the samples
that present a higher resistance. The high CDL values for the H122 and I138 samples are
attributed to defects, including non-homogenous aspects of the surface and presence of
pores [44]. Since the capacity is correlated with the active surface of the sample, repre-
sentations have been made versus porosity (not included). However, no clear trend has
been obtained for low porosities, that is, for samples manufactured with medium energy
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densities. These results is in good agreement with those published by Sander et al. [23]
and Revilla et al. [22], who indicated that the electrochemical behavior was not affected in
samples with low porosity. The values of resistance and capacitance are consistent with
previous studies, with similar values to Revilla et al., who obtained resistances between
2.1–2.9 MΩ·cm2 [22]. However, the impedance values are higher than those indicated
by Kale et al. with resistances values of about 16–450 kΩ·cm2 [30] and Lodhi et al., who
reported values of 600 kΩ·cm2 in a chlorinated medium [26].
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Figure 8. Whisker plots of CDL and RCT values for the different samples.

Figure 9 shows the cyclic voltammetries (CVs) for SLM 316L SS samples. The CV for
wrought 316L is included as a reference. The CVs exhibit a similar morphology, highlights-
ing the wide range of passivity potentials and the low current densities of the SLM samples.
The corrosion potential (Ecorr), pitting potential (Epit) and repassivation potential (Erep)
obtained from the CVs for all samples are displayed in Figure 10. The error bar represents
the standard deviation of the three replicates. As the impedance measurements, the poten-
tials show a certain variability, which is common in additive manufacturing samples [23].
The highest potentials, Ecorr, Epit and Erep, correspond to the samples manufactured
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with energy densities close to 90 J/mm3 with Epit above 1 V vs. SCE and repassivation
potentials close to −0.1 V. On the other hand, the higher passivity of wrought material
could be due to a more stable native oxide film [22].

By analyzing these results in detail, it can be seen that the sample with the best
corrosion behavior is C93, which shows an Epit of 1.15 Vvs SCE and a lower current density
throughout the potentials range. This result is in good agreement with previous studies
that show the best results with an Epit of about 1 V vs. SCE [21,22,25,26]. The lower
variability of the Epit results obtained for the C93 sample may be related to the stability
limit of chromium oxide. As indicated by Sun et al. [21] the SLM manufacturing allows the
ultimate corrosion resistant potential of 316L to be reached at about 1.2 V vs. SCE, that is
around the transpassive state of chromium oxide.
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Figure 9. Cyclic voltammetries for SLM 316L SS specimens in 3.5 wt% NaCl. (CV of wrought 316L is
included as reference).

It should be noted that, although the C93, D93 and E93 samples are obtained with
practically the same energy density, the potentiodynamic test reveals a great reduction in the
current density of the C93 sample. Although there are no significant differences in hardness
and porosity, the selection of the manufacturing parameters considering the electrochemical
results allows a significant improvement in the corrosion resistance properties of SLM 316L
SS. These results are in good agreement with Sander et al. [23] who did not find a significant
relationship between porosity and Epit, Ecorr and icorr for samples with a low porosity.
Following the same experimental design, the representation of the potentials against the
porosity (not included) does not show any correlation for the samples manufactured with
intermediate energy densities.
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Figure 10. Ecorr, Epit and Erep values obtained from CVs of SLM 316L CV and wrought 316L. Error
bars represent the standard deviations.

The surfaces of the corroded samples were analyzed by optical microscopy and SEM.
Due to the wide sweep of the applied potentials, most of the pits were large since, after
the passive layer breaks, corrosion continued in these areas, which provoked the pitting
growth. Sample H122 stands out for its large number of pits compared to the other samples,
which is consistent with the worst electrochemical results. Figure 11 depicts the optical
micrographs corresponding to the surface of the H122 sample with a lacy metal cover
morphology that is common in localized attacks on stainless steels [45]. Figure 11b shows
the initial pit stage and suggests that the pit is initialized around the manufacturing defects.
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Figure 11. Optical micrographs of the surface of H122 after electrochemical test showing the pit
morphology. (a) Pit with a lacy metal cover morphology; (b) Initial stage of the pits.

The representative SEM micrographs of surfaces of the SLM 316L SS samples after CV
are displayed in Figure 12. The corroded areas reveal the presence of the melt pools, which
are perfectly defined, and a preferential increase in corrosion takes place on the boundaries
of the melt pools (Figure 12a). Some pits reveal the presence of a porous structure that
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covers the corroded area, as can be seen in Figure 12b. This structure is similar to the
cellular structure described in microstructural characterization section, and the dimensions
perfectly match the range of the cell size. Therefore, it is reasonable to believe that this
porous structure corresponds to the boundaries of the cells that have not dissolved during
CV. The corrosion process has a similar effect to an etching agent but is more selective.
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Figure 12. Representative SEM image micrographs of SLM 316L SS surfaces after CV. (a) Large pit
showing preferential corrosion at the boundaries of the melt pools. (b–d) Porous structure covering
the corroded area at different magnifications

To deepen the analysis of the preferential progress of corrosion, the composition of
the corroded zone and the porous structure were compared. Figure 13 shows the EDS
analysis of both areas that correspond to C93 sample. The differences in composition
are not significant, but a higher concentration of Cr and Mo is observed in the corroded
area with a porous structure. This corroborates the separation of both elements at the cell
boundaries [35,46], although some references indicate that this separation is responsible for
the worse electrochemical behavior of SLM samples [35]. We observed a great improvement
in the selected manufacturing conditions, which reached pitting potentials close to the
stability limit of the chromium oxide.
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4. Conclusions

The effect of the laser speed (in the range 400–1200 mm/s) and hatch distance (in
the 0.11–0.2 mm) on the corrosion properties of SLM 316L was optimized considering the
electrochemical results of nine samples.

The best results were obtained for an intermediate input energy density (92.5 J/mm3),
small hatch distance (0.16 mm) and medium laser speed (625 mm/s). These manufacturing
conditions produce the highest Epit and a very low current density throughout the scan
potentials.

Although the results of the microstructural and mechanical characterization allow for
the selection of suitable building parameters with low porosity (<0.2%) and high hardness
values, it is important to take into account the electrochemical analysis to improve the
corrosion resistance.
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It should be noted that, despite obtaining good electrochemical results for other
samples manufactured with a very close energy density, (about 93 J/mm3) the small
variation in the parameters maximizes the corrosion resistance.

The segregation of Cr and Mo at the cell boundaries was identified by the characteristic
progress of corrosion. Despite of the presence of segregation, the electrochemical response
obtained for best manufacturing conditions is much higher than that of wrought 316L.
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