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Abstract: It is well known that bladed disks with certain patterns of mistuning can have higher
aeroelastic stability than their tuned counterparts. This requires small but accurate deviation of
the mechanical properties on each blade sector, and currently it is difficult to realize by mechanical
manufacturing. In this paper, we propose an adaptive strategy to realize the intentional mistuning for
the improvement of aeroelastic stability. The basic idea is to bond or embed piezoelectric materials
to each blade and use different shunt capacitance on each blade as the source of mistuning. When
the shunt capacitance varies from zero (open-circuit, OC) to infinity (short-circuit, SC), the stiffness
of each blade changes within a relatively small interval. In this way, the required small difference
of stiffness among blades is altered into a relatively larger difference of the shunt capacitance. This
provides a more feasible and robust way to implement the intentional mistuning, provided that the
variation interval of blade stiffness between OC and SC contains the limits of required mistuning.
Thus, it is critical to maximize the ability of changing the blade stiffness by shunt capacitance with
limited amount of piezoelectric materials. To do so, a straightforward approach is proposed to get
the best distribution of piezoelectric materials on the blade for the targeting mode. This approach is
based on the FE model of the bladed disc, and the piezoelectric materials are introduced by replacing
elements (if they are embedded) or adding an extra layer of elements (if they are bonded). An
empirical balded disc with NASA-ROTOR37 profile is used as the example. With a proper design
of the mistuning pattern and replace use piezoelectric materials of only 10% the blade mass, the
proposed method can significantly improve the aeroelastic stability of bladed disks.

Keywords: aeroelastic stability; bladed disk; intentional mistuning; piezoelectric material; topological
optimization

1. Introduction

Improving aero-elastic stability to avoid flutter is an essential task for bladed disks in
modern high-performance aero-engines. Previous studies [1,2] have proved the beneficial
effects of mistuning on aeroelastic stability of cascades. It was frequently reported that
mistuning can increase the minimum aerodynamic damping of the cascades while decreas-
ing the maximum one [3,4]. Mistuning refers to slight mechanical difference among blade
sectors, and it is unavoidable due to manufacturing tolerances and in-service wear [5,6].
Such intrinsic mistuning is randomly distributed and thus uncontrollable. As the frequency
migration caused by mistuning is identified as the crucial factor influencing the aeroelastic
stability [7,8], researchers have to intentionally impose certain mistuning pattern to maxi-
mum frequency migrations so as to achieve the best beneficial effects. Researchers have
studied alternate patterns [9–13], sinusoidal patterns [14,15] and others [16].

Extensive experimental evidences have been reported regarding this topic, and the
implementation of mistuning pattern is among the key techniques. Groth et al. [11] milled
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grooves the shroud to realize the intentional mistuning. Their results show that a well-
designed mistuning can push the unstable boundary away from the turbine operating
envelope. Figaschewsky et al. [17] applied heavy paint to the blades to realize the inten-
tional mistuning. This is a non-destructive approach, but the passage of fluid may be
narrowed. Adding mass to the tips of blades is also adopted to realize the intentional
mistuning by some researchers [12,18]. Note that intentional mistuning requires small but
accurate deviation of the mechanical properties on each blade sector. It can be a difficult
task for mechanical manufacturing because it may prone to additional errors for small
amount of manufacturing. Moreover, the best mistuning pattern may vary for different
vibration modes, or at different working conditions. Pure mechanical implementation lacks
the capability to adjust.

With the two-way energy transfer capability between the mechanical and electric
fields, piezoelectric materials can be used as an adaptive way to tailor the mechanical
properties by shunting different external circuits. For example, connecting a resistor to
the electrodes is equivalent to adding an external viscous damper to the host structure.
Likewise, a resistor-inductor circuit is equivalent to an external oscillator [19]. Finally, a
capacitor is equivalent to an external grounded spring, thus changing the capacitance can
adjust the natural frequencies of the host structure.

On this basis, we propose an alternative and more robust approach to implement
mistuning. The basic idea is to bond or embed piezoelectric materials to each blade, and
use different shunt capacitance on each blade as the source of mistuning. When the shunt
capacitance varies from zero (open-circuit, OC) to infinity (short-circuit, SC), the stiffness
of each blade changes within a relatively small interval. In this way, the required small
difference of stiffness among blades is altered into a relatively larger difference of the shunt
capacitance. This provides a more feasible and robust way to implement the intentional
mistuning, provided that the variation interval of blade stiffness between OC and SC
contains the limits of required mistuning.

The change in mechanical properties is limited by the model electromechanical cou-
pling factor (MEMCF), which quantifies the energy exchange capability of a given piezo-
electric structure. MEMCF is defined as the fraction of eigenvalue (square of natural
frequencies) deviation from OC to SC. It can also be demonstrated that an external (posi-
tive) capacitance can only changes a modal frequency of the host structure from the values
with OC to it with SC. Thus, maximizing the ability of changing the blade natural fre-
quencies by shunt capacitance is equivalent to maximizing the MEMCF. This is critical
especially when limited amount of piezoelectric materials are allowed to use in future
engineering practice.

Existing studies [20–22] have pointed out that MEMCF (for a given mode) only de-
pends on the number, shape, size, and location of the attached piezoelectric materials.
Therefore, maximizing MEMCF is leading us to designing the geometrics of piezoelectric
materials, as reported in the applications of modal sensing [23], actuating [24], energy har-
vesting [25], vibration mitigation [26–29], and so on. In these studies, the host structures to
place piezoelectric materials are relatively simple and the researchers mainly takes position
and direction of the given shape piezoelectric patches. For more complex structures like
bladed disk, more factors such usage, shape, connected ways, arrangement method, etc.,
should be considered in the optimization process. Moreover, these methods are based on
certain optimization processes such as the genetic algorithms, therefore modal analysis will
be repeatedly conducted with updated design variables. Despite that modal analysis is
much faster than forced response, for complex structures like bladed disks (the FE model
can have millions of DOFs), it is still a heavy task.

In this work, an alternative approach is proposed and it only requires a single modal
analysis in prior. First, we point out that MEMCF is also the fraction of electric energy over
elastic potential energy associate with the structural mode. Consequently, piezoelectric ma-
terials should be placed in priority to the places with higher modal electric energy to achieve
highest possible MEMCF. In this way, the shape of piezoelectric material is determined
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only by a single modal analysis, and we do not need to invoke any standard topological
optimization algorithm. Iteration is avoided and the proposed approach has added very
little computing load. This can be the major advantage of the proposed approach.

The claimed originality of the work is two-fold. The first one is using capacitance
variation of piezoelectric shunt to modify the mechanical properties of each blade. To the
authors knowledge, there is no other open literature exploring this idea than a preliminary
work done by the authors [30]. This former publication has three shortages: (1) no unstable
modes, namely, a stable working condition of the fluid field is selected; (2) the shape
of piezoelectric materials is not optimized; and (3) capacitance is directly following the
harmonic mistuning pattern rather than being determined by the harmonic mistuning
pattern of mechanical properties. To further demonstrate the feasibility of such an original
idea with more convincing data, we conduct the work reported in this manuscript and
resolved all three aforementioned shortages. In particular, the topological design approach
with just a single modal analysis can be attributed to the second original contribution of
the conducted work. As mentioned in the previous review and the following detailed
presentation, this design approach is significantly different from the existing method in
current literature and it is especially suitable for the problem raised in this manuscript.

In later parts of this paper, an empirical bladed disk with NASA-ROTOR37 profile
(Section 1) is introduced, and it is used as an example to illustrate and validate the proposed
approach. The theory and procedure of the topological optimization approach are enclosed
in Sections 3.1 and 3.2. Bladed disks with optimized distribution of piezoelectric materials
are given at Section 3.3. The performance of intentional mistuning realized by the mistuning
of external capacitance is presented in Sections 3.1 and 3.2. Eventually, the robust of this
adaptive method in the presence of random mistuning is also examined (Section 3.3).

2. Problem Formulation

The bladed disk shown in Figure 1 is considered in this work. It consists of 36 blades
with NASA-Rotor37 profile and a dummy disk. The material parameters of the bladed
disk are as follows: modulus of elasticity 2.8× 105 MPa, density 7.8× 10−9 t/mm3 and
Poisson ratio 0.3. In the following analysis, the displacement at inner diameter of disk is
constrained, in order to simulate the actual installation conditions.

(a) (b)

Figure 1. The FEM model of the Rotor37 bladed disk. (a) Overall model. (b) Sector model.

First, we conduct modal analysis of the tuned bladed disk with no fluid–structure
interaction, as shown in Figure 2a. We have checked the mesh density and a finer mesh
can only provide very minor improvements of the results. The modes with similar blade
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deformation but different engine-order (the number of nodal lines when the bladed disk
vibrates) are classified to the same modal family, and they are link by the same line in
Figure 2a. In this work, we use the aeroelastic stability of the first modal family to illustrate
the proposed approaches. The modes in this family have similar frequency for they are all
dominated by the blade bending deformation as shown in Figure 2b.

(a) (b)

Figure 2. Modal analysis results of the empirical bladed disk. (a) The frequency versus nodal diameter
index. (b) Modal shape marked with blue circle.

Second, we access the aeroelastic stability of the tuned bladed disk as a reference. To
do this, aerodynamic influence coefficient (AIC) [31] is employed to model the aeroelastic
force caused by the movement of blades, leading to a linearized dynamic equation of the
bladed disk for free vibration:

M̂ÿ + (K̂ + L)y = 0 (1)

where M̂ and K̂ are mass and stiffness matrices of the bladed disk; y is the displacement
vector. Matrix L is constructed by the AICs and it contains complex numbers. Analyzing
the modal characteristics in this case will lead to a complex eigenvalue problem:

(−ω̂2
j M̂ + K̂ + L)y = 0 (2)

and the natural frequencies ω̂j may become complex values. Aerodynamic damping ratio
ξ j of the jth mode can be obtained by

ξ j = −
Im(ω̂j)

|ω̂j|
(3)

The system become unstable if there are negative values of aerodynamic damping
ratio. Therefore, we will use the minimum value of aerodynamic damping ratio among
all the modes, denoted by ξmin, as an indicator for the aeroelastic stability of the system.
If ξmin < 0 then the system is unstable, and if ξmin increases after some treatment we can
conclude that the aeroelastic stability is improved.

This method is relatively mature and details can be found in the literature [32]. For the
sake of brevity, we do not repeat the basics of this method but only presents the key results.
Specifically, a numerical simulation of the flow field should be carried out to determine
AICs, and the calculation domain is shown in Figure 3a. The performance characteristics of
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the bladed disk are analyzed and shown in Figure 3b. The lines refer to different operational
rotation speed, and the speed is proportional to the design speed of the rotor. When the
bladed disk operates under specific rotation speed, the pressure ratio would drastically
decrease as the mass flow increase to the block margin. In addition, the pressure ratio
would keep almost constant as the mass flow decreases to the unstable region. When the
rotor operates close to the unstable region, the bladed disk is more prone to flutter.

(a) (b)

Figure 3. Outline of the CFD analysis of the bladed disk. (a) Flow field calculation domain. (b) The
performance curves.

We choose the case (marked in Figure 3b) close to the unstable region as the working
point to illustrate the feasibility of the adaptive method in improving the aeroelastic stability
of the bladed disk. The boundary conditions and more details about the flow field settings
can be found in our previous publication [33]. The aerodynamic influence coefficients for
each blades when only the 1st blade is vibrating with the first bending mode are shown in
Figure 4a. Thus, each AIC represents the aeroelastic force acted on each blade, generated
by the movement of the 1st blade, and projected to the same modal coordinate (the first
bending mode). The AICs presented in Figure 4a can be regarded as a row of matrix L in
Equation (2). Changing between different moving blades can yield other rows of matrix L.
Due to cyclic symmetry, all the remaining rows of matrix L can be generated by shifting the
order of AICs presented in Figure 4a. The blade with larger distance to the reference (1st)
blade has smaller aerodynamic force, and this is expected. Because of the blade torsion, the
AIC values are not symmetric with respect to blade index 1, namely, AIC of blade 2 does
not equal to blade 36. This means that L is not a symmetric matrix and the eigenvalues
of Equation (2) are no longer double roots. The aerodynamic damping is computed and
shown in Figure 4b. In this working condition, it is notable that there exists unstable modes
with negative the aeroelastic damping. In our later investigation, we will use the proposed
method to alleviate the unstable modes.
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(a) (b)

Figure 4. The aeroelastic stability analysis of the tuned bladed disk. (a) Aerodynamic influence
coefficients. (b) Aerodynamic damping.

3. Topology Optimization for the Piezoelectric Materials
3.1. Theoretical Basis

A structure with piezoelectric materials has two coupled physical fields: the mechani-
cal field and the electric field. The coupling strength between these two fields for the jth
mode is quantify by modal electromechanical coupling factors (MEMCF), and it is defined
as [22,34–36]

k2
j =

(ωOC
j )2 − (ωSC

j )2

(ωSC
j )2

(4)

where ωOC
j and ωSC

j are angular frequencies with open-circuit and short-circuit, respectively.
We will reveal (1) how is this factor related to the maximum ability of external capacitance
to change the natural frequencies and (2) how is this factor related to the geometric design
of the piezoelectric materials.

Let us recall the dynamic equation of the piezoelectric structure with two electrodes
(one voltage DOF):

Mẍ + Kx− ηV = f(t)
CpV + ηTx = Q(t)

(5)

where M and K are the mass and stiffness matrices, respectively; η is the piezoelectric
matrix; x is the displacement vector; V is the voltage between the electrodes; f(t) is external
force vector; Q(t) is the electric quantity of the circuit connected to the piezoelectric
patch; and Cp is the intrinsic capacitance. Shunting an external capacitance Ce gives an
additional equation:

Q(t) = −CeV (6)

and thus Q(t) in the second equation of (5) can be eliminated, and the equation becomes

(Cp + Ce)V + ηTx = 0 (7)

If the external capacitance Ce = +∞, the voltage between the piezoelectric electrodes
is zero and this makes the piezoelectric patch short circuit. Accordingly, Equation (5)
becomes

Mẍ + Kx = f(t) (8)

Otherwise, if the external capacitance Ce = 0, the piezoelectric patch is open circuit
and Equation (5) becomes

Mẍ + (K + C−1
p ηTη)x = f(t) (9)
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It is clear that when external Ce varies in interval [0,+∞), it can only induce limited
change to the stiffness and the natural frequencies can only vary in a limited zone. MEMCF
is defined upon the maximum fraction of frequency changing.

Solving eigenvalue problem of Equations (8) and (9), respectively, we can get the
angular frequencies ωOC

j and ωSC
j . Owing to the orthogonality of the piezoelectric structure

modal shape in open-circuit and short-circuit, we can get the following expression:

φT
OC,jKφOC,j + VjCpVj = ω2

oc,jφ
T
OC,jMφOC,j

[2ex]φT
SC,jKφSC,j = ω2

SC,jφ
T
SC,jMφSC,j

(10)

where φOC,j, φSC,j are the jth modal shapes with open circuit and close circuit respectively.
We assume that the changing of electrodes status does not result in significant structural
deformation difference, namely,

φoc,j ≈ φsc,j (11)

This assumption is reasonable when the amount of piezoelectric materials are minor
and it is the case in this paper.

Combining Equations (4) and (10), we can get

VjCpVj

φT
SC,jKφSC,j

≈
(ωOC

j )2 − (ωSC
j )2

(ωSC
j )2

= k2
j (12)

This indicates that MEMCF k2
j also represents the proportion of the electric energy

in the mechanical energy when the piezoelectric structure vibrates in the form of φsc,j. In
limited usage of the piezoelectric material, the geometry parameters of the piezoelectric
materials, such as position and shape, do not change the mechanical energy of the structure
significantly, but play a dominated role of the electric energy stored in the piezoelectric
patches. The relation between the voltage, V, and the electric field intensity, E, is

V = Ed (13)

where d is the distance between the electrodes of the piezoelectric patch. Based on the
constitutive relationship of the piezoelectric material, the electric field intensity, E, is the
linear summation of the strain in every direction:

Ei =
6

∑
j=1

hijSj (14)

where hij is piezoelectric constant and i refers to the direction of the electric field. The
local coordinate system defined by the polarization direction of the piezoelectric material is
shown in Figure 5a, the constitutive relationship of the piezoelectric material is expressed
in the local coordinate system. For instance, when the polarization direction is z (3), the
direction of the electric field is set up in the direction z (3), which means the electric field
intensity E in Equation (13) is E3.

Therefore, based on the strain distribution of the structure, we can determine the place
to arrange the piezoelectric material. Namely, piezoelectric materials should be placed at
the area with large |E3| of the blade to achieve the highest possible modal electromechanical
coupling factor. In addition, we assume that the modal strain distribution would not be
significantly altered by the introduction of piezoelectric materials. Therefore, |E3| can be
estimated by the modal strain field of the structure before the installation of piezoelectric
materials. In this way, the priority places for the installation of piezoelectric materials is
determined by a single modal analysis and minor additional computing (Equation (14)).
The detailed procedure will be enclosed in the next section.
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(a) (b)

Figure 5. Illustration of the local coordinates on which the constitutive equation of piezoelectric
materials is defined. (a) Local coordinates and the polarization direction. (b) Local coordinates on
the blade.

3.2. The Optimization Procedure

The topology optimization for the piezoelectric material (PZT-5H is used, as shown
in Appendix A) on the bladed disk can be done based on FEM model. The piezoelectric
materials are introduced by replacing elements (if they are embedded) or adding an extra
layer of elements (if they are bonded). In order to not weaken the strength of the blades or
not add too much weight to the whole structure, we set the ratio, Rm, of the piezoelectric
material mass on a single sector, mpzt, and the blade mass on a single sector (does not
include disk), mblade, as our design constrain:

Rm =
mpzt

mpzt + mblade
(15)

When the blades vibrate, the induced strain mainly happens along the blade surface.
In the normal direction of the blade, the strain is small. Therefore, the working mode of
the piezoelectric elements is ‘3-1’ mode, so the electric field intensity E in Equation (13) is
E3. Moreover, the polarization direction of the piezoelectric elements is along the normal
direction of the blade aera, and the normal direction is set to the outward of the blade
surface (as shown in Figure 5b).

The objective function of the optimization is

Obj : max( ∑
elem
|E3|) (16)

As discussed, this can maximize the MEMCF and endow the largest possible capability
for the an external capacitance to tailor the natural frequencies of the structure.

Based on the FEM model of the bladed disk, the position to place the piezoelectric
elements is decided by the element strain. The optimization procedure is given as follows
(shown in Figure 6):

1. Conduct modal analysis of the tuned bladed disk and obtain its modal information.
This can be done with the sector model plus periodic conditions as shown in Figure 1b.
Our target modes are those dominated by the blade 1st bending deformation (1st
modal family).

2. Extract the blade surface elements strain. It should be noted that the strain need to be
calculated at the element local coordinate system, and the way to set local coordinate
system is shown in Figure 5b. Use the strain to calculate the electric field intensity
|E3| of each element based on Equation (13). Then, sort the element according to the
electric field intensity |E3|. Note that element strain is an averaged value from the
distributed strain in the element. In principle, it could even generate a null field (for
example in a cantilever beam, if the element is located at the neutral axis in a pure
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bending). To avoid this abnormal situation, it is suggested to have a finer mesh so
that the strain does not vary significantly inside a single element.

3. Choose the way to place the piezoelectric material.

(a) If the piezoelectric materials are embedded to the blades. First, set the ele-
ments coordinate system of the blade surface elements. The z direction of the
local coordinate system is along the outward normal direction of the blade
surface. Then, replace the blade surface elements with the piezoelectric mate-
rial elements. In ANSYS, this means changing element type from SOLID185
to SOLID226. The criterion is replacing the blade element based on the elec-
tric field intensity |E3| from the largest ones until the mass ratio Rm meets
the condition.

(b) If the piezoelectric materials are bonded to the blades. We generate new ele-
ments along the norm direction of the blade elements. Namely, we will create
a new layer of elements on the installation place. The remaining operations
are the same as when we embed the piezoelectric materials.

4. Simulate the electrodes. The electrodes applied on a continuous area of piezoelectric
materials are modeled by coupling the voltage DOFs on the top and bottom surfaces.

5. Interconnect discontinued piezoelectric materials on the blade. After the optimization,
there may be several discontinued areas of piezoelectric materials. We will intercon-
nect their electrodes so there is only one port on each blade, as shown in Figure 7. To
do this, the poling direction of some areas should be reversed so that all the areas
have the same signs of charges. Based on the sign of electric field intensity E3, we can
judge the poling direction.

Figure 6. Optimization procedure of the piezoelectric materials distribution on the blades.

Figure 7. The electric connection of several distributed piezoelectric patches to the same circuits.



Materials 2022, 15, 1309 10 of 23

3.3. Optimized Distributions of Piezoelectric Materials on the Blade

Although our primary object is the first modal family (1st blade bending), the proposed
algorithm can be used to any modes. To illustrate this, we optimize the distribution of
piezoelectric materials for the first three modal families. The deformations shown in
Figures 8a and 9a are the modal shapes in the second and third modal families, respectively.
We can see that the second modal family of the blade disk is dominated by the blade 1st
torsional deformation, and the third modal family is dominated by the blade 2nd bending
deformation.

(a) (b)

Figure 8. The modal deformation of the bladed disk dominated by the blade 1st torsional mode
(marked with orange circle in Figure 2a). (a) Overall modal displacement. (b) Total strain on a
single blade.

(a) (b)

Figure 9. The modal deformation of the bladed disk dominated by the blade 2nd bending mode
(marked with green circle in Figure 2a). (a) Overall modal displacement. (b) Total strain on a
single blade.

The modal strain distributions are also given in Figures 8b and 9b. Note that the
absolute values have no physical meaning, and we only use the relative values to determine
the priority of locations to introduce piezoelectric materials. The priority indicator E3 are
computed according to Equation (16) and the results are shown in Figure 10. The optimized
distributions of piezoelectric materials are shown in Figures 11 and 12, where different
colors (red and purple) indicate the piezoelectric materials with opposite polarization
directions. The best locations results follow the distribution of large E3 values as imposed
by the algorithms. Thus, the agreements between Figures 10 and 11 indicate that the
algorithm is performed as expected. According to Equation (16), indicator E3 can also be
regarded as a weighted sum of the strain components. Thus, the distribution of E3 should
also be similar to (but not necessarily the same as) the distribution of strain. This remark
can be verified by Figures 8b and 10a.

Eventually we optimize the distribution of piezoelectric materials for the first modal
family, which is chosen to illustrate the performance of the proposed method in the later
sections. The results are shown in Figure 13b for the embedded case. We can see that
the suggested area is not completely located at the root area of the blade, but is expands
from the root to center of blade. Such results can be explained by E3 shown in Figure 13a.
The suggested distribution for the bonded case are given in Figure 13c,d. We can also
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see that the placement method would not significantly change the distribution area of the
piezoelectric materials.

(a) (b)

Figure 10. The electric intensity E3 for the blade 1st torsional mode. (a) Pressure side. (b) Suction side.

(a) (b)

Figure 11. The optimized distribution of the embedded piezoelectric material for the 2nd modal fam-
ily dominated by the blade 1st torsional mode (mass ratio = 10%). (a) Pressure side. (b) Suction side.

(a) Pressure side (b) Suction side

Figure 12. The optimized distribution of the embedded piezoelectric material for the 3rd modal family
dominated by the blade 2nd bending mode (mass ratio = 10%). (a) Pressure side. (b) Suction side.

(a) (b) (c) (d)

Figure 13. The optimized distribution of piezoelectric materials for the 1st modal family, mass
ratio = 10%. (a) E3, (b) Embedded Pzt (Suction side), (c) bonded Pzt (Pressure side), (d) bonded Pzt
(Suction side).
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The modal shapes with piezoelectric materials being open-circuit and short-circuit
are compared with the original blades in Figure 14. Little visual difference can be found
among them, and we can use modal assurance criterion (MAC) to quantify their similarity:

MAC(a, b) =
|aHb|
|a||b| (17)

where a and b are vectors whose similarity to be evaluated, superscript H refers to conjugate
transpose. MAC varies from 0 to 1, and a closer value to 1 indicates a stronger similarity
between a and b. Figure 15 summaries MAC values among the original, open-circuit and
short-circuit modal shapes for the first three modal groups. We can see their MAC values
are very close to 1. These results support the assumption that introduction of piezoelectric
materials and the status of electrodes do not significantly change the modal shapes (when
small amount of piezoelectric materials are used), as expressed in Equation (11).

Figure 16 demonstrates the strain distribution influence by the introduction of piezo-
electric materials. The overall distributions of the train field are nearly the same when
piezoelectric materials are introduced (bonding or embedding). Note that the edge of
the piezoelectric area is determined by the edges of elements, so it is not smooth. Conse-
quently, there will be stress concentration near the edges. This stress concentration only
happens in the numerical simulation. In practical, one can choose to use the rounded or
rectangular piezoelectric materials that can be purchased with ease, to cover the targeting
area obtained by the proposed method. Alternatively, one can choose to customize the
piezoelectric materials after smoothing the edges. On one hand, the similarity of the overall
distribution before and after the introduction of piezoelectric materials is justifying the
design procedure. On the other hand, it also explains why we use the modal strain field of
the original blade to build our topological design. If we first introduce a small proportion
of piezoelectric materials and the location of the remaining proportions are determined by
the strain field of the blade with existing piezoelectric materials, such a ‘numerical’ stress
concentration will mislead the design.

(a) (b) (c)

Figure 14. The modal shapes of the 1st modal family at different situations, mass ratio = 10%.
(a) Original, (b) Bonded Pzt, open-circuit, (c) Bonded Pzt, short-circuit.
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Figure 15. The modal assurance criterion (MAC) between the original (denoted by ‘m’), open-circuit
(‘o’) and short-circuit (‘s’) modal shapes for the first three modal groups.

(a) (b) (c)

Figure 16. Total strain distribution of the 1st modal family at different situations, mass ratio = 10%.
(a) Original, (b) Bonded Pzt, (c) Embedded Pzt.

4. Intentional Capacitance Mistuning to Improve Aeroelastic Stability
4.1. The Relation between Frequency Deviation and Shunt Capacitance

The topology optimization of the piezoelectric materials on the blades allows us to
change the natural frequency (or local stiffness) of blades to the maximum extent, under
limited amount of piezoelectric materials. The modal frequency of each blade can be varied
if we connect different capacitances to the piezoelectric materials on each blade. In this
way, we can implement the desired mistuning pattern by capacitance mistuning. To do
this, we need to quantify the relationship between the blade frequency with respect to the
capacitance. Namely, for the desired mistuning pattern (normally given by the distribution
of frequency deviation among sectors, ∆ωj with j = 1, 2, . . . the sector index), we can
implement it by a distribution of capacitance among sectors (Cj with j the sector index) but
we must know the relationship between Cj and ∆ωj.

The relation between the first modal frequency of the cantilever blade and the capac-
itance is shown in Figure 17a (embedded pzt) and 17b (bonded pzt). The usage of the
piezoelectric material are both 10%. Such results can be obtained by solving the eigenvalue
problem associated with Equations (5) and (6) for each given capacitance Ce. The relation
between the first modal frequency of the cantilever blade and the capacitance is shown in
Figure 17a (embedded pzt) and 17b (bonded pzt). The usage of the piezoelectric material are
both 10%. Such results can be obtained by solving the eigenvalue problem associated with
Equations (5) and (6) for each given capacitance Ce. The modal frequency of the cantilever
blade can be changed from around 924 to 946 Hz by varying the external capacitance for the
embedded case. Such a range may not be said wide in general situations, but it is acceptable
to create an intentional mistuning. If not satisfied, one can increase this range by using
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more piezoelectric materials (increasing the value of Rm in the topological optimization),
or by using more powerful piezoelectric materials. More importantly, such a varying range
of modal frequency is achieved by a much wider range of the capacitance. Please note
that the logarithmic scale is used in Figure 17a,b. This means that the value of capacitance
can vary within 3 orders of magnitude to achieve such a 20/950 difference in natural
frequencies. Therefore, the design capacitance can subject to relatively large uncertainties
and would not induce significant error to the desired mistuning pattern. This endows
a much higher robustness of the proposed method over the mechanical manufacturing
approaches. Similar remarks can be given to the bonded PZT case, where the frequency
range is slightly narrower but the overall trend is the same.

(a) (b)

Figure 17. The relation between the blade 1st modal frequency and the shunt capacitance, mass
ratio = 10%. (a) Embedded PZT and (b) bonded PZT.

In summary, we will set a mean frequency that all of the blades on the bladed disk
should be first tuned with same external capacitance. In this way, we can additionally mod-
ify the connected capacitance to realize the desired intentional mistuning. The capacitance
with 4.74 pF and 18.99 pF are chosen as the mean values for the embedded and bonded
cases respectively, as shown in Figure 17.

4.2. Mistuning Pattern Design

We follow the literature [14,15] and employ mistuning patterns with harmonic (sinu-
soidal) forms:

∆ωj = A ∗ sin(
N
2π

hj + θ) (18)

where N is the overall number of blades and equals to 36 in this paper; j = 1, 2, . . . N is the
sector index; h is the harmonic index and represents the repeating times of pattern along
the circumference direction; θ is an arbitrary starting phase and it does not affect the results;
A is the amplitude of mistuning. After obtaining the knowledge about modifying the blade
frequency with external capacitance, we can implement such an intentional mistuning
pattern. As we assume to fully use the adjust range of frequency to maximize the strength
of mistuning, A is determined by Figure 17. Then, what remains is only to determine
harmonic index h.

The aeroelastic stability of the bladed disk is determined by the minimum aerodynamic
damping ratio ξmin. However, there is no general conclusion about the relationship between
ξmin and harmonic index h of mistuning. Therefore, we conduct parametric studies to
determine the best choice of h for the largest possible ξmin. In our investigation, we
also varied the mass ratios of the piezoelectric material from 3% to 10%. The results are
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summarized in Figure 18 for embedded PZT and Figure 19 for bonded PZT. In each figures,
the x-coordinate refers to different mass ratio, and the y-coordinate is the harmonic index
for which the capacitance varies along the circumference direction. The color is indicating
the magnitude of ξmin when (1) the piezoelectric materials are optimized under the mass
ratio shown in the corresponding x-coordinate, and (2) the mistuning pattern is following
the harmonic index shown in the corresponding y-coordinate. We have also labeled the
values when ξmin is greater than −0.25‰, while the values of unlabeled colors can be
estimated by the scale shown alongside the figure.

Figure 18. The variation of ξmin with respect to harmonic index h and mass ratios when piezoelectric
materials are embedded into the blades.

Figure 19. The variation of ξmin with respect to harmonic index h and mass ratios when piezoelectric
materials are bonded to the blades.

In both figures, the best results of ξmin are still negative values, this means that the
system is still unstable. Note that the original ξmin for the tuned bladed disk is lower than
−0.5‰, as shown in Figure 4b. Thus, a ξmin in the mistuned cases larger than−0.5‰ can be
regarded as an improvement of the aeroelastic stability. The remaining negative aeroelastic
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damping is easier to compensate by material or structural damping. Moreover, we can
increase the mass ratio or use more powerful piezoelectric materials. In this paper, we
just use NASA-rotor37 blades as example and choose an abnormal working condition to
reproduce the flutter and to illustrate the performance of the proposed method. Therefore,
the observation of the improved ξmin in such a unstable situation is sufficient here.

When the mass ratio is low, for example, when it equals to 3% and 4%, the improve-
ment of ξmin is not significant. Despite that, the performance of some harmonic indexes is
better than others, for example when it equals to 3, 4, 5 or 6. These is consistent with the
engine order of the modes with higher aeroelastic damping in the tuned case as shown
in Figure 4b. Such an consistency is the same with previous studies concerning harmonic
mistuning [14,15,33]. Under each level of mass ratio, the distribution of piezoelectric ma-
terials are optimized using the aforementioned approach. Therefore, a larger mass ratio
means a greater gap between the OC and SC natural frequencies and mistuning amplitude
A in Equation (18) is lager. Consequently, we can observe in both figures that the best
ξmin increase monotonously with the increase of mass ratio of piezoelectric materials. For
example, in Figure 18, ξmin equals to −0.24‰, −0.23‰, −0.21‰ and −0.19‰ when mass
ratio Rm equals to 7%, 8%, 9% and 10%, respectively. In addition, the best choice of the
harmonic index h does not vary significantly for different mass ratio, and the performance
difference among harmonic indexes is less apparent when mass ratio is increasing. This
trend is less significant for the bonded PZT case (Figure 17) because it provides weaker
frequency gap than the embedded case under the same mass ratio.

Finally, the desired harmonic indexes are 6, 8, 13 and 16 for 10% mass ratio, when the
piezoelectric material is embedded. Compared with the original results shown in Figure 4b,
the amplitude of ξmin has been reduced by half. When the piezoelectric material is bonded,
the best harmonic index are 4 and 5. Detailed results are shown in Figures 20 and 21. We
can see that these intentional mistuning can increase the minimum aerodynamic damping
to higher levels compared with the tuned bladed disk. Moreover, the number of the
unstable mode decreases after introducing the intentional mistuning. With h decided,
the mistuning patterns can be implemented, as illustrated in Figure 22. Recall that the
capacitance is computed by the blade frequency variation according to Figure 17. Please
note that the required capacitance is varying from several to hundreds pF, and this can be
purchased with easy.

We can decompose the mistuned modal shape corresponding to ξmin by the tuned
modal shapes, as shown in 23. We can see that a lot of modes are involved including
those with positive aeroelastics damping ratios. With their contributions, the stability of
mistuned modes are improved. This is also consistent with the existing literature.

4.3. Effects of Random Mechanical Mistuning

As mentioned, mechanical mistuning caused by the material disperse, wear and man-
ufacturing tolerance is random and inevitable. Therefore, the performance of intentional
mistuning should be further examined in the presence of random mechanical mistuning.
We apply the optimum intentional mistuning to the bladed disk obtained in the last sec-
tion and introduce random mechanical mistuning simultaneously. The former is realized
by external capacitance and the latter is simulated by stiffness variance in the numerical
analysis. The level of random mistuning is quantified by the standard deviation of the
first modal frequency with cantilevered blade along sectors. There are many sources of
mistuning in practice as mentioned. Quantifying each of them in real engineering scenario
can be a difficult task, and it is out of the scope of this work. However, their influences can
be eventually attributed to the non-periodic perturbation on the stiffness and inertial coeffi-
cients of the dynamic model. Therefore, we use stiffness mistuning as a representative case
to study the influence of additional random mistuning caused by different sources. Such
an idea can be seen in various published papers [37,38] particularly when the researchers
aim to draw general conclusions concerning the influence of mistuning with respect to the
dynamic characteristics.
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(a) (b)

(c) (d)

Figure 20. The distribution of aerodynamic damping ratio with different harmonic index. (mass
ratio = 10%, embedded PZT). (a) h = 6, (b) h = 8, (c) h = 13, (d) h = 16.

(a) h = 4 (b) h = 5

Figure 21. The distribution of aerodynamic damping ratio with different harmonic index. (mass
ratio = 10%, embedded PZT). (a) h = 4, (b) h = 5.
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(a) (b)

Figure 22. Illustration of some intentional mistuning patterns (blue bars) and associated implementa-
tion by capacitance (red dots), mass ratio = 10%. (a) h = 6, embedded PZT, (b) h = 4, bonded PZT.

Figure 23. The contributions of tuned modes to the minimum aerodynamic damping (mass ratio =
10%, h = 13, bonded PZT).

At first, we only introduce mechanical mistuning into the tuned bladed disk. We take
100 groups of ∆ωj, j = 1, 2, . . . , 36 from the normal distribution with 0 mean expectation at
each standard deviation changes from 0.1% to 0.5%. Note that when the standard deviation
equals to 0.5%, most of the ∆ωj values will be located approximately in the same range as
that can be expanded by the capacitance as shown in Figure 17. That is why we choose to
analyze this range of standard deviation. The frequency graph is shown in Figure 24, where
the original ξmin value of the tuned bladed disk is also marked. The y-axis label ‘times’
in these figures refers to the count of the samples whose ξmin is inside the corresponding
small interval between two markers in the curves. Thus, the results shown in these figures
can be interpolated as an approximation of the probability density function. We can see that
mistuning is always beneficial to the improvement of aeroelastic stability in comparison
with the tuned case, and this observation is consistent with the literature [1,2]. Specifically,
the mean value of ξmin in creases with respect to the mistuning level and the samples are
distributed in a wider range. As mentioned, the variance range of blade frequencies with
0.5% random mistuning is equivalent to it shown in Figure 24. But 0.5% random mistuning
can only have mean value of ξmin around −0.44‰ and barely reaches −0.35‰. This is
much weaker than the performance of intentional mistuning with harmonic form, where
ξmin can be increased to around −0.20‰ as shown in Figures 18 and 19. Such a comparison
also indicate the advantage of intentional mistuning.
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Figure 24. The frequency graph of ξmin only with mechanical mistuning at different level.

Then we investigate the influence of mechanical mistuning when the intentional mis-
tuning (implemented by capacitance) has already been imposed. The mass ratio of piezo-
electric materials are both 10%, and we choose two typical cases from Figures 18 and 19 as
the intentional mistuning: (1) h = 6 with embedded PZT, and (2) h = 4 with bonded PZT.
The results are shown in Figure 25, where the ξmin with only intentional mistuning are
marked as reference. When the random mistuning is small, the influence is generally small.
Especially in the case of embedded PZT, most of the samples are better than the reference.
When the mistuning level increases, the results start to spread, and nearly half of samples
have worse performance than the reference. Despite that the ξmin decreases from −0.23‰
to around −0.30‰, and the worst case is still higher than the best case in Figure 25. This
indicates that intentional mistuning can still significantly improve the aeroelastic stability
with the presence of random mechanical mistuning.

(a)

Figure 25. Cont.
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(b)

Figure 25. The frequency graph of ξmin with best intentional mistuning (mass ratio = 10%) plus
different level of mechanical mistuning. (a) h = 6, embedded PZT; (b) h = 4, bonded PZT.

5. Conclusions

1. Herein, an adaptive method based on the piezoelectric technique to improve the
aeroelastic stability of the bladed disk is proposed. The basic idea is to bond or embed
piezoelectric materials to each blade and use different shunt capacitance on each blade
as the source of mistuning. We show that the required small difference of stiffness
among blades is altered into a relatively larger difference of the shunt capacitance.
This provides a more feasible and robust way to implement the intentional mistuning.

2. A method to determine the distribution of piezoelectric materials have been estab-
lished. A linearly weight strain indicator is used as the optimization criterion, whose
physical meaning is the absolute value of the electric field. The theoretical basis of
this method is clarified. The method is adapted for FE model and has no assumptions
on the geometrics of piezoelectric materials. It only needs a single modal analysis of
the bladed disk and a given threshold of the mass ratio, and eventually yields the best
distribution of piezoelectric materials for the targeting mode(s). The obtained shapes
are described by the edges of the finite elements so they are non-smooth. One can
choose to use the rounded or rectangular piezoelectric materials that can be purchased
with ease, to cover the targeting area obtained by the proposed method. Alternatively,
one can choose to customize the piezoelectric materials after smoothing the edges. In
either way, the proposed method can provide a good starting point.

3. An empirical bladed disk with NASA-ROTOR37 profile is used as an example. For
the first bending mode of the blade, only using piezoelectric materials with a mass
of 10% of the blade mass can reduces the unstable margin from 0.6‰to 0.2‰. The
required capacitance is varying from several to hundreds pF, and this can be pur-
chased with easy. These quantitative results demonstrate that the proposed method is
very promising.

4. The proposed method shows good robustness with the presence of random mechani-
cal mistuning. We show that additional (and inevitable) mistuning would somewhat
weaken the performance of intentional mistuning imposed by capacitance variance.
However, the stability of the system is still much better than the original case.

5. There are two main challenges to be resolved before the proposed method can be
further applied to real engineering products. The first one is the installation of
piezoelectric materials (PZT, MFC and so on). In the laboratory environment, they
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are often glued to the surface of host structures, and additional protection is required
when testing in rotation status [39]. Alternatively, the piezoelectric materials can
be embedded into composites [40], and thus avoid negative affects to fluid field. In
this way, the wire and electric components can also be packaged. The reliability of
such installation strategies needs thorough validation before they can be used in
real aero-engines. The second challenge is the strength of piezoelectric materials.
We should locate them to the places where stress level is relatively high, to achieve
a stronger ability of the electric field to tailor the mechanical properties. In this
case, whether the piezoelectric materials and the glue can withstand the tress level
for a satisfying duration should be investigated. We are addressing this issue with
on-going experiments.

Author Contributions: Conceptualization, Y.F. and L.L.; methodology, X.L. and X.Y.; validation, X.L.
and Y.F.; writing—original draft preparation, X.L.; writing—review and editing, Y.F.; supervision,
L.L.; funding acquisition, Y.F. and L.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by Aeronautical Science Foundation of China (2019ZB051002), and
Advanced Jet Propulsion Creativity Center (Projects HKCX2020-02-013 and HKCX2020-02-016).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author..

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A. Material Properties of PZT-5H

Mass density: ρ = 7500 kg/m3.
Material stiffness matrix evaluated at constant electric field:

cE = 1010 ×



12.6 7.95 8.41
7.95 12.6 8.41
8.41 8.41 11.7

2.3
2.3

2.35

Pa

Permittivity matrix evaluated at constant strain:

εS = ε0 ×

 1700
1700

1470


where ε0 = 8.854× 10−12 C/(V·m).

Piezoelectric stress coupling matrix:

e =



−6.5
−6.5
23.3

0
17

17

N/(V ·m)
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