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Abstract: Packaging materials based on biodegradable polymers are a viable alternative to replace
conventional plastic packaging from fossil origin. The type of plasticizer used in these materials
affects their functionality and performance. The effect of different plasticizers such as glycerol (GLY),
sorbitol (SOR), and poly(ethylene glycol) (PEG) in concentrations of 5%, 10%, and 15% (w/w) on
the structural features and functional properties of starch/PVOH/chitosan films was evaluated.
The incorporation of a plasticizer increased the thickness of the biodegradable composite films.
Furthermore, the material plasticized with 30% (w/w) sorbitol had the highest elongation at break,
lowest water vapor permeability, and better thermal resistance. The results obtained in this study
suggest that maize starch/PVOH/chitosan biodegradable composite films are a promising packaging
material, and that sorbitol is the most suitable plasticizer for this formulation.

Keywords: biodegradable polymers; plasticizer; mechanical properties; water vapor permeability;
starch; chitosan

1. Introduction

Packaging materials are an essential part of food processing and play an important
role in the food industry; thus, the development and use of new alternatives have increased.
In the search for efficiency and practicality, humanity has developed packaging that,
while efficient for food protection, has led to excessive use of synthetic polymers. The
packaging industry consumes 36% of the synthetic plastic produced worldwide, which
for 2015 was estimated at 400 million tons, of which only 9% was recycled and 79%
ended up in landfills or polluting the environment [1]. Therefore, it is necessary to find a
sustainable alternative that can replace synthetic plastics using biodegradable polymers.
The principal natural polymers used to make biodegradable films are starch, cellulose,
alginate, pectin, chitosan, zein, and gelatin [2–4]. Starch is a natural polymer widely used to
create packaging materials because it can be obtained in high quantities and from various
plant sources; however, it has much lower functional, mechanical, and barrier properties
than synthetic polymers. To improve its functional performance, it is necessary to resort to
the combination of two or more polymers, taking advantage of the properties or benefits of
each polymer. The addition of poly(vinyl alcohol) (PVOH) in starch films improved their
mechanical behavior significantly, increasing their elongation by up to 600% [5]. On the
other hand, the presence of chitosan improved the hydrophobicity, water vapor barrier,
and water adsorption capacity [6]. Because edible films must have characteristics such as
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flexibility, elasticity, and high mechanical resistance to allow their handling and maintain
their physical integrity during their application, the use of plasticizing substances that
improve or provide these properties is necessary. A plasticizer is a material incorporated
into a polymer that helps increase flexibility and handling [7,8]. Plasticization causes
an increase in the intermolecular distance and a reduction in the resistance of inter- and
intramolecular forces [9]. Consequently, the movement of the polymeric chains increases,
and a material with greater flexibility and increased gas permeation is obtained [9,10]. The
most widely used plasticizers for biodegradable polymers are polyols, such as glycerol,
propylene glycol, sorbitol, and sucrose. For adequate plasticization of packaging materials,
it is necessary to consider the size, shape, and plasticizer–polymer affinity [11,12]. To
obtain biodegradable packaging with mechanical performance similar to that of synthetic
packaging, it is necessary to add a plasticizer that can provide the required mechanical
resistance, and that does not affect its barrier capacity. The objective of this study was to
determine the effects of the addition in three different concentrations of the most commonly
used plasticizers in packaging materials of biodegradable origin, glycerol, sorbitol, and
poly(ethylene glycol). The effect of plasticizer concentration (15%, 30%, and 45% (w/w)) on
the WVP, morphology, and thermal and mechanical properties of composite films based on
maize starch/poly(vinyl alcohol)/chitosan was evaluated.

2. Materials and Methods
2.1. Materials

The biopolymers used were maize starch from Meelunie B.V. (Amsterdam, The
Netherlands), chitosan from Coyote Foods, Biopolymer and Biotechnology (Saltillo, Mex-
ico), and poly(vinyl alcohol) (PVOH) (Mw 146,000–186,000, and 99% hydrolyzed) from
Sigma-Aldrich (Saint Louis, MO, USA). Glycerol (J.T. Baker, Ciudad de Mexico, Mex-
ico), poly(ethylene glycol) (average Mn 300), and D-sorbitol from Sigma (Germany and
France, respectively) were used as plasticizers. Glacial acetic acid was obtained from
Productos Quimicos Monterrey S.A. (Monterrey, Mexico). Sodium bromide (NaBr) and
barium chloride (BaCl2) from Jalmek Cientifica (Monterrey, Mexico) were used to prepare
supersaturated saline solutions of 54% and 90% relative humidity (RH), respectively.

2.2. Preparation of Filmogenic Solutions

To formulate 100 g of a filmogenic solution, 3 g of maize starch and 1 g of PVOH were
dispersed in 76 mL of distilled water; then, when the solution reached 50 ◦C, 20 mL of chi-
tosan (1% w/v in 1% v/v acetic acid) was added. Subsequently, the starch/PVOH/chitosan
film-forming solutions were gelatinized under constant stirring at 80 ◦C for 80 min. At the
end of that time, the amount of plasticizer was added, and it was kept under stirring for
10 min. The plasticizers, glycerol (GLY), sorbitol (SOR), and poly(ethylene glycol) (PEG),
were used at concentrations of 15%, 30%, and 45% (w/w). A film without plasticizers was
made as a control. The film-forming solution was dried in an acrylic mold at 65 ◦C for 5 h
in a convection oven (Oven Series 9000, Thermolyne). The drying process and temperature
were determined according to the methodology of Calambas, Heidy Lorena, Abril Fonseca,
Dayana Adames, Yaneli Aguirre-Loredo and Carolina Caicedo [6], and Jiménez-Regalado,
Enrique Javier, Carolina Caicedo, Abril Fonseca-García, Claudia Cecilia Rivera-Vallejo and
Rocio Yaneli Aguirre-Loredo [13]. The composite films were previously conditioned for
48 h at 25 ◦C and 54% RH before evaluating their physicochemical properties.

2.3. Thickness

The thickness was determined according to the methodology used in a previous
study [13] using a micrometer (Mitutoyo, model C112EXB, Aurora, IL, USA).

2.4. Thermogravimetric Analysis

The effect of heat treatment on the biodegradable films was determined using TGA.
The thermogravimetric analyzer TGA Q500 (TA Instruments, New Castle, DE, USA) was
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used. The test conditions were as follows: temperature 30–600 ◦C at a heating rate of
10 ◦C·min−1, in a nitrogen atmosphere (50 cm3·min−1).

2.5. X-ray Diffraction (XRD) Analysis

To determine the order of the polymer chains of the films, a Siemens D500 powder
diffractometer (Siemens Aktiengesellschaft, Munich, Germany) was used, following the
methodology of Fonseca-García, Abril, Carolina Caicedo, Enrique Javier Jiménez-Regalado,
Graciela Morales and Rocio Yaneli Aguirre-Loredo [14].

2.6. Morphology by SEM

The surface morphology of the films composed of starch/PVOH/chitosan with differ-
ent plasticizers was observed using an SM-510 scanning electron microscope (TOPCON,
Japan) at 15 kV. The samples were previously coated with gold–palladium for 90 s, with a
working distance of 18 mm.

2.7. Mechanical Properties

To evaluate the mechanical behavior of the films, the tensile strength and percentage of
elongation at fracture were determined, following the methodology of Jiménez-Regalado,
Enrique Javier, Carolina Caicedo, Abril Fonseca-García, Claudia Cecilia Rivera-Vallejo and
Rocio Yaneli Aguirre-Loredo [13]. A texture analyzer equipment (TA.XT Express, Stable
Micro Systems, Godalming, UK) was used, provided with tension clamps (A/TG). The
average and standard deviation of 15 samples (10 mm × 60 mm) were obtained.

2.8. Water Vapor Permeability (WVP)

The water vapor permeation capacity was evaluated to determine the amount of water
in the gas form that passes through the films developed in this study. The water vapor
permeability (WVP) test was carried out according to the ASTM E96-02 standard [15].
Circular film samples (24.64 mm diameter) were mounted on a glass cell containing silica
gel. The cell was placed in a chamber with a relative humidity of 90%, with which it was
possible to obtain a pressure differential of 2854.23 Pa. The weight change of the cell was
monitored every 60 min for 8 h. The average and standard deviation of three replicates per
formulation were obtained.

2.9. Statistical Analysis

An analysis of variance (ANOVA) and Tukey’s test (significance level p < 0.05) were
performed using OriginPro 8.5.0 SR1 software (OriginLab Corporation, Northampton,
MA, USA).

3. Results and Discussion
3.1. Thickness

Homogeneous, thin, and flexible homogeneous maize starch/PVOH/chitosan films
were obtained. The amount of filmogenic solution was the same for each of the materials to
keep the weight of polymers used the same. Despite maintaining the same proportion of
polymers in each film, it was observed that the plasticized films changed their thickness
significantly. The incorporation of the three plasticizers used, glycerol (GLY), sorbitol (SOR),
and poly(ethylene glycol) (PEG), was observed to significantly increase the thickness of the
biodegradable composite films (Figure 1) when compared with the control film without
plasticizing, which had a thickness of 31 ± 5 µm. The thicknesses of the glycerol-plasticized
composite films ranged from 60 ± 6 µm (GLY15) to 111 ± 3 µm (GLY45), while those of
the poly(ethylene glycol)-plasticized films ranged from 76 ± 7 µm (PEG15) to 98 ± 3 µm
(PEG45). Sorbitol was the plasticizer that increased the thickness of the films the most, from
65 ± 8 to 141 ± 9 µm when the plasticizer content increased from 15% to 45% (w/w). This
change in thickness caused by the increase in the content of these plasticizers was similar
to that reported in other starch-based films such as sugar palm [16] and anchote tuber [17].
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Figure 1. Thickness of composite films made from maize starch, PVOH, and chitosan plasticized
with glycerol (GLY), sorbitol (SOR), and poly(ethylene glycol) (PEG) in ratios of 15%, 30%, and 45%
(w/w). Values with a different letter denote a significant difference (Tukey test; p < 0.05).

3.2. Thermogravimetric Analysis (TGA)

In the thermal analysis curves (Figure 2), it was observed that the three polymers
exhibited degradation around 300 ◦C. The degradation temperature (Tmax) for the control
film (starch/PVOH/chitosan) was consistent with data previously reported in the literature
for each polymer [5,13]. In general, it was observed that, when incorporating 15% (w/w) of
the different plasticizers, two thermal events resulted: the first, around 120 ◦C, represented
the loss of humidity (see Figure 2A); the second, at approximately 305 ◦C, represented
the degradation of the plasticized polymer blend. Figure 2B shows the behavior of the
biopolymeric blends that incorporated 30% (w/w) of the different plasticizers; in this case,
GLY30 exhibited a marked instability at ~175 ◦C, with complete loss of the plasticizer before
300 ◦C (when the degradation of polymers occurred). A similar effect was observed in
PEG30. The sample SOR30 conserved the thermal behavior of SOR 15%. Lastly, the samples
with 45% (w/w) (Figure 2C) addition of the plasticizer presented the following order of
thermal stability: control ≈ SOR45 > PEG45 > GLY45.

In general, it was shown that GLY and PEG in concentrations ≥30% resulted in a
decrease in the plasticization of the biopolymer blend by inducing an anticipated thermal
event (175 ◦C). In contrast, SOR 15%, 30%, and 45% (w/w) presented TGA curves practically
superimposed and almost equal to the control, indicating its better interaction with all
polymers. The behavior of the blends was largely related to the type and concentration of
plasticizer used, as presented in previous investigations with GLY and SOR [18]. Interaction
models have been proposed through hydrogen bridges between hydroxyl and amino
groups of the components [19]. It has been explained that glycerol, due to its smaller size,
achieves faster absorption and desorption processes. On the other hand, sorbitol promotes
stronger interactions with polar molecules (hydrophilic) due to the presence of more –OH
groups. In this way, the plasticization of the starch/PVOH/chitosan blends is favored
by a greater participation of hydroxyl in the structure. Additionally, at concentrations
equal to 15% (w/w) for GLY, PEG, and SOR, the latter also favored thermal stability (up to
45% (w/w)).
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Plasticizers used were glycerol (GLY), polyethylene glycol (PEG), and sorbitol (SOR).

3.3. X-ray Diffraction (XRD)

Figure 3 shows the XRD pattern, which was used to determine the crystalline structure
of the plasticized biopolymeric blends. Unplasticized maize starch with amylose percent-
ages <40% showed characteristic peaks with respect to the type A crystalline structure in
its XRD pattern, at angles that could be observed at 14.9◦, 16.9◦, 17.8◦, 19.7◦, 22.9◦, and
30.3◦ [20]. Gelatinized starch presented an XRD pattern where the peaks at angles of 13.5◦

and 20.8◦ predominated [21]. This is because type A crystals (native crystallinity typical
of cereals) are replaced by type V crystals (induced crystallinity during processing) [22],
which are formed by the rapid crystallization of amylose in simple helices. This process
involves a strong interaction with polar molecules during shear/heating and subsequent
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cooling [23]. In the case of PVOH crystals, one of the characteristic peaks was observed
at an angle of 19.8◦, which shifted to a lower angle (~19.7◦) upon interaction with starch.
This particular peak corresponds to the crystallographic plane (101) which represents a
semicrystalline structure due to the interaction via hydrogen bonds between the hydroxyl
groups (–OH) [24]. On the other hand, chitosan usually presents two characteristic peaks
2θ, at 9.4◦ and 20.0◦, of crystalline forms I and II, respectively [25]. Figure 3A shows a
comparison of the different plasticizers incorporated at 15% (w/w). GLY15 exhibited a
different structural ordering from the control sample, PEG15, and SOR15. GLY15 presented
peaks corresponding to the crystallographic patterns of the components independently,
as a polyphasic sample typical of a nonhomogeneous mixture. Unlike the GLY30 and
GLY45 samples, a decrease in intensity was observed in the peaks, while there was widen-
ing around the 19.7◦ peak and a shift at higher angles (from 19.2◦ to 19.9◦). This can
be explained by the formation of new crystalline phases containing the chains between
starch/PVOH/chitosan. Some authors reported similar results from biopolymeric mixtures
where they showed co-crystal formation [26]. Regarding the incorporation of 30% and
45% (w/w) (Figure 3B,C) plasticizers in the biopolymeric blend, the formation of a greater
presence of crystalline domains was observed in the samples with plasticizers of a smaller
atomic order.

3.4. Morphology by SEM

The morphology of starch/PVOH/chitosan films is shown in Figure 4. The surface of
the composite films was very different for each of the plasticizers used. Likewise, a change
was also observed in the surface morphology of films with the same plasticizer at different
concentrations. The films that presented a less rough surface, with a similar appearance to
the control sample, as well as fewer changes with the increase in plasticizer, were those
that were plasticized with glycerol. The materials plasticized with sorbitol, as well as with
PEG, presented a more irregular surface. Various agglomerations of material (probably
polymer) were observed caused by poor structuring of the material (marked with a white
oval in Figure 4), especially when the film was plasticized with PEG at low concentrations
(15% w/w), an effect that was avoided by increasing the content of this plasticizer to 45%
(w/w). The morphology of the films developed in this study was similar to that reported
for purple yam starch/chitosan films and glycerol [27].

3.5. Mechanical Behavior

The tensile strength (TS) and elongation at break (%E) properties of starch/PVOH/chitosan
composite films with the plasticizers used at the different concentrations (15%, 30%, and 45%
w/w) are presented in Figure 5. It can be clearly observed that the tensile strength of the
composite films decreased as the plasticizer concentration increased from 15% to 45% (w/w)
(Figure 3A), regardless of the plasticizer employed, when compared to the control film. A slight
relationship was observed between the thickness of the materials and the mechanical resistance.
A thicker film resulted in a lower tensile strength, especially when the plasticizer concentration
was 30% (w/w) or more.
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PEG, presented a more irregular surface. Various agglomerations of material (probably 
polymer) were observed caused by poor structuring of the material (marked with a white 
oval in Figure 4), especially when the film was plasticized with PEG at low concentrations 
(15% w/w), an effect that was avoided by increasing the content of this plasticizer to 45% 
(w/w). The morphology of the films developed in this study was similar to that reported 
for purple yam starch/chitosan films and glycerol [27]. 

3.5. Mechanical Behavior 
The tensile strength (TS) and elongation at break (%E) properties of 

starch/PVOH/chitosan composite films with the plasticizers used at the different concen-
trations (15%, 30%, and 45% w/w) are presented in Figure 5. It can be clearly observed that 
the tensile strength of the composite films decreased as the plasticizer concentration in-
creased from 15% to 45% (w/w) (Figure 3A), regardless of the plasticizer employed, when 
compared to the control film. A slight relationship was observed between the thickness of 
the materials and the mechanical resistance. A thicker film resulted in a lower tensile 
strength, especially when the plasticizer concentration was 30% (w/w) or more. 

Figure 3. XRD patterns of biopolymeric blends plasticized with (A) 15%, (B) 30%, and (C) 45% (w/w).
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The control film was found to have the highest tensile strength (38.1 ± 2.2 MPa)
(Figure 3A) and a low %E (3.7% ± 0.4%) (Figure 5b), a typical pattern for brittle materi-
als [17]. A similar result was also observed for the glycerol plasticized film at a concentration
of 15% (w/w). Among the films, the PEG-plasticized films were less strong and less flex-
ible at all plasticizer contents. In contrast, the film plasticized with 30% (w/w) sorbitol
had the highest %E (148.5% ± 9.2%) (Figure 5b) and an intermediate tensile strength
(21.7 ± 1.1 MPa). The presence of a plasticizing agent increases the free volume or molec-
ular mobility within the structural matrix of the polymer by reducing the proportion of
hydrogen bonding between the chains, replacing the polymer–polymer interactions with
polymer–plasticizer–polymer bonds [28]. This reduction in the number of direct interac-
tions also causes a reduction in the proximity between the polymer chains. Therefore, under
tension forces, the movements of the chains are facilitated, lowering the glass transition
temperature of these materials and improving their flexibility [29,30]. The gel theory could
help to understand the effect observed in this study. The polymer molecules in the film-
forming solution try to stay bonded to each other. Water and plasticizer molecules compete
for the binding sites of the polymers, reducing the number available for the polymers to
bind to. Therefore, the rigidity of the structural matrix is reduced, which is reflected in a
decrease in mechanical and thermomechanical performance of the resulting materials [31].

3.6. Gas Permeability

The water vapor permeability (WVP) of the composite films based on starch/PVOH/chitosan
is presented in Figure 6; the control film presented a value of 8.11 × 10−12 g·m−1·s−1·Pa−1. The
amount of gas that penetrates the material increased with increasing concentrations of plas-
ticizers (glycerol and PEG), with glycerol increasing the most, with values from 8.3 ± 0.9 to
194.4 ± 0.5 × 10−12 g·m−1·s−1·Pa−1 when the concentration increased from 15% to 45% (w/w).
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films plasticized with glycerol (GLY), sorbitol (SOR), and poly(ethylene glycol) (PEG) in ratios of
0% (control), 15%, 30%, and 45% (w/w). Values with a different letter denote a significant difference
(Tukey test; p < 0.05).

The use of sorbitol to plasticize the films made in this study did not significantly
modify the rate of gas that permeates through the material, being the best alternative
for plasticizing this material. The WVP of films plasticized with sorbitol ranged from
5.2 ± 0.6 × 10−12 g·m−1·s−1·Pa−1 (SOR15) to 8.6 ± 0.2 × 10−12 g·m−1·s−1·Pa−1 (SOR45),
being the films plasticized with sorbitol those that presented the lowest values. A similar
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behavior was observed in biodegradable films from mucilage [32], babassu starch [33],
whey protein [34], and Artemisia gum [35]. The increase in free volume in the polymeric
network and the decrease in the direct interactions between the chains also modify the
gas diffusion behavior through the matrix [11,28]. Consequently, the polymer networks
become less dense, promoting the adsorption of water molecules on the surface of the
film (higher solubility) and easier penetration through its structure (higher diffusivity),
resulting in increased WVP [30,36]. This increase in chain movement was also reflected
in the results of the mechanical properties (Figure 5). The ability to reduce water vapor
permeation presented by the materials obtained in this study was better than that reported
for starch, pectin, and chitosan–zein films [16,37,38].

4. Conclusions

This study made it possible to obtain biodegradable films via the casting technique
using a formulation with three biopolymers, corn starch, polyvinyl alcohol, and chitosan.
The plasticizing capacity of three different plasticizing agents (glycerol, sorbitol, and PEG)
was evaluated. All the plasticizers evaluated caused an improvement in the mechanical
performance and gaseous water barrier of the composite films. The structural analysis of
the starch/PVOH/chitosan blend revealed a decrease in the crystallinity of the composite
films, with no well-defined peaks in the diffractogram attributable to the crystal structures
of the independent biopolymers. The presence of the different types and concentrations
of plasticizers promoted appreciable structural changes in the composite. The strong
interactions through hydrogen bonds with sorbitol not only limited the movements of the
molecular chain segments, but also caused the containment of the crystallization process.
Additionally, the strong intermolecular interactions involving the different plasticizers up to
15%, as well as sorbitol up to 45% (w/w), of the starch/PVOH/chitosan-based biopolymer
blend increased the thermal stability of the composite. The film plasticized with 30% (w/w)
sorbitol presented the best mechanical performance, as well as a better barrier to water
vapor and improved thermal resistance, making this material an excellent option to be used
as a sustainable packaging alternative.
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