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Abstract: In the present study, 2198 Al-Cu-Li alloys were successfully friction stir welded by using
various welding speed ranges of 90~180 mm/min with an invariable rotation speed of 950 r/min.
The effect of welding speed on microstructure evolution and mechanical properties of the joints was
investigated. The results show that, with the welding speed decreasing, the size of the nugget zone
(NZ) first increases and then decreases due to different welding temperatures. At a welding speed of
150 mm/min, the size of the NZ in all joints is the biggest and the “S” curve disappears. The equiaxed
grains are finer, attributed to a higher degree of dynamic recrystallization, and a larger number of fine
reprecipitated phase (δ’, β’ phases) particles are dispersively distributed in the NZ. Correspondingly,
the joints have the highest tensile properties, and the tensile strength, yield strength and elongation
are, respectively, 406 MPa, 289 MPa and 7.2%. However, compared to the base material, the tensile
properties of all joints are reduced because a greater amount of δ’ and β’ phases particles are dissolved
in the NZ. Only the joints produced at 150 mm/min are fractured in the TMAZ with detected deep
dimples and tearing ridges, and a significant necking phenomenon is observed, which indicates a
complete ductile fracture mode.

Keywords: 2198 Al-Cu-Li alloy; friction stir welding; welding speed; microstructure evolution;
mechanical properties

1. Introduction

Compared with traditional aluminum (Al) alloys, the third generation aluminum–
lithium (Al–Li) alloy is the most desirable metal material, which is attributing to lower
density [1], higher mechanical properties [2], better corrosion resistance [3] as well as better
super plasticity [4]. Li is a very light metal and the solubility of the Li element in the Al
alloy is very high [5]. Due to this feature, when 1% Li element is added into Al alloy, the
density of the Al–Li alloy will be reduced by about 3% [6], and its elastic modulus will be
increased by nearly 6% [7]. Therefore, this generation of Al–Li alloy is thought to be one of
the most ideal metal materials for aerospace applications [8].

Since many large complex Al–Li alloy structures for aerospace applications are difficult
to prepare by near-net-shape forming, it is often necessary to consider the joining of small
pieces by welding, as one of the important joining methods. However, the traditional
welding of Al–Li alloys faces many difficulties, such as weld cracking and large deformation
resulting from a large residual stress [9], pores inside the weld [10], and the burning and
evaporation of lithium elements [11]. Hence, as one of the solid-state welding technologies,
friction stir welding (FSW), in which the base material does not melt in the welding
process [12] and the welding heat input is low, can avoid the above-mentioned metallurgical
defects during the fusion welding process [13], and is deemed to be the most ideal welding
method for Al–Li alloy.
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At present, there are some reports on FSW of Al–Li alloy as follows. Sidhar et al. [14]
studied the process of FSW 1424 Al-Mg-Li alloy. Ma et al. [15] investigated the post-heat
treatment process of FSW 1460 Al–Li alloy. Liu et al. [16] analyzed microstructure evolution
and its effect on mechanical properties of FSWed 2060-T8 Al–Li alloy by changing rotation
speed. Similarly, Chen et al. [17] discussed microstructure characterization of the FSW
joint of 2099 Al–Li alloy. In addition, Zhang et al. [18] analyzed the effect of welding
parameters on the formation quality of the FSW joint of 2195 Al–Li alloy, and found that
the strength of the FSW joint first increased and then decreased with increasing welding
speed. Mao et al. [19] found that rotation and welding speeds had an obvious impact
on the microstructure evolution and metallurgical properties of FSWed 2060 Al–Li alloy
joints. However, very little attention has been given to the in-depth studies on the FSW of
2198 Al–Li alloy. For example, Xing et al. [20] investigated the effect of welding speed on
the mechanical properties of FSW dissimilar to 2198 and C24S Al–Li alloys joints, but their
study lacked a specific analysis of dynamic recrystallization behavior and strengthening
phase distribution in the joints.

Therefore, the influence of welding speed on the microstructure evolution and me-
chanical properties of FSW 2198 Al–Li alloy joints is presented in this study. In detail,
microstructure evolution, grain size, dynamic recrystallization and the secondary pre-
cipitated phase distribution of FSW joints are discussed, and the change of mechanical
properties is evaluated.

2. Materials and Method

A 2 mm thick 2198-T8 Al–Li alloy was selected as the base material in the paper, and
its chemical composition is listed in Table 1. Figure 1 shows the microstructure of the Al–Li
alloy substrate, mainly composed of slender slate-like structures with coarse T1, θ’, δ’ and β’
particles. The Al–Li alloy sheets, processed into 200 mm × 100 mm coupons and cleaned with
alcohol and acetone, were manufactured by fiction stir butt welding with welding speeds of
90, 120, 150 and 180 mm/min and an invariable rotation speed of 950 r/min. All experiments
were conducted on an X53K type FSW machine, and the welding process was prepared along
the rolled direction (RD) of an Al–Li alloy sheet with a 0.2 mm plunge depth and a 2◦ tilt
angle. The FSW tool was made with H13 die steel in heat-treated conditions, and the concave
shoulder diameter was 12 mm and the cylindrical pin length with 1 mm fluted pitch was
1.7 mm. The diameter of the pin root and pin top are, respectively, 4 mm and 3 mm.

Table 1. Chemical compositions of base material.

Alloy
Mass Fracture (%)

Cu Li Mg Mn Zr Al

2198-T8 2.9–3.5 0.8–1.1 0.25–0.8 0.1–0.5 0.04–0.18 Bal
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The middle of the welded joints was cut into metallographic and tensile samples
by a wire-cut electrical discharge machine. The grain size and recrystallization behavior
of the nugget zone (NZ) in the weld, after grinding and polishing, were observed by
Tescan VEGA II-LMH scanning electron microscopy (SEM) with an electron backscattered
diffraction (EBSD) system. Another part of the sample was thinned into 50 µm first by
mechanical polishing, and was then twin-jet electro-polished with a mixture of 25% nitric
acid and 75% methanol, and the distribution of secondary strengthening phase particles in
the NZ was further analyzed by Tecnai F 30G2 transmission electron microscopy (TEM).
In addition, the microhardness of the joint cross section was measured by an HX-1000
Vickers hardness tester, and the test position was on the horizontal line of the center of
the plate thickness with the test point interval of 0.5mm, the loading load of 0.98 N, and
the loading time of 10s. The tensile properties of the joints were tested by a WDS-100
microcomputer-controlled electronic universal testing machine at room temperature with a
loading speed of 2 mm/min, and then the fractured morphologies were observed by SEM
technology in order to study the fracture mechanism of FSW joints.

3. Results and Discussion
3.1. Macrostructure

Figure 2 shows the macrostructure of FSWed joints obtained using welding speeds
of 90 mm/min, 120 mm/min and 150 mm/min, 180 mm/min with an unaltered rotation
speed of 950 r/min. It is observed that no grooves, holes or other welding defects exist. The
well-formed weld consists of the NZ, the thermo-mechanically affected zone (TMAZ) and
the heat affected zone (HAZ). As shown in Figure 2d, an “S” shaped curve appears in the
weld center processed at 180 mm/min. Figure 2a,d shows the size of the NZ increases first
and then decreases with decreasing welding speed. When the welding speed decreases to
150 mm/min, and the size is the largest, the internal “S” curve disappears in Figure 2c.
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Moreover, the welding temperature during the FSW process may be calculated by the
following formula [21]:

T
Tm

= K
(

ω2

v × 104

)
, (1)
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where T and Tm are welding temperature and metal melting temperature, respectively;
ω and V are, respectively, rotation and welding speeds; K is the correlation coefficient.
It indicates that welding temperature mainly depends on the welding speed when the
rotation speed is constant. Besides, the welding temperature will increase with decreasing
welding speed within limits. Therefore, the welding temperature is low when a high
welding speed of 180 mm/min is applied, and the weld metal is not completely plasti-
cized, resulting in an “S” shaped curve inside the NZ in Figure 2d. When the welding
speed reduces to 150 mm/min, the welding temperature can significantly increase, and
sufficient plasticization degree of the weld metal results in the disappearance of the “S”
curve. Another noteworthy finding is that the NZ enlarges apparently, and more plasticized
metal migrates to the NZ of the weld and the metal around the extrusion zone migrates
horizontally, as shown in Figure 2c. However, with continuously decreasing welding speed
to 120 mm/min, the state of the contacting interface between rotating tool and surrounding
metal may immediately change from adhesive friction into sliding friction [22,23]. Accord-
ingly, the force of weld metal driving by the tool decreases, and the amount of plastic metal
migrating to the NZ obviously decreases in unit time, resulting in the reduction of the size
of the NZ in Figure 2a,b.

3.2. Microstructure

Figure 3 shows grain distribution in the NZ center of the weld fabricated by various
welding speeds, which is observed in section A of Figure 2c. It is seen from Figure 3 that
the microstructure in different NZs is composed of fine equiaxed grains, resulting from the
obvious recrystallization behavior during the FSW process [12]. However, it is also found
that the size of these equiaxed grains is visibly different. The average size reduces with the
welding speed decreasing from 180 to 150 mm/min, which is about 11.8 µm and 3.2 µm,
respectively. What is more, with decreasing the welding speed to 120 mm/min, some fine
equiaxed grains begin to grow up in Figure 3b, and the average size increases to about
4.5 µm according to the statistical result. When the lowest welding speed of 90 mm/min is
applied, the grains are significantly coarsened as shown in Figure 3a.
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According to Formula 1, the welding temperature in the FSW process will increase
with properly decreasing welding speed, and the plastic degree of the weld metal increases.
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The dynamic recrystallization of the weld metal in the NZ is more sufficient [24]. As a result,
the refinement degree becomes higher, and the equiaxed grains are smaller. However, when
the welding speed is further lowered, the fine grains distributed in the NZ grow abnormally
owing to extremely high welding temperature.

To analyze the influence of welding speed on the dynamic recrystallization behavior
of plastic metal in the NZ. The IPF maps based on the EBSD technology are counted, and
the dynamic recrystallization distribution made by different welding speeds is presented
in Figure 4. The blue bars represent the volume fraction of the dynamic recrystallization,
and the red bars express the volume fraction of the deformation in the NZ. Seen in Figure 4,
the volume fraction of the dynamic recrystallization first increases and then decreases with
the welding speed decreasing from 180 mm/min to 90 mm/min. When a 180mm/min
welding speed is used, the dynamic recrystallization degree is the lowest, and the volume
fraction is only 66.3%. Nevertheless, it is the highest, and reaches to 85.2% at 150 mm/min.
Continuously reducing the welding speed to 120 mm/min and 90 mm/min, the volume
fraction decreases to 80.6% and 75.1%, respectively. It is proved that the degree of the
dynamic recrystallization can be increased by decreasing the welding speed.
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Figure 5 shows reprecipitated phase particles distribution in the weld NZ under
different welding speeds. Clearly, the strengthening phase particles vary greatly. Among
them, at a higher welding speed of 180 mm/min, a large number of the particles appear in
the NZ in Figure 5d. With the welding speed decreasing to 150 mm/min, the phase particle
distribution obviously changes and the size of the particles is finer. By the calibration of the
diffraction pattern in Figure 5e,f, it is found that these fine particles are mainly composed
of the reprecipitated δ’ and β’ phases. Under the condition, the welding speed gradually
decreases to 120 mm/min and 90 mm/min, and some fine particles in the NZ begin to
grow up and form coarse β’ phase, as shown in Figure 5a,b.

Similarly, the reprecipitated behavior of the strengthening phase particles is related
to the welding temperature during FSW. At 180 mm/min, the welding temperature is
too low and can lead to insufficient plastic degree of the weld metal. Original δ’ and β’
phase particles in Al–Li alloy are not fully broken, dissolved [25] and reprecipitated [26],
and coarse strengthening phase particles are found in the NZ. By increasing the welding
temperature, the weld metal is sufficiently plasticized due to a lower welding speed of
150 mm/min, and many fine δ’ and β’ phases particles are reprecipitated. However, when
the welding temperature is too high, some fine reprecipitated particles in the NZ may start
to grow abnormally.
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3.3. Microhardness

Figure 6 shows the microhardness of all FSW joints fabricated by different welding
speeds. It is observed that the microhardness distribution of the joints presents a “W”
shape, which indicates that the microhardness in the TMAZ and HAZ gradually decreases.
The average value is minimal in the HAZ. In addition, compared with the NZ, in TMAZ
and HAZ, the microhardness value of the base material is the highest, demonstrating
that three zones in the weld are obviously softened. It is also found that the maximum
average microhardness of the NZ is about 103 HV, made by a 150 mm/min welding speed.
However, the average microhardness is only 93 HV at 180 mm/min, which is the lowest.

In general, the microhardness distribution of FSW joints is related to their microstruc-
ture [27]. The main reason is that the original particles of strengthening phases in the
Al–Li alloy are basically dissolved in the FSW process [28], and only part of them are
reprecipitated in the NZ after welding. So, the microhardness value of the NZ is much
lower than that of the base metal. On the other hand, it is higher than that of the TMAZ
and HAZ, attributed to dynamic recrystallization caused by the stirring action of rotating
tool, forming finer equiaxed grains and reprecipitated particles. In addition, according to
the Hall–Petch principle [29] and the Orowan strengthening mechanism [30], when the
welding speed used is 150mm/min, the average value of the microhardness in the NZ is
the highest due to the finest equiaxed grains and reprecipitated particles. On the contrary,
the average value is the lowest, resulting from a coarse microstructure at 180 mm/min in
Figures 3 and 5.

3.4. Mechanical Properties
3.4.1. Tensile Properties

Figure 7 presents the tensile testing results of different FSW joints and base metal. It is
clearly seen that the tensile properties of all FSWed joints were significantly reduced com-
pared with the base metal. Moreover, with the welding speed decreasing from 180 mm/min
to 90 mm/min, the tensile strength presents first an increasing and then decreasing trend.
The mechanical performances, such as the tensile strength (TS), yield strength (YS) and
elongation (EL) of FSW joints, obtained at 150 mm/min are the best, which are 406 MPa,
289 MPa and 7.2%, respectively. Whereas, the minimum value of TS, YS and EL of the joints
is, respectively, 355 MPa, 249 MPa and 2.7%, when a 180 mm/min welding speed is used
during FSW. This is consistent with the microstructure and microhardness of the different
joints mentioned above.
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For a precipitation strengthening Al alloy, the mechanical properties have a close
relation to the grain size and precipitated phase particles [31]. In the base material, there is
the presence of a large quantity of precipitated phase, and the strength and elongation of
the base material present a higher value. For the NZ, the fine equiaxed grains can contribute
to a high property. However, most of the precipitated phase particles are dissolved in the
NZ during FSW, as observed in Figure 5. The active contribution from the fine grains
to tensile properties cannot recover the obviously negative impact of the dissolution of
precipitated phase particles. In consequence, the tensile properties of all FSW joints are
lower than those of the base material. On the other hand, there exist significant differences
in the grain size and reprecipitated phase distribution of different FSW joints produced by
different welding speeds. Using a 150 mm/min welding speed, the positive contribution
from finer equiaxed grains and more reprecipitated particles into the NZ can improve the
mechanical properties of FSW joints. However, it is an opposite result derived from the
evidently negative effect of coarse grain and reprecipitated phase particles in the NZ for
the joints fabricated at 180 mm/min.

3.4.2. Fractured Locations

Figure 8 shows the fractured positions of all joints obtained at various welding speeds
after tensile testing. It is clear that that the joint produced at 150 mm/min fractures in the
TMAZ with an obvious necking phenomenon, as seen in Figure 8c. However, other joints
are all fractured in the NZ (in Figure 8a,b,d), when the welding speeds of 180 mm/min,
120 mm/min and 90 mm/min are used during the FSW process.



Materials 2022, 15, 969 8 of 10Materials 2022, 14, x FOR PEER REVIEW 9 of 11 
 

 

 
Figure 8. Fractured locations of tensile test joints: (a) 90 mm/min; (b) 120 mm/min; (c) 150 mm/min; 
(d) 180 mm/min. 

3.4.3. Fractured Surface 
Figure 9 shows SEM images of the fractured surface of all tensile joints produced by 

different welding speeds. As seen in Figure 9d, a large number of river patterns and cleav-
age platforms are found on the fractured surface of the joint obtained at 180 mm/min, 
suggesting that it is a typical brittle fracture. With the welding speed decreasing to 150 
mm/min, there exists a large number of deep dimples and tearing ridges on the fractured 
surface (Figure 9c), indicating that this fracture mode is a complete ductile fracture. For 
FSW joints of 120 mm/min and 90 mm/min, fine dimples and few tearing ridges on the 
flat facets indicate a mixed fracture mode appearing in the NZ, as shown in Figure 9a,b. 

 
Figure 9. SEM images of fracture surface for different tensile test joints: (a) 90 mm/min; (b) 120 
mm/min; (c) 150 mm/min; (d) 180 mm/min. 

  

Figure 8. Fractured locations of tensile test joints: (a) 90 mm/min; (b) 120 mm/min; (c) 150 mm/min;
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3.4.3. Fractured Surface

Figure 9 shows SEM images of the fractured surface of all tensile joints produced by dif-
ferent welding speeds. As seen in Figure 9d, a large number of river patterns and cleavage plat-
forms are found on the fractured surface of the joint obtained at 180 mm/min, suggesting that
it is a typical brittle fracture. With the welding speed decreasing to 150 mm/min, there ex-
ists a large number of deep dimples and tearing ridges on the fractured surface (Figure 9c),
indicating that this fracture mode is a complete ductile fracture. For FSW joints of
120 mm/min and 90 mm/min, fine dimples and few tearing ridges on the flat facets indi-
cate a mixed fracture mode appearing in the NZ, as shown in Figure 9a,b.
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4. Conclusions

The 2198 Al-Cu-Li alloys have been successfully joined by friction stir welding at dif-
ferent welding speeds with an invariable rotation speed. The microstructure evolution and
mechanical properties of the joints are investigated. The main conclusions are as follows:

1. With the welding speed decreasing from 180 mm/min to 90 mm/min, the size of
the nugget zone (NZ) first increases and then decreases due to different welding
temperatures. At 150 mm/min, the size is the biggest and the “S” curve in the NZ
starts to disappear, resulting from sufficient plastic flow;

2. The NZ is composed of fine equiaxed grains for all joints. Among them, the equiaxed
grains are finer, attributed to a higher degree of dynamic recrystallization, when a
welding speed of 150 mm/min is used. A larger number of fine reprecipitated phase
(δ’, β’ phases) particles are dispersively distributed in the NZ, which can result in
higher microhardness and better tensile properties of the joins;

3. Compared to the base material, the average microhardness of the NZ is reduced as a
greater amount of δ’ and β’ phases particles is dissolved into the NZ, which makes a
more obviously negative impact recover an active contribution from finer grains;

4. The joints obtained at 150 mm/min have the highest tensile properties, and the tensile
strength, yield strength and elongation are, respectively, 406 MPa, 289 MPa and
7.2%, which is consistent with the microstructure and microhardness of the joints.
Only the joints at 150 mm/min are fractured in the TMAZ, with significant necking
phenomenon. Moreover, deep dimples and many tearing ridges are detected on the
fracture surface, indicating a complete ductile fracture mode.
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