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Abstract: Copper-to-copper (Cu-to-Cu) direct bonding is a promising approach to replace traditional
solder joints in three-dimensional integrated circuits (3D ICs) packaging. It has been commonly
conducted at a temperature over 300 ◦C, which is detrimental to integrated electronic devices. In this
study, highly (111)-oriented nanotwinned (nt) Cu films were fabricated and polished using chemical
mechanical planarization (CMP) and electropolishing. We successfully bonded and remained colum-
nar nt-Cu microstructure at a low temperature of 150 ◦C thanks to the rapid diffusion of Cu on (111)
surface. We employed a new microstructural method to characterize quantitatively the interfacial
bonding quality using cross-sectional and plan-view microstructural analyses. We discovered that
CMP nt-Cu bonding quality was greater than that of electropolished nt-Cu ones. The CMP nt-Cu
films possessed extremely low surface roughness and were virtually free of pre-existing interface
voids. Thus, the bonding time of such CMP nt-Cu films could be significantly shortened to 10 min.
We expect that these findings may offer a pathway to reduce the thermal budget and manufacturing
cost of the current 3D ICs packaging technology.

Keywords: Cu-to-Cu bonding; chemical mechanical planarization; nanotwinned copper

1. Introduction

Nowadays, three-dimensional (3D) integrated circuits (ICs) technology has been
widely employed to enhance the performance of microelectronic devices. A 3D ICs device
typically consists of various solder joints. However, such traditional solder joints intrin-
sically present many reliability issues related to electromigration (EM), the formation of
brittle intermetallic compounds (IMCs), circuit shortage, and/or thermomigration [1–7].
To overcome these challenges, Cu-to-Cu direct bonding has been applied to replace those
solder joints [8,9]. Note that Cu-to-Cu bonding with excellent mechanical and conductive
properties was typically achieved at temperatures above 300 ◦C [9–11]. However, such
bonding temperatures are significantly high and detrimental to microelectronic devices dur-
ing integration. Thus, investigations on low-temperature Cu-to-Cu bonding are urgently
needed. Previously, Liu et al. reported that the bonding temperature could be minimized to
150 ◦C using nanotwinned Cu (nt-Cu) films [12]. These films could be fabricated using elec-
troplating [12–16] or magnetron sputtering [17–22]. Such highly (111)-oriented nt-Cu films
possessed the highest diffusivity among the others [12,23]. This breakthrough was expected
to reduce the thermal budget and cost of high vacuum manufacturing processes [12,23].

During the operation or fabrication process of electronic devices, Cu joints might be
subjected to thermal stress or annealing [24,25]. The progressive evolution of interfacial
voids in those joints has been identified [25]. Most of the previous studies qualitatively ex-
amined interfacial bonding using cross-sectional imaging [8,11,12,23,26–28]. Those studies

Materials 2022, 15, 937. https://doi.org/10.3390/ma15030937 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15030937
https://doi.org/10.3390/ma15030937
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-2893-2291
https://orcid.org/0000-0001-6235-2827
https://doi.org/10.3390/ma15030937
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15030937?type=check_update&version=1


Materials 2022, 15, 937 2 of 11

did not provide detailed information on interfacial voids in terms of shape, size, location,
and distribution. To date, a quantitative investigation on the interfacial bonding quality has
not been reported. In this study, we used a new microstructural method to quantitatively
characterize the interfacial quality of the low-temperature Cu-to-Cu direct bonding. Addi-
tionally, it has been reported that the bonding strength and temperature are strongly related
to Cu surface roughness [26,29,30]. The reduced surface roughness of Cu films may result
in lower bonding temperature and time. Therefore, we employed chemical mechanical
planarization (CMP) and electropolishing methods to reduce the surface roughness of
the nt-Cu films. We conducted the Cu-to-Cu direct bonding under various conditions
(temperature and time). We found that the surface roughness of nt-Cu films treated using
CMP was much lower compared to that of the electropolished ones. It led to an enhanced
quality of nt-Cu bonding. The bonding time was further shortened as a result of the lower
surface roughness of the CMP nt-Cu films.

2. Materials and Methods

In this study, a Si wafer, containing a 100-nm Ti adhesion layer and a 200-nm Cu seed
film, was used as a substrate. We fabricated nt-Cu films on such substrates using direct
current (DC) electroplating [12] with a current density of 80 mA/cm2. Detailed chemicals
of electrolyte and experimental setup were given in our previous study [12]. The thickness
of the electroplated nt-Cu films was controlled as 8 µm. The as-deposited films were then
polished using CMP and electropolishing. During the CMP process, a favorable slurry was
continuously added into a lapper (Logitech PM5). An applied lapping pressure of 1.5 psi
and a polishing rate of 0.02 µm/min were set.

After the CMP process, the samples were cut into physical dimensions of 3 mm × 3 mm.
It was then ultrasonically cleansed in a solution of acetone for 5 min. Subsequently,
the specimens were further cleaned using a dilute hydrochloric (HCl) acid for 30 s, rinsed
in deionized (DI) water, and purged with N2 gas. Two samples were attached face to face
and transferred to a chamber prior to the bonding process [23]. A pressure of 0.78 MPa
was applied to the bonding specimens. The bonding process was conducted in a 10−3 torr
vacuum level. Bonding temperatures were controlled at 150 ◦C for 60 min and 200 ◦C
for 30 min, 10 min, and 5 min. X-ray diffraction (XRD, Bruker D2 Phaser, Billerica, MA,
USA) and electron back-scattered diffraction (EBSD, JEOL JSM-7800F, Tokyo, Japan) were
performed to analyze grain size and crystal orientation. Microstructures and bonding
quality was characterized by a focused ion beam (FIB, FEI Nova 2000, Hillsboro, OR,
USA). Additionally, an atomic force microscope (AFM, Bruker Innova SPM, Billerica, MA,
USA) was employed to obtain the random roughness patterns and determine the surface
roughness (Rq) of the nt-Cu samples. The bonding interfaces of the nt-Cu films were
examined using a transmission electron microscope (TEM).

Prior to TEM examination, cross-sectional and plan-view FIB-etched samples were
fabricated. Figure 1 shows the schematics of Cu-to-Cu bonding with various interfacial
voids. The TEM samples were FIB-etched in two different directions. The former is
perpendicular (Figure 1b) and the latter is parallel to the bonding interface (Figure 1c). It is
simple to obtain a bonding interface for the cross-sectional sample (Figure 1d) since the
etching direction of FIB is always perpendicular to the bonding interface. However, it is
of great challenge to prepare a FIB sample, in which the FIB etching direction is parallel
throughout the bonding interface (the insets of Figure 2a,b). Note that the size of voids is in
a range between 10–100 nm. The thickness of a TEM sample varies from 50 nm to 100 nm.
It is complicated to prepare a TEM sample containing a bonding interface with a large area
of voids. As shown in the insets of Figure 2c,d, the bonding interface is not parallel to
the etching direction. They may intersect with each other. To acquire perfect samples for
the TEM examination, the top and bottom of the two FIB-etched sides have some signs of
interfacial voids (Figure 2c,d). Using such a technique, we could ensure that the FIB-etched
sample contained a large area of the bonding interface. Thus, we were able to characterize
quantitatively the void distribution of bonding interfaces using a further TEM.
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Figure 1. Schematic illustration of the Cu-to-Cu bonding showing various voids at the interface:
(a) as-bonded; (b,c) cross-sectional and plan-view FIB-etched; (d,e) for cross-sectional and plan-
view TEM.
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Figure 2. (a,b) FIB-etched images observed from the back and front of the plan-view TEM sample
bonded at 200 ◦C for 5 min. The inset shows that the bonding interface is parallel with the FIB
etching direction. (c,d) FIB-etched images observed from the back and front of the plan-view TEM
sample bonded at 200 ◦C for 5 min. The inset shows that the bonding interface intersects with the FIB
etching direction.

3. Results
3.1. Microstructure of nt-Cu Films

The plan-view TEM images of the Cu-to-Cu films bonded at 200 ◦C for 30 min are
shown in Figure 3a–c. Voids are represented as the brightish spots in the TEM images. It can
be seen that various voids were located at the bonding interface and grain boundaries of Cu.
The size of voids varies from 30 to 260 nm with an average value of 100.7 nm (Figure 3d).
The cross-sectional FIB images of the nt-Cu films with and without planarization are



Materials 2022, 15, 937 4 of 11

shown in Figure 4. The surface of the as-deposited nt-Cu film exhibited various cone-like
shapes (Figure 4a). It was observed that various Cu nanotwins were densely stacked and
formed columnar grains. Figure 4b shows a typical microstructure of the nt-Cu films after
CMP. For comparison, some samples were electropolished and the typical microstructure
is shown in Figure 4c. The nt-Cu film surface was extraordinarily smooth and the fine
columnar nt grains remained. Figure 5 shows the AFM micrographs and surface roughness
of samples polished using two methods. As shown in Figure 5c, we found that the surface
roughness (Rq = 2.44 ± 0.12 nm) of samples polished using CMP was extremely lower
compared to that of the electropolished samples (Rq = 7.33 ± 0.40 nm).
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surface roughness. The surface roughness (Rq) is significantly trimmed off from 7 nm to 2.4 nm.

The typical grain orientation with an XRD pattern and a plane-view EBSD image of
the electrodeposited nt-Cu films are shown in Figure 6. It was found that nt-Cu grains were
highly (111)-oriented (Figure 6a). Note that the blue zones in Figure 6b were employed
to illustrate the (111)-oriented nt-Cu grains. It is obvious that a highly (111) orientation
dominated the nt-Cu surface. An area ratio of 98% of (111)-oriented grains was acquired
from the inverse pole figure (IPF) and pole image (Figure 6b). The EBSD observation also
supports the above XRD result. Such electroplated nt-Cu films with a high (111)-preferred
orientation are expected to exhibit great mechanical performance, excellent thermal stability,
and EM resistance [13–15,31–38].
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3.2. Microstructure of Bonding Interface

Figure 7a presents a typical cross-sectional FIB micrograph of the CMP nt-Cu films
bonded at 150 ◦C for 60 min. We found that the columnar microstructure of nt-Cu films
was obviously unimpaired under such thermal bonding and a few tiny voids were detected
in the bonding interface. We further increased the bonding temperature to 200 ◦C and
bonded for 30 min. Figure 8 shows the cross-sectional FIB micrographs of the CMP nt-Cu
films bonded at 200 ◦C for 30 min. The bonding interface showed no signs of voids under
such a bonding condition.
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We further reduced bonding time using the same CMP nt-Cu films. Figure 9 shows the
cross-sectional FIB images of the CMP nt-Cu films bonded at 200 ◦C for 10 min. We discov-
ered that a few tiny voids are present in the bonding interface. Additionally, the bonding
time was further reduced to 5 min. Figure 7b presents a cross-sectional FIB micrograph of
the CMP nt-Cu films bonded at 200 ◦C for 5 min. A larger number of tiny voids existed in
the bonding interface. We believe that such a Cu-to-Cu bonding was not as complete as
samples under longer bonding time (30 min and 10 min).
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4. Discussion

In order to understand the bonding mechanism of such nt-Cu films, the Arrhenius
equation was employed to calculate the theoretical surface diffusivity of nt-Cu [36]. The dif-
fusivities for (111), (100), and (110) planes are of 9.42 × 10−6 cm2/s, 1.19 × 10−9 cm2/s,
and 5.98 × 10−11 cm2/s, respectively [39]. This indicates that the diffusion on the (111) sur-
face is much faster than that on the other planes. We assume that the interfacial bonding of
our nt-Cu films was achieved by a creep-induced deformation [12,23]. During the bonding
process, high compressive stress was applied on the chips and nt-Cu films at an elevated
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temperature [40]. The contact regions were under severe compressive stress while the
non-contact regions (voids) were subjected to less severe or no stress. This leads to a stress
gradient where Cu atoms diffuse from the high localized to lower stress regions [41–43].
These Cu atoms slowly fill up voids and eventually form a bonding. Note that the nt-
Cu films employed in this study possessed a high percentage of (111)-oriented surfaces
(Figure 6). Thus, the direct Cu-to-Cu bonding was easily accomplished as a result of a fast
diffusion of (111)-oriented nt-Cu surface [12,23].

In order to investigate the effect of CMP treatment on bonding quality, some nt-Cu
films were treated using a conventional electropolishing method and bonded for compari-
son. Figure 10 presents the typical bonding interfaces of the CMP and electropolished films.
As shown in Figure 10, the CMP nt-Cu bonding exhibited a greater quality with a few tiny
voids in the interface compared to that of the electropolished ones. As aforementioned,
the CMP Cu-to-Cu bonding was accomplished in a shorter time due to the lower roughness
(Figure 5). It can be ascribed to the smaller number and scale of pre-existing voids in the
bonding interface. Figure 11 shows the schematic diagrams of pre-existing voids corre-
sponding with the surface roughness scales. Note that the roughness of the electropolished
nt-Cu films was greater than that of the CMP nt-Cu ones (Figure 5). Therefore, the scale of
pre-existing voids was larger, as illustrated in Figure 11. Assuming a bonded sample with
similar diffusivity and diffusion rate; it might take a longer time to fill up a larger void.
Thus, the CMP nt-Cu films bonded with the same bonding time and temperature showed
a greater quality (Figure 10). In addition, the bonding time of such flattened CMP nt-Cu
films could be significantly shortened to 10 min and the columnar nt structure remained
unchanged after the bonding procedure.
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and (d) CMP nt-Cu bonded at 200 ◦C for 30 min.
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In addition, for comparison, we further examined the bonding interfaces of the CMP
nt-Cu films bonded at 200 ◦C for 10 min and 5 min using XTEM (Figures 12 and 13).
The typical interface of the Cu-to-Cu samples bonded for 10 min presented a few tiny voids
(Figure 12b). Such voids were much smaller compared to that of the sample bonded for
5 min (Figure 13b,c). However, the void number that exists was almost identical and the
bonding interfaces were extraordinarily smooth for all bonded samples. This indicates that
such bonding conditions using our CMP nt-Cu films effectively suppressed residual voids
in the interface and produced an excellent bonding quality. Table 1 lists the characteristics
of Cu-Cu bonding using different surface treatments. Obviously, the CMP treatment can
offer great bonding quality and low bonding temperature. The Cu-to Cu direct bonding
conditions using the nt-Cu films are thus applicable for rapid 3D ICs integration and other
electronics industries.
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Table 1. Summary of the recent Cu-Cu bonding technologies.

Surface Treatment Bonding Temp. (◦C) Bonding Strength Surface
Roughness (nm) Duration (min)

This work CMP 150–200 High 2.4 5–60

Tseng et al. [44] Electropolishing 120–400 High 5.8 30–240

Liu et al. [12] Chemical cleaning 200–250 High N/a 10–60

Liu et al. [23] Electropolishing 150–250 High 6.5 30–60

Huang et al. [45] Electropolishing 300 High 22 30

Liu et al. [46] Passivation 70–150 Low 2.5 15

Liu et al. [47] Passivation 70–200 Low 5 15

Chang et al. [48] Electropolishing 250–350 High 6.6 5–90

Wu et al. [49] Passivation 200–300 Low 1.0 20

5. Conclusions

In summary, we employed cross-sectional and plan-view TEM imaging to quanti-
tatively characterize the interfacial bonding quality of the Cu-to-Cu films. Highly (111)-
oriented nt-Cu films polished using CMP and electropolishing were successfully bonded
under various thermal conditions, ranging between 150 to 200 ◦C. Such low-temperature
Cu-to-Cu direct bonding was virtually free of voids with a great bonded interface. The bond-
ing process was accomplished by a fast diffusion of Cu atoms on the (111) surface. It was
also attributed to the role of creep-induced deformation in eliminating pre-existing voids
under such bonding processes. In addition, we discovered that the CMP nt-Cu bonding
quality was greater than that of the electropolished nt-Cu films. This is due to the fact
that the CMP nt-Cu film possessed a very low surface roughness. It thus resulted in the
smaller scales of pre-existing voids and played a crucial role in Cu-to-Cu direct bonding.
Owing to the low surface roughness of the CMP nt-Cu films, the bonding time could be
further reduced to 10 min. Such nt-Cu shows great potential for low-temperature direct
Cu-Cu bonding in ultra-fine pitch packaging. In addition to the nt-Cu application, surface
passivation is a promising technique to reduce the thermal budget and enhance the bonding
strength. This study is hoped to provide a favorable method in advancing the current 3D
ICs packaging technology.
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