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Abstract: Surface pretreatment for bonding is one of the most important steps for the manufacturing
of a reliable bonded joint. In this paper, the effectiveness of an innovative pretreatment by CO2

pulsed laser for bonding Carbon Fiber Reinforced Polymer (CFRP) was investigated. End Notched
Flexure (ENF) specimens were made with different densities of laser treatment, and the respective
fracture toughness was obtained through the Compliance-Based Beam Method (CBBM). Furthermore,
a cohesive model for simulating debonding processes was illustrated, and the cohesive parameters
were obtained by an inverse method. The achieved results represent a fundamental step for the
development of a numerical model useful for the determination of laser texturing as a function of the
applied local stress into the bonded joint.

Keywords: polymer-matrix composites (PMCs); adhesion; surface treatments

1. Introduction

The aerospace and military industries more and more often require the manufacturing
of complex geometry lightweight components with high specific strength and stiffness.
In this context, the use of fibro reinforced polymeric composite materials, thanks to their
peculiarities, play a fundamental role in achieving such performance. However, at present,
it is not always possible to produce complex geometries with this type of material in a
single production step; therefore. the trend is to manufacture an assembly consisting of
n-parts of simpler geometry. Nevertheless, the designers must take the presence of joints
into account as they may have critical points. Traditional jointing techniques, such as
riveting and bolting, require the drilling of the parts: it follows that the reinforcement
must be cut, reducing their performance. In addition, the presence of holes can generate
intensification of stresses that can cause structural failure during the use of the component.
As an alternative to traditional fastening, such as riveting and bolting, the development
of high-performance structural adhesives has grown in recent decades. Since it is not
necessary to drill the parts, the use of structural adhesives is indicated in the case of
assembly of components in polymeric composite materials, reducing weight, avoiding the
presence of corrosive problems, allowing to dampen the vibrations, and, consequently,
the reduction of vibroacoustic activity [1–4]. The reliability of a bonded joint is closely
related to the chemical compatibility between the substrates, the nature of the adhesive
and adherends, the geometric configuration of the joint, the working conditions, and, in
particular, the pre-treatment of the surfaces to be bonded, as shown in many works in the
literature [5–10].

Generally, in industrial application, peel ply represents a widely used solution for
realizing a repeatable roughness surface. However, the use of a release agents may be
necessary to facilitate the peeling of the peel ply from the surface of the laminate. As
a result, the release agents can migrate from the peel ply to the surface of the laminate,
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lowering the quality of the adhesion between the substrates [11]. For this reason, additional
cleaning with abrasive methods could be necessary. Manual sanding and grit blasting
are the most common abrasive processes adopted in the industrial field. They are quite
easy to be carried out, but at the same time can show problems of tool wearing, additional
contamination, low reproducibility, and health problems for the operators due to the dust
production in these types of processes [12].

As alternative to abrasive methods, excimer and CO2 lasers can ablate the epoxy resin
of the matrix in a selective way without damaging the fiber reinforcement [13]. In particular,
the wavelength of excimer lasers on UV avoids thermal degradation of the composite
laminate [14]. However, CO2 lasers can be more appropriate in the industrial field because
of their higher productivity, higher wall plug efficiency, and treatment speed [15].

The probability of burning the Carbon Fiber Reinforced Polymer (CFRP) parts, induc-
ing delamination phenomena, is increased with the use of a CO2 lasers because of their
wavelength on IR [16]. In fact, the high conductivity of the reinforcement transmits the
heat generated by the process from the surface to the bulk of the part [17]. In this way, the
interface between the matrix and reinforcement is weakened, leading to the formation of an
extensive Heat Affected Zone (HAZ) [18]. Consequently, the reliability of the bonded joint
is strongly linked to the parameter of the laser process chosen during the design phase [19].

The presence of singularities does not allow the designer to easily use criteria based
on maximum stress, which are generally present at the edges of bonded joints, in particular
in the case of brittle adhesives [20]. In fact, singularities are points, in linear elastic analysis,
where the value of stress tends to infinity, introducing problems of mesh sensitivity for Finite
Elements Method (FEM) solutions [21]. Otherwise, it is possible to avoid damage approach
developed on the maximum stress using energetic criteria. In the fracture mechanics
approach, energetic analyses are carried out for the forecast of the damage evolution,
and the main parameter used for this scope is the critical energy release rate (GC) that is
obtainable directly from mechanical tests [22]. Under mode I and mode II loading, the
fracture energy can be, respectively, determined using Double Cantilever Beam (DCB) and
End Notched Flexure (ENF) tests [23,24].

Because of its simplicity, the Cohesive Zone Model (CZM) is widely used to describe
the debonding process along a predefined path [25,26]. Here, the Fracture Process Zone
(FPZ) is represented through two superimposed surfaces, and a traction-separation law
between these two surfaces is adopted for the characterization of the debonding.

The shape of the cohesive law can influence the results of the simulations. Zhang
et al. [27] observed that the shape of the cohesive law depended on the geometry of the
joint and the type of adhesive. In particular, they experimented with butt-joints and DCB
joints made with brittle and ductile adhesive. The results showed that the bilinear law was
more suitable in the case of butt-joints made with brittle adhesive, while the trapezoidal
law showed a better fitting with the results obtained from DCB joints made with ductile
adhesive. In fact, the type of adhesive had particular influence on the mechanical resistance
of a bonded joint [28].

At present, the pre-treatment for bonding in the industrial field does not take into
account the stress distribution into the bonded joint. Because of this, the entire surface to
be bonded is usually subjected to a pre-treatment made with the same process parameters,
without taking into account the possible presence of singularity in the stress flied during
the working life of the bonded joint. The presented paper represents a fundamental step to
optimize the laser texturing of the surface to be bonded, taking into account the presence
of singularities of stress. Specifically, this first research consisted of investigating the
effectiveness of a laser texturing on the mechanical resistance of CFRP bonded joints under
mode II. In particular, a cohesive model was used to predict the behavior of the specimens
and a comparison between three cohesive laws was carried out for evaluating the most
suitable law for modelling the investigated phenomenon.
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2. Materials and Methods

Figure 1 reports the ENF geometry and dimensions adopted for this work. The
reference width was equal to 10 mm.
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2.1. Experimental Activity 
The laminates used for the production of ENF specimens were made by vacuum bag-
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T152/X751/135. The mechanical properties of the prepreg in the cured state are reported 
in Table 1. The layup chosen for the activity was a [02/90/02/90/0ത]s. In this way, the manu-
factured adherends presented a thickness of 2.4 mm. After the polymerization and 
demolding of the laminates, they were polished using acetone to avoid the possible con-
tamination of the surfaces with release agents. A CO2 Q-switched pulsed laser system with 
a peak power of 50 W was used for adherends pre-treating. The optical chain consisted of 
a laser source with a maximum average power of 25 W, a galvanometric mirrors system, 
a shutter, and a F-theta lens for focusing the laser beam. In particular, the process was 
made with a focal distance of 200 mm, while the spot size was 200 μm. The adopted tex-
turing was based on dimples in a square grid, while the dimension of HAZ was limited 
minimizing the dimension of the dimples. The laser parameters for obtaining a repeatable 
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Table 2. Laser parameters for realizing dimples, obtained from preliminary tests. 
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Power 11.3 W 

Wavelength 10,600 nm 
Frequency 25 kHz 
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Pulse duration 18 μs 

Mode TEM00 

The adopted texturing allowed defining the density of treatment as a function of the 
only grid dimension. A sketch of texturing is reported in Figure 2. 

Figure 1. ENF specimen geometry and dimensions adopted in this work.

2.1. Experimental Activity

The laminates used for the production of ENF specimens were made by vacuum bag-
ging molding using a unidirectional carbon fiber prepreg known as CYCOM T152/X751/135.
The mechanical properties of the prepreg in the cured state are reported in Table 1. The
layup chosen for the activity was a [02/90/02/90/0]s. In this way, the manufactured ad-
herends presented a thickness of 2.4 mm. After the polymerization and demolding of the
laminates, they were polished using acetone to avoid the possible contamination of the
surfaces with release agents. A CO2 Q-switched pulsed laser system with a peak power of
50 W was used for adherends pre-treating. The optical chain consisted of a laser source
with a maximum average power of 25 W, a galvanometric mirrors system, a shutter, and a
F-theta lens for focusing the laser beam. In particular, the process was made with a focal
distance of 200 mm, while the spot size was 200 µm. The adopted texturing was based
on dimples in a square grid, while the dimension of HAZ was limited minimizing the
dimension of the dimples. The laser parameters for obtaining a repeatable dimple were
achieved through a preliminary test and reported in Table 2.

Table 1. Mechanical properties of the adopted prepreg in cured state.

Properties Value

Young’s modulus, E11 133,800 MPa
Young’s modulus, E22 = E33 5900 MPa
Shear modulus, G12 = G13 12,000 MPa

Shear modulus, G23 2360 MPa
Poisson’s ratio, ν12 = ν13 0.26

Poisson’s ratio, ν23 0.25

Table 2. Laser parameters for realizing dimples, obtained from preliminary tests.

Parameters Value

Power 11.3 W
Wavelength 10,600 nm
Frequency 25 kHz

Scanning speed 5950 mm/s
Pulse duration 18 µs

Mode TEM00

The adopted texturing allowed defining the density of treatment as a function of the
only grid dimension. A sketch of texturing is reported in Figure 2.
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Figure 2. Texturing scheme adopted for the laser treatment: The texturing parameters were the
dimples dimension (D) and the grid dimension (Gd).

In this analysis, the density of treatment is defined as:

ρ =
πD2

4G2
d
× 100 (1)

where ρ is the density of treatment, Gd is the grid dimension of the texturing, and D is
the dimension of the laser spot. Four levels of density were included in the experimental
plan, as reported in Table 3. Preliminary analyses with optical microscope showed that
no damage occurred on the CFRP laminate with the investigated values of densities
of treatment.

Table 3. Experimental plan.

Factors Number of Levels Levels

Density of treatment (ρ) 4 0%; 13%; 20%; 35%
Repetitions 3

In this work, the two-part epoxy paste adhesive EA 9309.3NA was used for manufac-
turing the ENF specimens. The bulk mechanical properties of the adhesive in the cured
state are reported in Table 4. After 5 days from the application of the adhesive, the bonded
laminates were demolded and subjected to cutting operation for obtaining the specimen
with the nominal dimension (Figure 1).

Table 4. Mechanical properties of EA 9309.3 NA epoxy adhesive [29].

Factors Value

Tensile Strength 32.2 MPa
Tensile Modulus 2303 MPa
Shear Modulus 841 MPa
Poisson Ratio 0.36

Elongation at break 10%

Because the crack obtained from cutting was about 15 mm, a pre-cracking of 5 mm was
made using a vise and a sharp blade for achieving the nominal value of 20 mm. Specifically,
the specimens were gripped with the aid of rubber bands between the adherends and the
vise: in this way, the damaging by compression of the CFRP was avoided. The position
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of the specimens in the vise was such that the crack tip before pre-cracking was 5 mm
from the vise itself. A USB micro-camera was used to examine the crack propagation and
stabilization at the target value, as shown in [30]. The specimens were tested in three-point
bending tests using a universal machine with a crosshead speed of about 5.1 mm/min and
a load cell of 10 kN. The compliance beam method (CBBM) was adopted for obtaining the
fracture energy under mode II, presented in Equation (2), as shown in [28].

GIIc =
9Pc

2

16b2E f h3

[
Ccorr

C0corr
a3 +

2
3

(
Ccorr

C0corr
− 1
)

L3
]2/3

(2)

where Pc is the failure load, a is the length of the crack before testing, b is the width, Ef is
the adherends flexural modulus, h is the adherends thickness, L is the span between punch
and supports, and C0corr and Ccorr are:

C0corr = C0 −
3L

10Gbh
(3)

Ccorr = C − 3L
10Gbh

(4)

and represented, respectively, the initial specimen compliance and the corrected compliance,
while G was the adherends shear modulus.

2.2. Numerical Model

The commercial code MSC Marc/Mentat was used for modelling the increasing of
ENF mechanical response due to the laser texturing. A linear elastic response of the CFRP
and the epoxy adhesive in a 2D model was assumed. A mesh sensitivity analysis was
carried out for defining the optimal number of the elements for the numerical model.
From preliminary simulations, the size of the interface elements showed a low influence
on the failure load. In fact, in cohesive models, the principal parameters used were the
fracture energy GI,c and GII,c, which were mesh-independent. However, the mesh size
had to guarantee almost four elements into the fracture process zone, as stated in [31].
In total, 9600 four node isoparametric composite elements (type 151) and 3312 four node
isoparametric isotropic elements (type 11) were used for modelling adherends and adhesive,
respectively, as shown in Figure 3. In total, 414 interface elements (type 186) were realized
with no thickness and located between adherend and adhesive elements. In this way,
the model could simulate only adhesive failures. Indeed, the growth of the mechanical
performance caused by laser texturing was quantifiable only if the flexural resistance of
CFRP adherends was not exceeded, representing the limit condition.
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In this work, three types of cohesive traction-separation laws were investigated for
modelling the ENF specimens: an exponential law, a bilinear law, and a linear-exponential
law. In the exponential law, the traction can be defined as:

t =
Gc

v2
c

ve−
v

vc (5)

where Gc is the critical energy release rate, vc is the critical displacement, and t and v are
the stress and the displacement, respectively. In the bilinear law, the traction-separation
law is equal to:

t =


2Gc
vmvc

v 0 ≤ v ≤ vc
2Gc
vm

(
vm−v
vm−vc

)
vc < v ≤ vm

0 v > vm

(6)

where νm is the maximum displacement; and in the linear exponential law, the traction
separation relation is defined as:

t =


2qGc

v2
c (2 + q)

v 0 ≤ v ≤ vc
2qGc

v2
c (2 + q)

eq(1− v
vc ) v > vc

(7)

where q represents the exponential decay factor. A qualitative graphical representation of
the cohesive laws adopted in this work is reported in Figure 4.
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For the bilinear and the linear-exponential laws, it is possible to define the stiffness K as:

K =
tc

vc
. (8)

In this work, a quadratic stress criterion was used to predict the initiation of the damage:(
tII

tIIc

)2
= 1, (9)

where tII is the traction related to the pure mode II and tIIc is the critical tractions under
pure mode II. Instead, the crack growth was modelled with a linear energetic criterion:

GII

GII,c
= 1, (10)

where GII represents the area under the traction-separation law for pure mode II. The
supports and the punch were modelled as rigid bodies through geometric entities, which
were circles with the dimensions reported in Figure 1. The first boundary condition
consisted of a fixed displacement along the x-axis of the nodes of the adherends under
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the center of the punch in a way to avoid rigid body moves. For the second boundary
condition, the punch was subjected to a fixed velocity of −5.1 mm/min in the y direction.

From the experimental results, it was possible to obtain the fracture energy for the
cohesive model, while the determination of the other cohesive parameters was achieved by
an inverse method. Specifically, the evaluation of the other cohesive parameters for treated
and untreated specimens was obtained by fitting the numerical load-displacement curves,
as seen in [32].

3. Results and Discussions
3.1. Experimental Results

To evaluate the contribution of the laser texturing to the mechanical resistance of the
ENF specimens in a quantitative way, the failure had to happen at the adherend/adhesive
interface. In fact, the increase of performance due to the laser treatment can be quantitatively
evaluated only if the failure appears where the treated surface is located. For this purpose,
the limit condition under which the failure in the specimens appeared at the interface was
identified through experimental tests. The determination and classification of the failure
modes was carried out according to ASTM D5573 [33]. Specifically, untreated specimens
showed adhesive failures, while specimens with the density of treatment of 20% and 35%
showed stock-break failures (Figure 5).
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Specimens with the density of treatment of 13% showed more complex mixed failures,
which were a combination between adhesive and stock-break failures. In particular, the
failure appeared first as an adhesive type until the crack tip arrived in the middle of the
specimens, subsequently as stock-break type with the bending failures of the adherends.
For that reason, the density of treatment of 13% accounted for the limit condition, giving a
mechanical resistance of the interface very close to the adherends delamination resistance.
The maximum average load registered during testing showed the important effect of the
laser treatment on the mechanical resistance of the ENF specimens. In particular, an average
increase from 518.5 N to 1086.0 N was observed between untreated and 20% laser treated
specimens (Table 5).
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Table 5. Critical loads obtained from experimental tests.

Treatment N◦ Specimen Pc [N] Average [N] St. Dev [N] Coefficient of
Variation (CV)

Untreated
1 521.5

518.5 25.6 4.94%2 491.5
3 542.4

Treated (13%)
1 1083.6

1040.4 50.6 4.86%2 1052.9
3 984.7

Treated (20%)
1 1036.5

1086.0 42.9 3.95%2 1109.3
3 1112.2

Treated (35%)
1 1032.2

1046.6 45.3 4.33%2 1097.3
3 1010.2

However, 20% laser treated specimens showed stock-break failures, so the obtained
value did not represent the real increase of performance due to the laser treatment. Instead,
an average increase from 518.5 N to 1040.4 N was observed between untreated and 13%
laser treated specimens, more representative of the increase of performance due to the laser
treatment. Specimens treated with a density of treatment of 35% showed a slight decrease
of performance of about 3.6% respect specimens treated with a density of treatment of
20%. This could be due to a higher thermal degradation of the matrix of the first surface
composite layer. However, observing the experimental range, it is possible to state that this
variation is negligible. It is likely that densities of treatment higher than 35% could lead
to thermal degradation of the matrix and, subsequently, a lower mechanical resistance of
the adherends.

The difference of results between untreated and treated specimens became more
pronounced when observing the fracture toughness obtained from experimental tests
through the compliance beam method, as shown in Figure 6.
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3.2. Numerical Results

For the parameters identification, the value of the fracture energy was directly obtained
from the experimental tests, while the other parameters were obtained by fitting the
experimental and numerical load-displacement curves for each density of treatment.

The cohesive numerical model allows to simulate failure in the location where the
interface elements are defined. For this reason, the bonded joint can numerically fail only at
the adherend/adhesive interface. The densities of treatment that allowed the failure in such
a position were 0% and 13%, so it is possible to simulate only these densities of treatment.

Higher densities of treatments (20% and 35%) brought the failure of the adherends,
not of the adherend/adhesive interface. The results related to these values were not quanti-
tatively correlated to the increase of performance of the joint due to the laser treatment. In
fact, the pretreatment allowed a resistance of the adherend/adhesive interface higher than
the flexural resistance of the adherends, so the obtained values of these densities were rep-
resentative of the adherend properties, not of the interface. For these reasons, the numerical
model considered of only densities of treatment of 0% (untreated) and 13% (treated).

3.2.1. Exponential Law

As it was defined, the exponential law did not allow the interface elements to have
a rigid behavior during the elastic part of the cohesive law. In consequence, the interface
presented an elastic deformation before the damage growth. In fact, the exponential law was
recommended in case of interface elements with a finite thickness, and the determination
of the cohesive parameters should be as a function of the elements thickness and the
mechanical characteristics of the adhesive. Regarding the simulation of treated specimens,
the exponential law did not allow forecasting of the specimens’ behavior because the
fracture process zone appeared to be too extensive for numerically breaking the specimen,
as shown in Figure 7. In fact, the main reason why this occurs is essentially related to the
impossibility to subdivide the elastic strain and the plastic strain in the exponential law
(due to the damaging of the elements). For this reason, the interface elements will always
show a partially elastic deformation during the application of the load. This response
generates an error in the prediction of the failure load, which is directly proportional to the
applied load. It is likely that the error using the exponential law was such that the model
was not able to predict the failure load of treated specimens.
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Therefore, the exponential law appeared to be unsuitable for modelling the damage
initialization and growth in this work, where the interface elements had no thickness and
the adhesive was modelled with elastic behavior.

3.2.2. Bilinear Law

The presence of elastic elements for the adhesive discretization allowed the use of
interface elements with no thickness, which, in the case of bilinear law, should not have
the elastic part of the law. In order to avoid convergence problems of the solution, a
default value of vc of 10−6 was used. In fact, the adopted approach did not need the
elastic mechanical response of the interface elements because this was represented by the
mechanical response of the adhesive’ elements. For this reason, the value of vc should have
been equal to zero. However, a value of vc equal to zero would have generated convergence
problems to the simulation. For this reason, the chosen default value was equal to 1.00 nm:
it did not represent a measured value, rather a parameter necessary to resolve convergence
problems, avoiding elastic strains of the interface elements. The value of the fracture energy
Gc came from the experimental tests, while the maximum displacement vm represented the
variable to get through the inverse method. As a result of this, the stiffness of the interface
elements can vary as a function of the optimal value of vm, although their global behavior
could well represent a rigid body with respect to the compliance of the adhesive elements.
The cohesive parameters obtained from an inverse method for the bilinear law are reported
in Table 6.

Table 6. Cohesive parameters obtained for bilinear and linear-exponential law.

Factors
Bilinear Law Linear-Exponential Law

Untreated Treated Untreated Treated

tn [MPa] 7.1 17.2 6.9 19.1
vc [mm] 1.00 × 10−6 1.00 × 10−6 1.00 × 10−6 1.00 × 10−6

vm 0.17 0.348 - -
q - - 1.15 × 10−5 6.35 × 10−6

GIIc [N/mm] 0.6 3.0 0.6 3.0

3.2.3. Linear-Exponential Law

The considerations for the elastic part of the bilinear law were the same for the linear-
exponential law. Specifically, for the linear-exponential law, it was possible to define a value
of vc as small as possible, so that the mechanical response of the joint in the undamaged
state depended only on the deformation adherend and adhesive elements. For that reason,
a default value of vc of 10−6 was adopted, so the variable to optimize was the decay factor
q. The cohesive parameters obtained from the inverse method for the linear exponential
law are reported in Table 6.

3.3. Comparison between the Numerical and Experimental Results

Between the three chosen cohesive laws, only the exponential law showed some
difficulties inherent in the numerical failure of ENF specimens, as shown in Figure 7. In
particular, for untreated specimens, the failure appeared with a higher value of load and
punch displacement, while treated specimens did not show failures.

In the case of bilinear law, the numerical results obtained were in good agreement
with the experimental results, as shown in Figure 8. This type of cohesive law tended
to overstate the critical displacement for untreated specimens and underestimate the
critical displacement for treated specimens. However, these variations of the numerical
response, with respect to the average behavior of the specimens, was about 5% and therefore
negligible due to the dispersion of experimental results of the same magnitude (Table 6).

The numerical results obtained using the linear-exponential law showed a slightly
lower deviation of the critical displacement, with respect to the bilinear law, as illustrated
in Figure 9. In particular, the obtained failure loads were very similar to the experimental
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loads, while the deviation of the critical displacement was about 5%. However, this
value was lower, with respect to the results related to the bilinear law and lower than the
experimental dispersion (Table 7).
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Table 7. Comparison between experimental results and numerical results.

Pc [N] Experimental
Average Value

Experimental
dev. st. FEM

Difference
from

Experiments

Bilinear
law

Untreated
PC [N] 518.5 25.6 543.1 +4.74%
δC [mm] 1.15 0.15 1.21 +5.21%

Treated
PC [N] 1040.4 50.6 1036.8 −0.35%
δC [mm] 2.70 0.36 2.51 −7.04%

Linear ex-
ponential

Law

Untreated
PC [N] 518.5 25.6 522.6 +0.67%
δC [mm] 1.13 0.15 1.17 +3.54%

Treated
PC [N] 1040.4 50.6 1040.9 +0.04%
δC [mm] 2.70 0.36 2.56 −5.18%

The obtained results indicate that the linear exponential was more suitable for extend-
ing the model to a 3D approach. Further studies are needed to investigate how the use of
local variation of properties of interface elements in a 3D model using a linear exponential
could influence the numerical results in comparison with the experimental results. The aim
will be to study the effects of each single dimple on the mechanical resistance of the joint:
in this way, it will be possible to design the laser treatment in order to optimize the time
and costs process.

4. Conclusions

An effectiveness of a CO2 laser texturing on the mechanical performance of ENF
bonded joints, made in CFRP and epoxy adhesive, was investigated. The texturing was
defined through dimples in a grid square, and the density of treatment was defined
depending only on the grid dimension. An average increase of failure load was observed
from 518.5 N, in the case of untreated specimens, to a range between 984.7 N and 1112.2 N in
the case of treated specimens with different densities of treatment. The failure modes were
observed, and a limit condition to evaluate the influence of the treatment was identified
with a 13% of treated area. A cohesive model was developed to forecast the effect of the
laser texturing, and three shapes of cohesive law were investigated: an exponential law, a
bilinear law, and a linear exponential law. It was stated that the exponential law was not
able to predict the failure load in the proposed approach, while the bilinear law revealed
a good agreement between experimental and numerical results, with a forecast of the
critical displacement of about 7% difference, with respect to the experimental average value.
However, that difference was consistent with the dispersion obtained from the experimental
tests. The linear exponential law revealed a better agreement with the experimental results.
In the future, this activity should include further analyses to evaluate the effect of the laser
texturing under mixed-mode conditions and, in particular, to evaluate the effect of the
single dimple on the mechanical response of the bonded joint with more complex joint
configurations. The results of this work represent a fundamental step to develop a 3D
numerical tool for designing the optimal laser texturing as a function of the state of stress
generated during the working life of the bonded joint, reducing costs and time of the
pre-treatment process.
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