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Abstract: The Korea Atomic Energy Research Institute (KAERI) obtains UO2 powder using the
ammonium uranyl carbonate (AUC) wet process. Hydrated lime (Ca(OH)2) is used to neutralize
liquid wastes produced from the AUC process, and the resulting byproduct is known as lime
waste. The purpose of this study is to determine optimum operating conditions for cementation of
radioactive lime waste produced from the AUC process, and to evaluate the structural stability and
leaching stability of cement waste form. The waste acceptance criteria (WAC) of a waste disposal
facility in Korea were used to evaluate the cement waste form samples. The maximum lime waste
content guaranteeing the shape stability of cement waste form was found to be 80 wt.% or less.
Considering the economic feasibility and error of the cementation process, the optimum operating
conditions were achieved at a lime waste content of 75 wt.% and a water-to-cement (w/c) ratio
of 2.0. The compressive strength of cement waste form samples prepared under optimal operating
conditions was 61.4, 76.3, and 61.0 kgf/cm2 after the thermal cycling test, water immersion test,
and irradiation, respectively, satisfying the compressive strength of 35.2 kgf/cm2 specified in WAC.
A leaching test was performed on the samples, and the leachability indexes (LX) of Cs, Sr, and Co
nuclides were 7.63, 8.02, and 10.89, respectively, which are all higher than the acceptance criterion
of 6. The results showed that the cement waste forms prepared under optimal operating conditions
satisfied the WAC in terms of structural stability and leaching stability. As such, the proposed cement
solidification method for lime waste disposal can be effective in solidifying lime waste powder
produced during the neutralization of liquid wastes in the AUC process.

Keywords: AUC; lime waste; WAC; cementation; operation conditions

1. Introduction

The operation and decommissioning of nuclear power plants result in the production
of radioactive waste. The uranium conversion facility of the Korea Atomic Energy Research
Institute (KAERI) relies on the ammonium uranyl carbonate (AUC) wet process (Figure 1)
to obtain UO2 powder. The AUC process is a uranium reconversion process involving
(NH4)4UO2(CO3)3 and large amounts of nitric acid (HNO3). Hydrated lime (Ca(OH)2) is
used to neutralize liquid wastes produced from the AUC process [1,2], and the resulting
byproduct is known as lime waste.
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is the best proven [4]. The advantages of cement solidification include the use of well-
known materials and technology, a wide range of applications, and reasonable cost [5]. 
Thermo-hydro-mechanical mechanisms and thermodynamic studies related to cementa-
tion have been actively reported [6,7]. When cement is mixed with water, hydration and 
hydrolysis occur simultaneously or in succession, and the chemical reactions result in 
hardening [8]. The mixture maintains a workable state as a fluid or plastic compound for 
1–2 h, and then begins to harden. As such, it must be uniformly mixed and placed in a 
suitable container before the hardening process [9]. 

Portland cement (type I) has been used as a solidifying medium for a long time, and 
its technical safety and convenience have already been proven [10]. The initial setting time 
of this solidifying medium is approximately four hours, which secures sufficient time for 
uniform mixing with materials of the cementation process [11]. Alumina cement is char-
acterized by fast condensation and high exothermic nature [12,13]. Condensation is de-
layed by adding slowing agents, and pores are removed using antifoaming agents, flow 
improvers, and enhancing agents [14,15]. The process becomes more complex with the 
introduction of additives, which cause quality to be influenced by more variables. Most 
additives are surfactants that release gas under irradiation, and must be prohibited for 
safety reasons in disposal facilities. 

The purpose of this study is to determine optimum operating conditions of cementa-
tion of radioactive lime waste produced from the AUC process, and to evaluate the struc-
tural stability and leaching stability of cement waste form. The WAC of a waste disposal 
facility in Korea was used to evaluate the cement waste form samples. 

Figure 1. Schematic diagram of reconversion process and waste.

As shown in Figure 1, this study examines the processing and disposal of a filter
cake, which is radioactive lime waste in solid form. Lime waste, no longer produced as
the uranium conversion facility has been decommissioned, is being stored in 435 drums
(200 L/drum). While past research has explored methods of processing waste remaining
after uranium recovery as non-radioactive industrial waste, such methods were deemed
unfeasible due to the low rate of uranium recovery and production of secondary waste.
Adequate procedures should be in place for stable disposal of lime waste produced from
the AUC process, and lime waste has to undergo cementation in order to fulfill the waste
acceptance criteria (WAC). The physical and chemical characteristics of cement waste form
must also satisfy the WAC [3].

The cementation of waste should be a simple process with affordable installation
costs. The technology employed should have little room for mistakes by operators or
mechanical errors, and involve minimal increase in volume to keep disposal costs down.
Various cementation processes with different solidifying mediums have been developed for
cement, asphalt, polymer, and glass. Among them, the cement solidification technique is
the best proven [4]. The advantages of cement solidification include the use of well-known
materials and technology, a wide range of applications, and reasonable cost [5]. Thermo-
hydro-mechanical mechanisms and thermodynamic studies related to cementation have
been actively reported [6,7]. When cement is mixed with water, hydration and hydrolysis
occur simultaneously or in succession, and the chemical reactions result in hardening [8].
The mixture maintains a workable state as a fluid or plastic compound for 1–2 h, and then
begins to harden. As such, it must be uniformly mixed and placed in a suitable container
before the hardening process [9].

Portland cement (type I) has been used as a solidifying medium for a long time, and
its technical safety and convenience have already been proven [10]. The initial setting
time of this solidifying medium is approximately four hours, which secures sufficient time
for uniform mixing with materials of the cementation process [11]. Alumina cement is
characterized by fast condensation and high exothermic nature [12,13]. Condensation is
delayed by adding slowing agents, and pores are removed using antifoaming agents, flow
improvers, and enhancing agents [14,15]. The process becomes more complex with the
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introduction of additives, which cause quality to be influenced by more variables. Most
additives are surfactants that release gas under irradiation, and must be prohibited for
safety reasons in disposal facilities.

The purpose of this study is to determine optimum operating conditions of cemen-
tation of radioactive lime waste produced from the AUC process, and to evaluate the
structural stability and leaching stability of cement waste form. The WAC of a waste
disposal facility in Korea was used to evaluate the cement waste form samples.

2. Materials and Methods
2.1. Materials

The radioactive lime waste used in the experiment is lime waste produced from
KAERI’s AUC process; its characteristics are presented in Table 1. U-235 and Cs-137, with
concentrations of 55.4 Bq/g and below 0.200 Bq/g, respectively, are classified as low-level
radioactive wastes.

Table 1. Characteristics of lime waste being stored.

Storage Volume
[200 L drum]

Radioactivity
[Bq/g] Components pH

435 U-235: 55.4
Cs-137 < 0.200

CaCO3
Ca(NO3)2

8.2

The cement used for cementation was Portland cement (type I), and the radioactive
lime waste used in the experiment was dried at 105 ◦C for 24 h. Moisture was removed
from lime waste because the water-to-cement (w/c) ratio is an important variable. To
prepare uniform cement waste form samples, dried lime waste was pulverized into powder
using a mortar. Lime waste is easily pulverized, and disperses well in water. Figure 2
shows the dried and powdered lime waste used in the experiment.
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Figure 2. Lime waste used in the experiment is (a) dried and (b) powdered.

2.2. Experimental Methods and Evaluation
2.2.1. Maximum Content of Lime Waste

The shape stability of lime waste and cement compound was evaluated with varying
lime waste contents of 71, 75, and 80 wt.% in cement waste form samples.

2.2.2. Mixing Ratio of Cement Waste Form

The physical and chemical characteristics of cement waste form depend on the water-
to-cement (w/c) ratio. Mixing is impossible with a small w/c ratio, meaning that cement
waste form cannot be produced. In the case of mixtures having poor flowability, air gets
trapped during the mixing process, causing the cement waste form to be highly porous.
The pores serve as leaching paths, and contribute to high infiltration of water and leaching
of nuclides. In the experiment, the weight ratio of lime waste was fixed at 75 wt.%, and
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varying w/c ratios of 1.55, 1.65, 1.75, 1.85, 1.95, 2.00, 2.20, and 2.40 were used to determine
the optimal mixing ratio.

2.2.3. Workability Test

Cement mixtures must have flowability to be usable in cementation. Since flowability
is highly influenced by the amount of water added, the w/c ratio is an important variable.
The workability test determines the range of w/c ratios that allows mixtures to have
appropriate flowability for cementation. The weight ratio of lime waste was fixed at
75 wt.%, and observations were made with varying w/c ratios of 1.55, 1.65, 1.75, 1.85, 1.95,
2.00, 2.20, and 2.40 (same as the mixing ratios of cement waste form in Section 2.2.2).

2.2.4. Preparation and Curing of Cement Waste Form

Cement waste form and lime waste were mixed in accordance with “Testing Method
for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency”
(KS-L-5109, South Korea) using a mechanical mixer (JI-206, JEIL, Seoul, Korea) [16]. The
cement mixtures were poured into polyethylene molds (D = 5 cm, H = 12 cm) at room
temperature (18–25 ◦C) and a relative humidity range of 30–60%. The molds were covered
with lids to prevent moisture from evaporating, and then cured for 28 days. The amount of
free standing water remaining in the molds after 28 days was measured using a graduated
pipette. The molds were carefully removed to prevent damage to the samples, which were
fabricated to have a diameter of 5 cm and height of 10 cm. Figure 3 shows the curing of
samples prepared using lime waste and cement.
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2.2.5. Cement Waste Form Property Tests

The cement waste form samples prepared according to the preparation and curing
method described above (Section 2.2.4) were tested for structural stability and leaching
stability. WAC was employed as the evaluation method and criteria. The disposal facility
in Korea is being operated by Korea Radioactive Waste Agency (KORAD); Table 2 presents
the test items and methods in KORAD’s WAC [3]. Three samples were prepared for each
item, and the average values for the three samples were used in the evaluation.
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Table 2. Test items and methods specified in KORAD acquisition criteria [17].

Item Test Standard Method Test Method Criteria

Structural
stability

Compressive strength
test KS F2405 - ≥35.2 kgf/cm2

(3.44 Mpa)

Water immersion test
(90 days) NRC 1 Compressive strength after

immersion test ≥35.2 kgf/cm2

Thermal cycling test
(28 days)

ASTM
B553

Compressive strength after
thermal cycling test ≥35.2 kgf/cm2

Irradiation test NRC 1
Compressive strength after

irradiation
(1.0 × 107 Gy)

≥35.2 kgf/cm2

Leachability Leaching test
(90 days) ANS 16.1 Cs, Sr, Co Leachability index ≥ 6

Free standing
water test

Sample EPA 2 - >0.5 vol.%

200 L drum ANS 55.1 - >0.5 vol.%
1 NRC, Waste Form Technical Position, Revision 1. (1991). 2 EPA, Method 9095B “Paint Filter Liquids Test”.

The leaching test was performed as an inactive test, with CsCl, CoCl26H2O, and
SrCl26H2O as reagents. The reagents were completely dissolved in water before use, and
Cs, Co, and Sr each had a concentration of 2000 ppm.

The leachability of cement waste form was evaluated based on the leachability Index
(LX). Here, LX is defined as follows.

LX = −logDe (1)

De = effective diffusion coefficient [cm2/sec]

CFL = f (t) = ∑ an

A0
= 2

S
V
[
De

π
]
1/2
·t1/2 (2)

Based on Equation (2), the plot of
[

∑ an
A0

]
with respect to

[√
t
]

has the following slope:

Slope = 2
S
V
[
De

π
]
1/2

By substituting slope into Equation (3), De can be calculated as follows.

De = (slope)2·
[

1
2

V
S

]
·π (3)

CFL = cumulative fraction leached; an = the total amount of material released during
leaching periods up to time t; A0 = the initial amount of material; V = waste form volume;
S = the surface area of waste form.

3. Results
3.1. Characteristics of Lime Waste

Lime waste is presumed to be composed of chemical substances used in the AUC
process, namely, NH4NO3, NaNO3, Ca(NO3)2, CaCO3, and Ca(OH)2 [18]. To determine the
crystalline structure of lime waste used in sample preparation, X-ray diffraction analysis
(XRD) was performed with an X-ray diffractometer (D8 DISCOVER, Bruker, Billerica, MA,
USA). Figure 4 shows the XRD patterns of lime waste. The crystalline structure of lime
waste was found to be comprised of CaCO3 and Ca(NO3)2 [19–21].
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3.2. Operating Range and Optimum Conditions

The total volume of cement waste form to be disposed decreases with increasing lime
waste content, mixed with cement when preparing the samples. However, the weight
ratios of lime waste and cement influence the physical stability of cement waste form,
which contains lime waste [22]. This study determined the maximum lime waste content
guaranteeing the physical stability of cement waste form.

The shape stability of lime waste and cement mixtures was evaluated with varying
lime waste content of 71, 75, and 80 wt.%. Figure 5 shows the shape stability of cement
waste form with varying lime waste content of 71, 75, and 80 wt.%. At a lime waste
content of 80 wt.%, the samples collapsed when the polyethylene molds were removed
after curing (Figure 5c). The maximum lime waste content was evaluated to be below
80 wt.%. Considering the economic feasibility and stability of cement waste form, the
weight ratio of lime waste introduced in preparing the samples was set as 75 wt.%.
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(b) 75 wt.%, and (c) 80 wt.%.

The workability of cement–lime mixtures was evaluated in relation to a w/c ratio with
the lime waste content fixed at 75 wt.%, and the results are shown in Figure 6. The mixtures
had no flowability at a w/c of 1.55, 1.65, and 1.75, but exhibited good flowability at a w/c
of 1.95 or higher.



Materials 2022, 15, 872 7 of 13Materials 2022, 15, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 6. Workability test results of 75 wt.% of lime waste and cement mixture according to w/c 
ratios of (a) 1.55, (b) 1.65, (c) 1.75, (d) 1.95, (e) 2.00, and (f) 2.20. 

The samples were observed for cracks and collapse while performing the workability 
test, free standing water test, and water immersion test with varying w/c ratios. These 
observations were used to determine the operating range for the preparation of cement 
waste form samples, and the results are shown in Table 3. Cement waste form cannot be 
prepared at a w/c ratio of 1.55–1.75, and the range of w/c ratios with acceptable mixability 
and flowability was 1.85–2.40. However, free standing water was produced at a w/c ratio 
above 2.40, and samples exceeding the criterion of 0.5 vol.% were deemed inadequate. In 
the water immersion test, all samples prepared at a w/c ratio of 1.85–2.40 had no cracks or 
collapses. The range of w/c ratios satisfying all requirements in terms of workability, free 
standing water, and water immersion was 1.95–2.20. When the lime waste content was 75 
wt.%, the corresponding range of w/c ratios was 1.90–2.30. 

Table 3. Operating range according to w/c ratio, workability, and free standing water of lime waste. 

Ratio 
Workability No. 

Sample 

Free Standing 
Water 

Water Immersion 
Test 

w/c 
Waste 
(wt.%) 

Measurement 
(mL) 

Criteria 
(≤0.5 vol/%) 

No Cracks/ 
Collapses 

1.55 75 No workability 
1.65 75 No workability 
1.75 75 No workability 

1.85 75 Bad 
1 0.0 

Less than 
0.5 vol.% 

o 
2 0.0 o 
3 0.0 o 

1.95 75 Good 
1 0.0 o 
2 0.0 o 
3 0.0 o 

2.00 75 Very good 
1 0.0 o 
2 0.0 o 
3 0.0 o 

2.20 75 Very good 
1 0.8 o 
2 0.0 o 
3 0.0 o 

2.40 75 Very good 1 2.6 More than o 

Figure 6. Workability test results of 75 wt.% of lime waste and cement mixture according to w/c
ratios of (a) 1.55, (b) 1.65, (c) 1.75, (d) 1.95, (e) 2.00, and (f) 2.20.

The samples were observed for cracks and collapse while performing the workability
test, free standing water test, and water immersion test with varying w/c ratios. These
observations were used to determine the operating range for the preparation of cement
waste form samples, and the results are shown in Table 3. Cement waste form cannot be
prepared at a w/c ratio of 1.55–1.75, and the range of w/c ratios with acceptable mixability
and flowability was 1.85–2.40. However, free standing water was produced at a w/c ratio
above 2.40, and samples exceeding the criterion of 0.5 vol.% were deemed inadequate. In
the water immersion test, all samples prepared at a w/c ratio of 1.85–2.40 had no cracks
or collapses. The range of w/c ratios satisfying all requirements in terms of workability,
free standing water, and water immersion was 1.95–2.20. When the lime waste content was
75 wt.%, the corresponding range of w/c ratios was 1.90–2.30.

Table 3. Operating range according to w/c ratio, workability, and free standing water of lime waste.

Ratio
Workability

No.
Sample

Free Standing Water Water
Immersion Test

w/c Waste
(wt.%)

Measurement
(mL)

Criteria
(≤0.5 vol/%)

No Cracks/
Collapses

1.55 75 No workability

1.65 75 No workability

1.75 75 No workability

1.85 75 Bad
1 0.0 o
2 0.0 o
3 0.0 o
1 0.0 o
2 0.0 o1.95 75 Good
3 0.0 o
1 0.0 o
2 0.0 o2.00 75 Very good
3 0.0 o
1 0.8 o
2 0.0 o2.20 75 Very good
3 0.0

Less than
0.5 vol.%

o

2.40 75
1 2.6

More than
0.5 vol.%

o
2 3.1 oVery good
3 2.5 o
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Figure 7 shows the operating range of the cementation process in relation to the w/c
ratio of lime waste when the lime waste content is 75 wt.%, meaning that base cement
content is 25 wt.%. Based on the flowability test and free standing water limit, the range of
w/c ratio compatible with the preparation of cement waste form was found to be 1.90–2.30.
Testing was not required at a w/c ratio of 2.40 because it was excluded from the operating
range in the free standing water test guidelines of KORAD’s WAC.
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Figure 7. Operating range of cementation process according to w/c ratio of lime waste.

Taking into account variables such as the scale up factor of the process, equipment
precision, and expertise of operators, a w/c ratio of 2.0 was used to prepare the cement
waste form samples. Considering the economic feasibility and error of the cementation
process, the weight ratio of lime waste was set as 75 wt.% and that of Portland cement
(type I) as 25 wt.%. Table 4 shows the components and ratios of cement waste form samples.
The samples had a density of 1.445 g/cm3, which translates to a 15% increase in volume
since cement has a density of 3.16 g/cm3.

Table 4. W/c and waste content of cement waste forms.

Cement Ratio (Weight) Cement Waste Form

Portland cement
type I

w/c Lime/
(lime + cement)

Cement/
(lime + cement)

Density
[g/cm3]

2.00 0.75 0.25 1.445

3.3. Evaluation of Disposal Feasibility
3.3.1. Structural Stability of Cement Waste Form

The disposal feasibility was evaluated with cement waste form samples cured at a
w/c ratio of 2.0. The evaluation was comprised of a leaching test, thermal cycling test,
irradiation test, water immersion test, and compressive strength test.

Figure 8 shows the changes in volume and weight of the samples before and after the
thermal cycling test, irradiation test, and water immersion test. The weight of samples
decreased by 16.25%, 15.00%, and 7.33%, respectively, after the thermal cycling test, irradia-
tion test, and water immersion test. The changes in volume were within 0.3% after each test.
Figure 9 shows the compressive strength of samples before and after the thermal cycling
test, irradiation test, and water immersion test. The actual photos of samples representing
changes in compressive strength and the setup of the thermal cycling test are presented in
Figure 10.
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The initial compressive strength of cement waste form samples after curing was
55.0 kgf/cm2, higher than the acceptance criterion of 35.2 kgf/cm2. The compressive
strength was 61.4, 76.3, and 61.0 kgf/cm2 after the thermal cycling test, water immersion
test, and irradiation, respectively, thus satisfying the criterion of the disposal facility.

3.3.2. Leaching Stability of Cement Waste Form

The leaching test was performed on cement waste form samples for 90 days in accor-
dance with ANS 16.1. Table 5 shows De calculated for Cs, Sr, and Co nuclides in cement
waste form and the concentration of leached Co. In the leaching test, the concentration of
Co was ND (non-detectable, <0.05) for 19 days.

Table 5. Cumulative leached fraction of nuclides (Cs, Sr, Co) in cement waste form.

No.
Σ(∆t)n
(Day)

Σ(∆t)n
(Day)1/2

Cumulative Leached Fraction [∑an/Ao] Co Concentration,
an (mg/L)Cs Sr Co

1 0.1 0.29 0.01 0.01 0.000 <0.05
2 0.3 0.54 0.04 0.02 0.000 <0.05
3 1 1.00 0.09 0.03 0.000 <0.05
4 2 1.41 0.15 0.06 0.000 <0.05
5 3 1.73 0.20 0.09 0.000 <0.05
6 4 2.00 0.24 0.11 0.000 <0.05
7 5 2.24 0.27 0.15 0.000 <0.05
8 19 4.36 0.38 0.21 0.000 <0.05
9 47 6.86 0.43 0.25 0.007 1.53

10 90 9.49 0.47 0.30 0.015 1.60

The leaching of nuclides is more consistent with the typical diffusion model if the
cumulative leached fraction [∑an/Ao] in relation to leaching time [(day)1/2] is closer to a
linear distribution [19]. Figure 11 shows the cumulative leached fraction [∑an/Ao] of Cs,
Sr, and Co in relation to leaching time [(day)1/2] based on the leaching test. The nuclides
arranged in the order of slope were Cs > Sr > Co. This means that Cs has a faster leaching
rate than Sr and Co. The slope of Co was not reliable as most leaching concentration values
were ND.
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Figure 11. Cumulative fraction of Cs, Sr, Co leaching from cement waste form (w/c 2.0, Lime waste
75 wt.%).
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The slopes representing De were substituted into Equation (1) to calculate the LX. The
cement waste form samples must have a leachability index above 6 to ensure disposal
feasibility (Table 2). Table 6 shows De and LX of Cs, Sr, and Co nuclides. The average LX of
Cs, Sr, and Co was 7.63, 8.02, and 10.89, respectively, with one sample for Co exceeding 11.
Figure 12 shows the average LX of Cs, Sr, and Co nuclides. The LX of Cs, Sr, and Co
nuclides satisfied the waste acceptance criteria of the disposal facility, thereby verifying
their disposal feasibility.

Table 6. Effective diffusion coefficient (De) and leachability index (LX).

Nuclides Sample
No.

V/S
(cm) Slope De

(cm2/day)
De

(cm2/sec) LX

Co

S1 0.999 4.87 × 10−4 1.86 × 10−7 2.15 × 10−12 11.67
S2 1.000 1.89 × 10−3 2.80 × 10−6 3.25 × 10−11 10.49
S3 1.000 1.86 × 10−3 2.72 × 10−6 3.14 × 10−11 10.50

Average 1.000 1.41 × 10−3 1.90 × 10−6 2.20 × 10−11 10.89

Sr

S1 0.999 3.14 × 10−2 7.74 × 10−4 8.96 × 10−9 8.05
S2 1.000 3.43 × 10−2 9.24 × 10−4 1.07 × 10−8 7.97
S3 1.000 3.22 × 10−2 8.12 × 10−4 9.40 × 10−9 8.03

Average 1.000 3.26 × 10−2 8.37 × 10−4 9.68 × 10−9 8.02

Cs

S1 0.999 5.05 × 10−2 2.00 × 10−3 2.31 × 10−8 7.64
S2 1.000 5.13 × 10−2 2.06 × 10−3 2.39 × 10−8 7.62
S3 1.000 5.06 × 10−2 2.01 × 10−3 2.33 × 10−8 7.63

Average 1.000 5.08 × 10−2 2.02 × 10−3 2.34 × 10−8 7.63
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Figure 12. Leachability index of respective nuclides included in cement waste form (w/c 2.0, lime
waste 75 wt.%).

4. Conclusions

This study determined the operating range and optimum operating conditions for the
cementation of radioactive lime waste produced from the AUC process. The maximum
lime waste content guaranteeing the shape stability of cement waste form was evaluated
to be below 80 wt.%. When the weight ratio of lime waste was 75 wt.%, the range of w/c
ratios for cement solidification was 1.90 to 2.30. Considering the economic feasibility and
error of the cementation process, the lime waste content was set as 75 wt.% and the w/c
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ratio as 2.0. These were found to be optimum operating conditions for the cementation of
lime waste.

The cement waste form samples prepared under optimum operating conditions were
tested for structural stability and leaching stability. The disposal feasibility of samples
was examined based on the compressive strength and leaching test procedures of WAC,
which was employed as the evaluation method and criteria. The samples satisfied the WAC
criteria in terms of initial compressive strength after curing, compressive strength after
the thermal cycling test, compressive strength after the water immersion test, compressive
strength after irradiation, and leachability of Cs, Sr, and Co.

As such, the proposed cement solidification method for lime waste disposal can be
effective in solidifying lime waste powder produced during the neutralization of liquid
wastes in the AUC process.
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tion, writing—review and editing, H.-K.L.; resources, G.-Y.K.; visualization, writing-reviewing, T.-J.K.;
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