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Abstract: Vertical bending vibration modes and rail wave propagation, including the damping
characteristics, are the factors that cause rail corrugation. However, the ability to identify actual
railways has been limited because of the huge number of sensors required for field tests. In this
study, a novel and field-applicable method for identifying rail vibration modes and wave propaga-
tion characteristics is developed by multipoint hammering and the reciprocity theorem instead of
multipoint measuring. Additionally, the proposed method is applied to an actual rail with a direct
fastening track system on a bridge that has corrugation with a wavelength of approximately 0.04 m.
As a result, the wavelength (wavenumber)-, group velocity-, and distance damping (attenuation)
frequency relationship of the wave propagation is clarified in addition to the rail frequencies and
mode shapes up to approximately 1500 Hz, including the pinned-pinned mode. Finally, the identified
wavelength-frequency relationships and the measured rail irregularity can empirically demonstrate
that the generated corrugation on the rail is produced by wave interference on the two axles in
the bogie.

Keywords: vibration mode; rail damping; wave propagation; field test; rail corrugation

1. Introduction

Vibration and wave propagation, including the damping of the rails that support the
traveling axles, affect the wheel–rail interaction force. As a result, these can cause real
problems on railways, such as rolling noise and rail corrugation [1–8]. Different generating
mechanisms have been proposed for rail corrugation, depending on the corrugation’s
wavelength [3]. Manabe [4] established that rail vertical bending modes and vertical bend-
ing wave propagation are related to the growth mechanism of rail corrugation, with a
medium wavelength of approximately 0.04 m. It is typical of this type of rail corruga-
tion that it can occur in straight lines as well. The objective of this study is to develop
a methodology for identifying the vertical bending modes and vertical bending wave
propagation characteristics of rails related to the generation of such rail corrugation by
field tests and to demonstrate its effectiveness in an actual field. In light of this, this study
focuses on the rail’s vibration mode, and wave propagation characteristics in the frequency
range of approximately 500–1200 Hz, which is indicated to be caused by this type of wave
interference [4], are targeted.

Many researchers have thus far contributed to the clarification of rail vibration modes.
In particular, the relationship between short-pitch rail corrugation and pinned-pinned
resonance at about 1 kHz has been reported [2–4]. In addition, a wavelength fixing mech-
anism for rail corrugation due to the interference of rail vertical bending mode waves
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has been proposed [3,4]. Most of these findings are based on theoretical analysis or nu-
merical simulation. Many studies, such as rail wave propagation, are extensive. Many
models have been developed to reproduce the rail dynamic behavior, such as beam or plate
model analysis [5,9–12], semi-analysis or the 2.5D FE model (SAFE) [13–16], and the 3D
FE model [17–21]. These provide basic information for understanding the wave number
and frequency dispersion relations and the wave propagation characteristics such as phase
velocity and group velocity. In addition, the dispersion curve, phase, and group velocity of
rail waves for rail inspection have been examined in many studies [15,16,22].

However, most of these studies are based on numerical analysis. As a result, there are
very few examples of rail modal characteristics and wave propagation characteristics iden-
tified in experiments and field tests [14,20,21]. Cettour et al. [14] proposed a method using
wavelet transform to analyze the characteristics of waves propagating in the rail. In addi-
tion, the group velocity dispersion curve of the vertical, lateral, and longitudinal rail waves
at 1 to 7 kHz was estimated by applying it to a relatively short rail in the laboratory [14].
In their study, a method using one-point excitation and measurement (accelerometer) was
proposed, but problems with wave reflection at the rail ends remained. Zhang et al. [18,19]
has proposed the synchronous multiple acceleration wavelet (SMAW) approach, using
multiple accelerometers as a method to solve the problem. The effectiveness of the method
was also verified on relatively short laboratory rails. In addition, with the help of nu-
merical analysis, the main vibration mode shapes and wavenumber-frequency dispersion
relation were identified. Attempts have been made to apply it to actual rails in the field,
but no wavenumber–frequency relationship has been obtained. Despite these significant
contributions, the following challenges exist in identifying rail vibration modes and wave
propagation characteristics.

• In rail mode identification, the number of accelerometers (spatial resolution) is insuffi-
cient, especially when identifying rail mode shapes. Even in the latest literature [20,21]
using a relatively large number of sensors, the mode shape of the pinned-pinned mode
has not been completely experimentally identified.

• The verification is limited to short-length rails in the laboratory, and the influence
on experimental conditions such as the free ends cannot be denied. In particular, the
identification of the wavelength-frequency relationship of actual rails is deeply related
to the rail corrugation in [4], but they have remained unknown until now.

In this study, the authors propose a new approach using multipoint hammering and
the reciprocity theorem as a method of solving the constraint on the number of sensors.
The concept of the proposed method is to substitute the multipoint sensor measurement
with a multipoint hammering excitation through the reciprocity theorem, which exchanges
the measured and excited points. In modal identification, the reciprocity of the frequency
response function (FRF) holds, and, theoretically, modal identification based on multi-
point measurement in [20,21] can be replaced with multipoint hammering [23–25]. In
addition, the SMAW measurement [21] for estimating the wave propagation character-
istics requires the reciprocity of wave propagation. As for this, Schmerr and Song [26]
and Kubrusly et al. [27] show that the reciprocity of the surface integration consisting of
the inner product of the surface force and the displacement of the dynamic elastic body
is established. Therefore, the wave propagation characteristics can also be identified by
multipoint hammering in principle.

Unlike in multipoint synchronous measurement, the magnitude and frequency charac-
teristics of the input load fluctuate with each excitation in multipoint hammering. Therefore,
the wavelet transforms of the measurement points such as SMAW measurement [21] cause
an error in the identification result of distance damping (attenuation) due to these exci-
tation characteristics. In this study, the excitation force obtained at the same time as the
acceleration by the hammer is also wavelet-transformed, and the wavelet power spectrum
(WPS) of the acceleration is standardized by the WPS of the hammering force at each central
frequency of the wavelet. This can suppress fluctuations in hammering characteristics. This
makes it possible to identify rail modal characteristics and wave propagation characteristics
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by multipoint hammering and the reciprocity theorem. In this study, the proposed method,
called the SMEW (synchronous multiple excitation wavelet) approach, is based on the
multipoint excitation and reciprocity theorem.

The proposed method has the following advantages over multipoint measurement:
with only one sensor is required for the proposed method, and with an extremely simple
measurement system configuration that includes one hammer, it is possible to obtain
information equivalent to multipoint synchronous measurement with a huge number of
measurement points. Therefore, field tests such as high-order (short wavelength) vibration
mode shapes, wavelength-frequency dispersion relations, and unsteady wave distance
attenuation can now be empirically identified by field tests; they were difficult to verify by
field tests due to restrictions on the number of sensors. In this way, it is possible to analyze
the effects based on the conditions unique to each site and each rail in addition to the
general knowledge obtained in theory and laboratories in the investigation of the causes of
rail corrugation and the growth process. In addition, it is possible to verify the effect of
countermeasures from the viewpoint of the actual mode shapes and wave propagation. In
fact, in this study, the proposed method is applied to an actual corrugated rail with a direct
fastening track system on a bridge over an operational railway. As a result, the cause of rail
corrugation is clarified from the identified wave propagation characteristics in this study.

2. Methods of Measurements and Analysis
2.1. Outline of the Proposed Method

Figure 1 shows the outline of the proposed measurement and identification method.
The proposed method consists of four steps: measurement, mode identification, wavelength-
frequency relation identification, group velocity, and distance attenuation identification.
This allows the modal and wave propagation characteristics of the rail to be identified
completely by measured data and driven without the use of any numerical simulations
such as a past contribution [21]. The full-empirically identification of the characteristics of
rails that require many measurement points, such as a pinned–pinned mode shape and the
wavelength-frequency relation, is a unique contribution of this research that has not been
achieved in past studies.

High-density (each 1/2 span) multipoint hammering achieved by the reciprocity
theorem significantly reduces the working time required for field testing. In this study,
a total of 41 hammerings were performed. This work was conducted locally in about
an hour. The time required for the field test is about 2 h, including the installation and
detaching time of the two accelerometers. On the other hand, with a 41-point accelerometer,
these installations and wiring would take more than a day. It is difficult to perform this
on the operational rails through which trains pass. Therefore, the proposed method can
provide important information about operational rails that was not previously available in
field tests.

Each part constituting the proposed method, as shown in Figure 1, is explained in
detail in the sections shown in the figure.

2.2. Tested Rail

A rail on the actual line targeted in this study is shown in Figure 2. The rail is a JIS
60 kg rail (height of 174 mm) [4] that is standardly used in Japanese high-speed railways,
as shown in Figure 3. This rail is laid by a direct fastening track system on the steel bridge
via a fastening system. Therefore, there are no effects such as sleepers and ballast. Since
the rail is a long rail, it is assumed that it is close to an infinite length beam where the
influence of the rail end is small. The I-girder steel railway bridge is sufficiently stiffer
than the rail, and it is considered that the vibrational coupling with the rail can be ignored.
The fastening interval is about 625 mm. The rail is laid on the steel base via rail pads and
height adjustment packing (HAP) and fixed by a spring-loaded fastening system. The static
elastic stiffness of the rail pad, including HAP, is 39.5 MN/m, as evaluated by a separate
laboratory test. The rail is in a straight section. In addition, the rail has been in place for
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almost 30 years. Corrugation with a wavelength of approximately 40 mm was observed on
the rail under these conditions, as shown in Figure 3. However, the irregularity (depth) is
less than 0.05 mm, which is very small.
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2.3. Measurement Methods

The measuring method performed in this study is shown in Figure 4. The rail mode
shapes, including the pinned–pinned mode and the wavelength-frequency relation in wave
propagation, are identified by performing a high-density hammering point arrangement
instead of a high-density sensor arrangement. Therefore, there are only two accelerometers,
shown as R1 and R2, in Figure 4a,b. Originally, it could be identified with only one
sensor, not considering the influence of the fastening. Taking this into consideration, two
points were set at the mid-span of the rail’s fastening span and near the fastening system.
Accelerometers were installed at the bottom of the rail, as shown in Figure 3. It has been
reported that at high frequencies, the deformation of the rail cross-section is added to
the deformation in the vibration and wave propagation modes, although the effect of the
cross-section deformation is negligible below approximately 1200 Hz [21]. In addition,
since trains travel through this rail daily, the sensors were installed at the bottom of the
rail, avoiding the rail head. Hammerings were conducted at train passing intervals for the
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rail head at the 41 locations shown in Figure 4a, above the fastening and mid-span of the
fastenings. The hammerings were performed in the vertical direction. The hammering state
is shown in Figure 4c. The exciting force and acceleration signals observed by hammering
were recorded on a laptop PC at 10 kHz via a charge amplifier and A/D converter. Table 1
shows a list of equipment used for the measurement.
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Coherence between acceleration and excitation force was calculated after each ham-
mering, and it was confirmed that sufficient coherence could be obtained up to 1500 Hz.
Figure 5 shows an example of calculated coherence. Hammering was performed up to
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2–4 times per excitation point, and two pieces of high-coherence data were recorded. Only
one piece of hammering data per point is used in the analysis below.
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Table 1. List of specifications of the equipment used for measurement.

Equipment Types Specifications

Piezoelectric accelerometer PV95 (Rion CO., LTD.,
Kokubunji-shi, Japan)

Range: 1–10,000 Hz
Sensitivity: 0.714 pC/(m/s2)

Charge amplifier UV16 (Rion CO., LTD.,
koKubunji-shi, Japan) Range: 1–15,000 Hz

Impulse hammer 086C03 (PCB Piezotronics,
New York, NY, USA)

Sensitivity: 9.68 mV/N
Mass: 136 g

Recording system

NicDAQ-9189
Ni9233, Ni9239

LabVIEW
(National Instruments Japan

Corp., Tokyo, Japan)

Sampling frequency: 10,000 Hz
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2.4. Identification Methods of Vibration Modes and Wave Propagation
2.4.1. Modal Identification Method by Multipoint Vibration and Reciprocity Theorem

FRF is a basic method used for the mode identification of many structures [20,21,28,29].
The exciting force at the arbitrary point m and the acceleration at the arbitrary point l are
both measured in this section. At this time, the accelerance Glm(ω), which is one of the
FRFs, is expressed by the following Equation (1).

Glm(ω) =
Al(ω)

Fm(ω)
= ∑N

r=1
−ω2·ΦlrΦmr

ω2
r −ω2 + i·2ζrωrω

. (1)

Here, Al(ω) is the Fourier transform of the acceleration response at the measurement
point l, Fm(ω) is the Fourier transform of the vibration force at the excitation point m, ω
is the circular frequency (ω = 2π f , f is frequency), ωr and ζr are r-th frequencies and
modal damping ratios, Φlr and Φmr are the r-th mode shapes at points l and m, and i is an
imaginary unit. The frequency of the vibration modes is identified by peak picking because
FRFs show peaks at the frequency ωr from Equation (1).

Here, it can be assumed that the following relationship holds for the transfer function
by the well-known Maxwell’s reciprocity theorem [25].

Glm(ω) = Gml(ω). (2)

The FRFs of the single point m when the multiple points l = 1, 2, · · · , Nl are excited
are equal to the FRFs of the multiple measurement points l = 1, 2, · · · , Nl when the
arbitrary point m is excited, as shown in Equation (3).

A1/Fm
...

Al/Fm
...

AN/Fm


=



Am/F1
...

Am/Fl
...

Am/FN


. (3)

Here, assuming that the coupling of adjacent modes can be ignored near the frequency
(ω = ωr) of the r-th mode of FRFs, the FRFs have the relationship with mode shape vector
ϕr =

{
Φ1r, . . . , ΦNlr

}T , as shown in Equation (4).

Am/F1(ωr)
...

Am/Fl(ωr)
...

Am/FN(ωr)


=



G1m(ωr)
...

Glm(ωr)
...

GNm(ωr)


= − Φmr

i·2ζr



Φ1r
...

Φlr
...

ΦNr


. (4)

Therefore, the mode shapes of the target structure can be identified by Equation (5)
because it is the spatial distribution of the imaginary terms of FRFs measured at a single
point when multipoint excitation is performed, as in the case of multipoint measurement.

Φ1r
...

Φlr
...

ΦNr


=



Im(G1m(ωr))
...

Im(Glm(ωr))
...

Im(GNm(ωr))


. (5)
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2.4.2. Wavelength-Frequency Relation Identification Method by Multipoint Vibration and
Reciprocity Theorem

The dispersion relation between wavelength and frequency is the basic information of
wave propagation characteristics [22]. In the literature [20], the wavelength of the vibration
mode shapes at the eigen frequency matches the wavelength of the wave propagation [5],
and wave propagation characteristics were estimated by connecting the wavelengths at
the discrete eigen frequencies. However, based on the solution of the wave propagation
equation, the above characteristics are not limited to the eigen frequency but hold in
the frequency domain above the eigen frequency. In the ground field, a wavelength
identification method by FFT in the spatial direction is generally used to investigate the
wave propagation characteristics of the ground by utilizing this characteristic [30–32].

The spatial series of the imaginary terms of FRFs used for the identification of the
mode shape is used as an input. Let the spatial series of imaginary terms of FRFs at a
certain frequency ω be h(ω, l) =

[
Im(G1m(ω)), . . . , Im

(
GNlm(ω)

)]
. This is transformed

into the spectrum related to the spatial frequency z in Equation (6) by Fourier transform.

H(ω, z) =
∫ ∞

−∞
h(ω, l)e−izldl. (6)

For H(ω, s) obtained by Equation (6), the spatial frequency z(ω) = ẑ(ω) that max-
imizes H(ω, z) at a certain frequency ω is obtained, and the wavelength λ(ω) = 1/ẑ
in the wave propagation at that frequency ω can be obtained. However, in the vicinity
of the eigen frequency, there is a region where the wave does not propagate due to the
existence of the stop band. Note that it is difficult to estimate the wavelength λ(ω) in these
frequency bands.

2.4.3. Group Velocity and Distance Attenuation Identification Method by
SMEW Measurement

Schmerr and Song [26] derived the reciprocity theorem in wave propagation as
Equation (7), based on the dynamic equilibrium state of surface force and inertial force.∫

S
tl(n)·umdS =

∫
S

tm(n)·uldS. (7)

where tl and tm represent surface force vectors whose normal direction of arbitrary points
l and m is n, ul and um represent displacement vectors of arbitrary points l and m, and∫

S dS represents surface integrals, respectively. Although Equation (7) is derived in a
stationary field, it holds in a non-stationary field in a linear system. In fact, Takahashi and
Nakahata [33] verified the reciprocity of waves in H-shaped steel materials. As a result,
it was validated that when the hammering direction and the measurement direction match,
the dispersion characteristics (wavelength, phase velocity, group velocity) of the wave do
not change even if the excitation point and the measurement point are exchanged.

From the above, it is possible to handle the data by multipoint excitation (hammering)
in the same way as the multipoint measurement in the identification of group velocity and
distance attenuation in wave propagation. However, there are variations in the hammering
force, unlike multipoint measurement. This problem is solved by frequency-by-frequency
standardization using the wavelet transform of the excitation force shown below.

The wave propagation signal along the rail, excited by the impulse hammer excitation,
is composed of many frequency components. The continuous wavelet transform (CWT) [34]
was used to decompose this and estimate the wave propagation characteristics for each
frequency. The CWT is calculated using a group of scaled and shifted wavelet functions.
The wavelet coefficient of the accelerated time series response at at the analyzed arbitrary
point l can be expressed by Equation (8) [20,21,34].

Wt,a = ∑T−1
t′ = 0 at′ψ

′
[
(t′ − t)∆t

s

]
. (8)
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where ψ is the mother wavelet, s is the wavelet scale, T is the time series score,
t′ = 0, 1, . . . , T − 1, ∆t is the time step, t is the continuous variable of translation, and {}′
represents the complex conjugate. As the mother wavelet, the Morlet function was used
here as in the literature [20,21]. The WPS is calculated by

∣∣W2
t,a
∣∣.

If there are two synchronized acceleration responses with different positions, the
group velocity and distance attenuation in wave propagation can be estimated by the above
WPS [20]. Based on the time t1(ωw) and t2(ωw) where the peaks of the two acceleration
responses occurred when focusing on a certain central frequency ωw in WPS and the
distance La between the two acceleration measurement positions, the group velocity Vg(ω)
at the central frequency ωw is calculated by the following Equation (9).

Vg(ωw) =
La

t1(ωw)− t2(ωw)
. (9)

Based on the peak amplitudes P1(ωw) and P2(ωw) of the two acceleration responses
and the distance La of the two acceleration measurement positions when focusing on a
certain central frequency ωw in WPS, the distance attenuation of the wave per meter along
the rail can be calculated as the energy decay of Equation (10) [35].

β(ωw) =
20Log10(P1(ωw)/P2(ωw))

La
. (10)

The hammering point shown in Figure 3 can be used as a measurement point by
the reciprocity theorem because the excitation force signal and the acceleration signal
in this study are time-synchronized. Therefore, Vg(ωw) and β(ωw) can be calculated by
WPSs at each hammering point. Although Vg(ωw) and β(ωw) are theoretically constant
regardless of the hammering position, there are few examples of examining the sensitivity
and variation with respect to the distance between the excitation positions. Therefore, in
this study, the authors verified the variation by comparing Vg(ωw) and β(ωw), obtained at
each excitation position.

The above is the case where the exciting force is constant. In reality, the exciting force is
performed by the operator, and there is a certain variation. Such variations especially affect
the estimation result of the distance attenuation of the wave in Equation (10). Therefore, in
this study, the WPS was calculated by Equation (8) for the obtained excitation force and
normalized by Equation (11) at each center frequency of the WPS.

Wt(ω) =
Wt,a(ω)

Wt, f (ω)
. (11)

where Wt(ω) is the normalized wavelet coefficient, and Wt, f (ω) is the wavelet coefficient at
the center frequency ω obtained by the wavelet transform of the exciting force time series.
The error caused by the exciting force characteristics is eliminated using the WPS calculated
from this Wt(ω) in the calculation of the above Equations (9) and (10). In this study, WPS
calculated from Wt(ω) is called NWPS (normalized WPS).

3. Results of Measurements and Identifications
3.1. Acceleration and Excitation Force Measurement Results

The acceleration response and the excitation force response when the rail above the
accelerometer R2 (mid-span between fastenings) is hammered are shown in Figure 6. Free
vibration is excited at the rail for approximately 0.1 s when the exciting force acts. In
addition, these free vibrations converge in about 0.14 s. In this study, 1 s from the time
when the exciting force was maximized was used for the following analysis between the
acceleration response and the exciting force response.
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Figure 6. Measured time series responses: (a) acceleration and (b) excitation force.

The Fourier spectrum of Figure 6 is shown in Figure 7. There are clear peaks around
160 and 980 Hz in the acceleration spectrum of Figure 7a. In addition, a peak can be
confirmed at approximately 1200 Hz. The peak near 160 Hz, where the Fourier amplitudes
of R1 and R2 are almost the same, is presumed to be the vertical primary mode of the
rail/fastening system. In addition, the peak near 980 Hz, where the Fourier amplitude
of R2 near the fastening is slightly smaller, is presumed to be the pinned–pinned mode
where the fastening position is a modal node. These vibration modes are verified by the
identification results of the mode shapes shown in Section 3.3. In addition, no clear peak
is seen in the excitation force spectrum in Figure 7b. A low-order gain of approximately
30% is obtained up to the analysis target of about 1500 Hz, and the accuracy of the FRFs
calculation is ensured without problems.
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3.2. Eigen Frequency Identification Results

Figure 8 shows the amplitude and phase of FRFs obtained by dividing the acceleration
spectrum of Figure 7 by the excitation force spectrum. As seen in Figure 7, the amplitude
of FRFs in Figure 8a showed two main peaks, which were identified as 162 and 978 Hz,
respectively. In this study, these are called Modes A and B. The phases of the FRFs
in Figure 8b show a tendency for the phase to shift near the eigen frequencies of each
mode, confirming that these are the eigen modes of the rail. In addition, the phase of
the measurement point R2, located below the excitation point from 300 to 900 Hz, is flat.
Therefore, it can be confirmed that the acceleration response and the exciting force response
are time-synchronized with high accuracy. The peak observed above 1200 Hz is likely to
be affected by the horizontal mode based on the literature [21]. Horizontal and torsional
vibration modes are not covered in this study and will be addressed in the future.
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Modes A and B can be calculated by theory. The frequency of the vertical fundamental
mode (A) can be calculated by the following Equation (12) using the rail (mass) model
supported by the rail pad [36].

fA =
1

2π

√
Ks

ρ
. (12)

where fA is the frequency of vertical fundamental mode A, ρ is the unit length mass of
the rail (60.8 kg/m), and Ks is the rail pad spring stiffness per unit length (39.5/0.625 =
63.2 MN/m/m). The specifications of the rail are shown in Figure 3, and the specifications
of the rail pad are the experimentally measured values of 39.5 MN/m converted per 1 m.

The frequency of the pinned–pinned mode (B) can be calculated by the following
Equation (13) using the rail (beam) model with periodic pin supports [3].

fB =
π

2L2

√
EI
ρ

[
1− 1

2

(πrg

L

)2(
1 +

2(1 + ν)

Ks

)]
. (13)

where fB is the frequency of mode B, EI is the rail bending stiffness (6480 kNm2), L is the
fastening interval (0.625 m), rg is the radius of gyration (0.063 m), ν is Poisson’s ratio, and
Ks is the shear constant of the cross-section (0.34).

Table 2 shows the identified and calculated frequencies for Models A and B. The
identified frequencies are in good agreement with the frequencies calculated by the simple
theoretical models above. Therefore, it can be confirmed that the modal identification result
by the proposed method has certain reliability.

Table 2. Identified and calculated frequencies.

Modes Identified Frequencies Calculated Frequencies

A (fundamental mode) 162.0 Hz 162.2 Hz
B (pinned–pinned mode) 978.0 Hz 994.1 Hz

3.3. Mode Shape Identification Results

The identification results of the mode shapes calculated from all the FRFs obtained
by multipoint hammering are shown in Figure 9. Here, the identification results based
on the accelerometer R2 are shown. The horizontal axis shows the position where the
accelerometer R2 position is 0. The position of acceleration R2 is equivalent to the vibration
position in multipoint measurement by the reciprocity theorem.

The vertical bending mode with a wavelength of approximately 5.5 m centered on the
accelerometer R2 is shown in Figure 9a. In addition, there is no correlation between the
mode shape and the fastening position. However, in Mode B in Figure 9b, the amplitude of
the mode shape is almost zero at fastening positions, and positive and negative amplitudes
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occur alternately at the mid-span between fastening systems. This is the well-known
pinned–pinned mode.
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In the past results [20,21], the spatial resolution of the mode shape was insufficient
due to the limitation of the number of sensors, and numerical analysis was also used in the
determination of the pinned–pinned mode. However, the proposed method of increasing
the number of measurement points with a small load by multipoint excitation can clearly
identify the mode shape of the pinned–pinned mode without using numerical analysis.
This is a unique advantage of the proposed method in this study. It is necessary to arrange
hammering points at a higher density than in this study for frequencies of 1500 Hz and
above, which was the subject of this study.

3.4. Wavelength-Frequency Relation Identification Results

Figure 10 shows the spatial frequency distribution of the imaginary terms of FRFs for
identifying the wavelength-frequency dispersion relation for wave propagation. In the
figure, the vertical axis is the frequency, and the horizontal axis is the excitation position.
The position of the accelerometer R2 was set to 0 on the horizontal axis. The amplitude was
standardized to ±1 at each frequency.

The spatial distribution of the eigen frequencies from Modes A and B in Figure 10
is consistent with the mode shape shown in Figure 9. The region higher than the eigen
frequency of Mode A and other than the frequency of each mode is the wave propagation
region where wave dispersion occurs. It fluctuates spatially at regular intervals at a certain
frequency, as shown in Figure 10. One cycle of this spatial fluctuation is the wavelength. It is
shown that the higher the frequency, the shorter the wavelength. Clear wave propagation
cannot be confirmed at frequencies lower than Mode A. This is consistent with the theory
that rails behave as springs at frequencies lower than their primary vibration mode [4].
In addition, it was confirmed that the phase of the wave tends to slightly shift the low
frequency of Mode B. This is the effect of the stop band, in which the wave dispersion does
not occur near the eigen vibration mode of the rail [37]. By performing a Fourier transform
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in the spatial direction for each frequency in Figure 10, the dispersion relation between
wavelength and frequency is identified.
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The spatial frequency (wavenumber) frequency relationship and the wavelength-
frequency relationship are shown in Figure 11. The results of the spatial spectrum as
contours to confirm the estimation accuracy of the spatial frequency are also shown in
Figure 11. Figure 11 confirms that the wavelength can be estimated accurately at each
frequency as the dominant component of the spatial spectrum. However, the wavelength
estimation accuracy decreases at frequencies lower than Mode A because the frequency
region is a region where wave propagation does not occur. The wavelength of the tested
rail is approximately 6 m in Mode A (162 Hz), but the wavelength sharply shortens as the
frequency increases. The wavelength of approximately 500 Hz is about 2 m. It is about
1.25 m in Mode B (978 Hz), which is the same as the length of two fastening systems. The
relationships between wheelset intervals and wave propagation frequencies will be used
for the discussion in Section 4.3.

From the above, it was clarified that the wavelength-frequency relationship of the
actual rail, up to approximately 1200 Hz, which is pointed out to contribute to the formation
mechanism of rail corrugation, can be identified by the proposed method using multipoint
hammering and the reciprocity theorem. The group velocity, which shows the basic
characteristics of wave propagation, can theoretically be estimated from the wavelength-
frequency relationship. However, the wavelength-frequency relationship identified here is
not accurate enough to calculate the slope of the curve due to the effect of spatial resolution.
Additionally, distance attenuation needs to be identified separately. In the next section, the
group velocity and distance attenuation of this wave are estimated by SMEW measurement.

3.5. SMEW Measurement Results: NWPS

Figure 12 shows the response of acceleration, hammering force, and WPS when
hammering the leftmost excitation point shown in Figure 4a as an example of SMEW
measurement.

The acceleration response occurs after 0.104 s after the excitation force acts at around
0.1 s because the hammering point is about 7.8 m away from the position of the accelerome-
ter. The group velocity in the wave propagation of the rail is estimated based on this time
difference. In addition, the distance attenuation of the wave is estimated based on the maxi-
mum amplitude that differs depending on the excitation position. However, the magnitude
of WPS at each frequency of the obtained acceleration depends on the magnitude of the
exciting force.
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The spectrum variation of the hammering excitation force performed in this study is
shown in Figure 13. The figure shows that the maximum value of the exciting force and the
slope of the spectrum are slightly different for each hammering. To offset this difference,
the WPS of acceleration was normalized by the maximum value of WPS at each frequency
of the excitation force (red line in Figure 12b). This makes it possible to estimate the group
velocity and distance attenuation of waves by comparing the acceleration of NWPS at
different vibration positions.

Figure 14 shows the NWPS of the hammering point at zero above the accelerometer
R2 and hammering point 25, farthest (7.8 m) from the accelerometer R2. Hammerings were
performed at approximately 0.1 s for all test cases. At the hammering point at zero, the peak
of NWPS is concentrated for approximately 0.1 s when the hammering force is introduced.
However, peaks occur at many frequencies of 0.03 to 0.05 s at hammering point 25. The
characteristics of these wave propagations are quantified by the following group velocity
frequency relations and distance attenuation frequency relations.

Figure 15 shows an example of the procedure for identifying the group velocity and
distance attenuation of wave propagation by SMEW measurement as well as focusing on
a certain central frequency (506 Hz) in CWT. Figure 15 shows the time series of NWPS at
hammering points zero (above accelerometer R2) and 26 at 506 Hz. The group velocity is
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identified by the difference between the two peak time points t1(506) and t2(506) and the
distance La between the two points. The distance attenuation is identified by Equation (10)
using the difference between the two peak amplitudes P1(506) and P2(506) and the distance
La between the two points.
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3.6. SMEW Measurement Results: Group Velocity and Distance Attenuation

Figure 16 shows the group velocities identified by SMEW measurement. The group
velocity increases rapidly from around 160 Hz, which is the eigen frequency of the primary
rail mode. It gradually increases up to about 1000 Hz but tends to decrease above 1200 Hz.
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Figure 16. Group velocity identified by SMEW measurements and calculated by the Winkler
beam theory.

Figure 16 shows the group velocities obtained from the elastic supported beam (Win-
kler beam) theory [36,37]. The group velocity Vg,t(ω) of the elastic supported beam can be
calculated by Equation (12).

Vg,t(ω) = 4
√

EI
ρ−Ks/ω2 ·

√
ω,

(ω >
√

Ks
ρ ).

(14)

At frequencies close to the eigen frequency
√

Ks/ρ in Mode A, the group velocity
identified is about 1000 m/s and is in good agreement with the theoretical value. However,
at around 1000 Hz, the identification value is up to 1.3 times larger than the theoretical
value. This may be a higher-order mode such as the pinned–pinned mode, which is not
considered in theory. The sophistication of the analytical and numerical models and the
refinement of the parameters are the tasks of the next step.

Figure 17 shows the distance attenuation frequency relationship identified by SMEW
measurement. It can be confirmed that the distance attenuation tends to be high, near
160 and 1000 Hz, where the eigen modes exist. Theoretically, it is known that the wave
does not propagate at the frequencies of the eigen mode [38]. It is considered that this
effect occurred as an increase in apparent distance attenuation. The distance attenuation is
about 4 dB when focusing on the range from 300 to 600 Hz, where the influences of such
eigen modes are small. This value means that the NWPS is about 25% of the hammering
point at 2.1 m, which is the distance between the axles in a train bogie. In addition, when
the distance exceeds 10 m, the WPS drops to about 5% of the vibration point. Therefore,
it is inferred that the influence of wave interference is small at a distance greater than the
distance between the axles in the bogie.
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4. Discussions
4.1. Spatial Distribution of Group Velocity and Distance Attenuation

Figures 18 and 19 show examples of the spatial distribution of group velocity and
distance attenuation identified by SMEW measurements. Here, two frequencies, 440 Hz,
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which is different from the eigen frequency, and 944 Hz, which is near the eigen frequency,
are focused.
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The estimation results of each group velocity and the distance attenuation spatial
distribution shown in Figures 18 and 19 tend to vary greatly within a range of about 2 m
from the vibration point. When the distance between the two points is short, the difference
in arrival time and amplitude is small, so it is considered that a certain distance is required
between the hammering point and the measurement point to obtain highly reliable results.
This point will be considered in the next section based on the distribution of the error from
the median value.

As for the group velocity shown in Figure 16, as the frequency approaches the eigen
frequency (pinned–pinned mode), the group velocity of the wave increases, and it can
be confirmed that the group velocity tends to be different between the fastening position
and the mid-span of fastenings. It is suggested that the group velocity may have changed,
apparently in the vicinity of the eigen frequency, where it was originally difficult for waves
to propagate due to the influence of the so-called stationary mode (eigen mode).

A similar tendency can be confirmed in the distance attenuation shown in Figure 19.
There is no change in the 440 Hz distance attenuation due to the fastening interval except
near the measurement point with low accuracy. On the other hand, at 944 Hz, which is
close to the natural frequency, the distance attenuation is higher just above the fastening
than at the mid-span of fastenings. In other words, it is presumed that the influence of the
mode shape has apparently occurred as the distance attenuation of the wave propagation
because it is close to the pinned–pinned mode, which is stationary. Another important
feature is that the distance attenuation tends to be smaller as the distance from the vibration
point increases. The cause of this is presumed to be distance-dependent or amplitude-
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dependent [39] of attenuation (energy dissipation); however, it is unknown at this time.
Therefore, when distance attenuation is evaluated as logarithmic attenuation, there may
be measurement distance dependence. Compared to the position at a distance of 3 m, the
attenuation at a distance of 7 m is about 75%, and the effect is not negligible. This point
needs to be examined in more detail in the future.

4.2. Measurement Distance of Group Velocity and Distance Attenuation

Figures 20 and 21 show the spatial distribution of group velocity and distance attenua-
tion errors identified by SMEW measurements. Based on the examination in the previous
section, the error for the median value from 200 to 880 Hz, which does not overlap with the
two rail-specific modes, is evaluated here. The error EVg,l of the group velocity Vg,l at the
position l is calculated by the following Equation (15).

EVg,l = ∑2·π·880
ω=2·π·200

∣∣∣∣∣Vg,l(ω)−Vg(ω)

Vg(ω)

∣∣∣∣∣. (15)Materials 2022, 14, x FOR PEER REVIEW 19 of 24 
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Here, Vg(ω) is the median value of the group velocities of all measurement points.
The error of distance attenuation was calculated in the same way.

Figures 20 and 21 show that the estimation accuracy of group velocity and distance
attenuation is ensured at approximately over 2 m. It should be noted that Figures 16 and 17
are the aggregated values of only the results of 2 m or more from the measurement point
based on these results.

4.3. Generation Mechanism of the Rail Corrugation

Manabe [4] and Aboshi and Tanaka [36,40] theoretically derived that the interference
of propagated waves generated on the two wheelsets in a bogie, as shown in Figure 22,
is one of the factors that form rail corrugation. When the contact force of two wheelsets
acts on the rail, the waves generated from each other’s wheelset contact points interfere
with each other. When the wave generated at one of the two wheelset contact points has
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an amplitude opposite to that of the contact force at the other wheelset contact point, the
series impedance of the rail at the wheelset contact point becomes maximum. Since such
wave interference occurs at a specific wavelength, the rail is apparently stiff with respect
to the wheelset at the frequency corresponding to the wavelength of wave propagation.
Therefore, if there is an initial random rail irregularity at this frequency, only the irregularity
whose multiple of the wavelength matches the distance between the wheelsets in a bogie
increases the contact force. Wear selectively progresses depending on such characterized
contact force. Aboshi and Tanaka [36,40] theoretically clarify that such a mechanism causes
rail corrugation centered on the frequency at which wave interference occurs (see [4,36,40]
for details).
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Figure 22. Interference of propagated waves between two wheelsets in a bogie: (a) an example in
which waves with a wavelength twice the wheelset interval interfere in the case of in-phase wheelset
excitation, (b) an example in which waves with a wavelength of the wheelset interval interfere in the
case of antiphase wheelset excitation.

In this study, the wavelength-frequency relationship of the corrugated rail was identi-
fied so the above theoretical hypothesis can be verified. The distance between the wheels
of the train traveling on the line is 2.1 m. The average traveling speed of the line is about
70 km/h (19.4 m/s). The wave propagation group velocity is greater than about 1000 m/s.
Therefore, the Doppler effect associated with train running is less than 2%; hence, it can be
almost ignored.

From the identification results of the wavelength-frequency relationship in Figure 11b,
a wave with a wavelength the same as the wheelset interval of 2.1 m that interferes with
the antiphase excitation of the two wheelsets corresponds to about 480 Hz. In addition,
waves of 1.5 times and 0.5 times wavelengths (3.15 m and 1.05 m) that interfere with the
in-phase excitation of the two wheelsets correspond to 240 and 1200 Hz, respectively. These
frequencies and corresponding intervals are shown in Figure 11. Assuming that the average
train traveling speed is 19.4 m/s, the vibration of 480 Hz, which causes wave interference
in the antiphase, corresponds to the rail irregularity of 19.4/480 = 0.04 m. Therefore, if a
periodic rail irregularity of 0.04 m (25 [1/m]) can be observed in the actual rail irregularity
measurement, it can be said that the wave interference in the antiphase of the two wheelsets
is the cause of the rail corrugation. Wave interferences in the in-phase (250 and 1200 Hz)
correspond to the wavelengths of the rail irregularities with 0.07 m (14 [1/m]) and 0.02 m
(50 [1/m]), respectively.

Generally, the wavelength of rail irregularity measured by a track inspection vehicle
is more than 6 m. This cannot measure the wavelengths below 0.5 m, which is the focus
of this study. Therefore, the rail irregularity was measured by the other device, and
the periodicity of the rail irregularity was analyzed. Figure 23 shows the rail irregularity
continuous measuring device [41] used for measuring rail irregularity and the measurement
status. This device can continuously measure rail irregularity, with high sensitivity in the
wavelength range of 0.026 to 0.700 m.
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direction around the wavelength of 0.04 m (spatial frequency 25 [1/m]) of the irregularity. 
This coincides with the wavelength (of 0.04 m) calculated from the wave interference at 
the time of antiphase excitation of the two wheelsets. In addition, a relatively strong spec-
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Figure 23. Rail irregularity continuous measuring device [41] and the measurement status.

The spectrogram of the rail irregularity measured on the tested rail is shown in
Figure 24. It is confirmed that a strong spectrum is continuously generated in the distance
axis direction around the wavelength of 0.04 m (spatial frequency 25 [1/m]) of the irregu-
larity. This coincides with the wavelength (of 0.04 m) calculated from the wave interference
at the time of antiphase excitation of the two wheelsets. In addition, a relatively strong
spectrum tends to be continuous in the distance axis direction near the wavelength of 0.07 m
(14 [1/m]), though not as much as the wavelength of 0.04 m (25 [1/m]). This coincides with
the wavelength calculated from the wave interference at the time of in-phase excitation of
the two wheelsets based on the above. Therefore, it was confirmed that the cause of the
corrugation generated on the rail was the interference of waves. In addition, in Figure 24,
innumerable peaks occur at equal intervals in the spatial frequency direction. This interval
is 0.477 [1/m], and its reciprocal is about 2.1 m. This is the same as the wheelset interval.
Therefore, as mentioned above, it is presumed that only the rail irregularities, which are
multiples of the wheelset intervals, were selectively generated around the frequency band
where wave interference occurs.
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It should be noted that this consideration was derived from the wave propagation
characteristics of the rail alone on which the wheels are not mounted. When the train
passes, there are wheels on the rails, and it is undeniable that static rail deformation and
wave reflection/attenuation at the wheel positions, which are not considered here, may
occur. However, Manabe [4] indicated that wave interference is one of the causes of rail
corrugation, as in this study, as the result of modeling the wheels as moving masses to
take this into consideration. Considering this, if the target range is limited to the wave
propagation/interference that occurs between the two wheelsets in a bogie, the effect of the
wheelsets is limited.

5. Conclusions

In this paper, a method related to rail corrugation has been developed for identifying
the vertical bending vibration modes and wave propagation characteristics of rails by field
tests. The proposed method can provide valuable information on operational rail modal
and wave propagation characteristics entirely from field testing without the use of any
numerical and computational models. The modal characteristics and wave propagation
characteristics up to approximately 1500 Hz were identified by applying the proposed
method to an actual rail laid on steel bridges using a direct fastening track system. The
obtained results are summarized below.

• The new method developed to identify the vibration modes and wave propagation
characteristics by multipoint hammering uses the reciprocity theorem to exchange
the excitation and the measurement points, solving the existing method’s number-of-
sensors limitation problem.

• It was empirically clarified that the pinned–pinned mode and wave propagation char-
acteristics such as the wavelength-frequency relation up to approximately 1500 Hz can
be identified only from the field tests by the high-density hammering point arrangement.

• The identified eigen frequencies were in good agreement with simple theoretical
calculations.

• The SMEW measuring method that uses WPS normalized by excitation force at each
frequency was proposed as a method for identifying group velocity and distance
attenuation caused by multipoint hammering.

• The group velocity and distance attenuation of an actual rail identified by SMEW
measurement significantly increased due to the influence of the stationary mode near
the eigen modes.

• In addition, the group velocity and distance attenuation can be identified with high
accuracy by the distance between the hammering point and the measurement point of
over 2 m.

• From the identified wavelength-frequency relationship and the rail irregularity mea-
surement result, the experiment confirmed that the rail corrugation with a wavelength
of approximately 0.04 m was caused by the interference of the waves generated be-
tween the two wheelsets in a bogie.

The following are future considerations despite the above contributions: First, the
modal damping ratio cannot be identified by the mode identification method using the
FRFs adopted in this study. The modal damping ratio is an important parameter in am-
plitude control during resonance [42] and rail distance attenuation. It will be necessary to
establish a method for identifying the mode damping ratio by a multipoint vibration test
using the VAR model [43] or the ERA method [44] in the future. Following that, the cause
of the non-stationarity of the distance attenuation observed in this study remains a future
subject. It is necessary to construct a nonlinear mode/wave propagation identification
method regarding the amplitude dependence of wave propagation characteristics. In this
regard, it may be possible to elucidate the amplitude dependence of wave propagation char-
acteristics by extending the method in the literature [45] to wave propagation. In addition,
developing a numerical simulation model [20,21] that reproduces the identification results
of this study is critical for mode and wave propagation control. Finally, although this study
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focused on vertical vibration, lateral and longitudinal vibration and wave propagation
characteristics should also be clarified in the future.
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