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Abstract: Nicotinic acid is a naturally occurring pyridine carboxylic acid, contained in vitamin PP, an
essential nutrient for humans and animals, and used as an antipelagic agent. Nicotinic acid can be
made from tryptophan by plants and animals but is usually not completely bioavailable. Industrially,
nicotinic acid is produced mainly by oxidation of 5-ethyl-2-methylpyridine with nitric acid. One of
the by-products of the process is nitrous oxide, a gas that is difficult to recycle and manage, with a
greenhouse effect 300 times stronger than CO2. A new technology for the industrial production of
nicotinic acid is undoubtedly necessary to meet the needs of green chemistry and not burden the
environment. We carried out a literature review on ecological methods to produce nicotinic acid
from commercially available raw materials such as 3-methylpyridine and 5-ethyl-2-methylpyridine,
especially focusing on those methods with potential industrial applications.
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1. Introduction

The world produced 34,000 t of nicotinic acid (NA) in 2014, 63% of which was intended
as a feed additive, 22% as a food additive and for pharmaceutical use, and 15% for industrial
applications [1]. On an industrial scale, 90% of NA is produced synthetically from 3-
methylpyridine or 5-ethyl-2-methylpyridine. The global market size for NA was valued
at USD 614 million in 2019 [2], and the largest NA producers are Lonza (18,000 t/y) and
Vanetta (6000 t/y) [1].

NA is an essential nutrient for humans and helps reduce fatigue and maintain healthy
skin, efficient metabolism, and mental health. The symptoms of NA deficiency are referred
to as the “three D” diseases, dermatitis, diarrhea, and dementia. At the beginning of the
20th century, it was discovered that NA had a healing effect on pellagra, a disease of the
skin, gastrointestinal tract, and nervous system [1]. Additionally, NA is essential for the life
of animals under stress with disturbed intestinal microflora, especially farm animals, and
NA deficiency leads to health problems and impairs animal reproduction and growth. For
this reason, more than 60% of produced NA is used as an additive to food for poultry, pigs,
fish, or domestic animals. In line with this health trend, you can find NA-enriched food
products for humans, such as bread, flour, other grain products, and multivitamin drinks.

NA is available in the form of an extended-release prescription drug with the trade
name Niaspan to treat hyperlipidemia and hypertriglyceridemia [3]. NA is also sold in the
form of dietary supplements and mixtures for the prevention of venous insufficiency [4],
leukemia [5], heart disease and anemia [6], atherosclerosis [7], insulin resistance [8], diabetic
nephropathy [9], peptic ulcer disease [10], Alzheimer’s disease [11], Parkinson’s disease [12],
or neoplastic diseases [13,14]. Modern preparations can be found such as cheek foils
containing NA as the active substance [15]. NA has a potential anti-inflammatory and
analgesic effect [16], and in dermatology, NA is used to treat acne vulgaris and rosacea [17]
and is a popular ingredient in cosmetics to care for the skin and hair [18,19].

In industry, NA is used:
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(1) In electroplating plants for tin plating in a sulphate bath, as well as for silvering and
other electroplating applications [20,21];

(2) As an anticorrosion agent for mild steel [22];
(3) In chemical polishing of steel under high-temperature conditions;
(4) For the recovery of silver from the melting of slag [23,24];
(5) As a chemical imaging toner based on organic silver salts [25,26];
(6) As a fungicide [25,26];
(7) As an organic catalyst, including in the Hantzch reaction for the synthesis of 1,4-

dihydropyridine and polyhydroquinoline derivatives [27], quinazoline [28], and
1,2,4-selenadiazoles and thiazoles under aerobic conditions [29];

(8) In the preparation of heterogenized silica-based catalysts (SBA-NA) [30] or the mag-
netically modified F3O4 @ NA catalyst [31];

(9) As a chelating agent in the production of VIB and VIII metal catalysts for hy- droc-
racking [32].

NA undergoes reactions typical for carboxylic acids and forms appropriate amides,
esters, thioesters, acid halides, anhydrides, and salts. NA is also reduced to aldehyde or
alcohol and hydrogenated to nipecotic acid, and it can form ionic liquids.

This paper aims to present a review on ecological methods to produce nicotinic
acid from commercially available raw materials such as 3-methylpyridine and 5-ethyl-2-
methylpyridine, especially focusing on those methods with potential industrial applications.
First, historical methods using stoichiometric oxidizing agents as well as industrial methods
of producing NA, by oxidizing 5-ethyl-2-methylpyridine with nitric acid (V), and oxidizing
ammonolysis of 3-picoline, are reported. Then, new methods of obtaining NA from 3-
picoline by liquid- and gas-phase oxidation are reviewed.

2. Historical Methods of Producing NA

Historically, NA production consisted of the oxidation of (((S)-3-[2-(N-methylpyrrolidine)]
pyridine), quinoline, or 3-methylpyridine with stoichiometric oxidizing agents, such as
KMnO4, MnO2, or HClO4 (Figure 1) [33–36]. Oxidation with CrO3 was not commercially
implemented due to the high raw material cost, which requires up to 9 tons of CrO3 to
obtain 1 ton of NA, and the carcinogenic effect of the oxidizing agent [37], which precluded
use as a feed additive or in food or pharmacy [33]. Furthermore, the method using CrO3
produces a significant amount of inorganic waste, and the process has a low atom econ-
omy ((molecular weight of the product/total molecular weight of the substrates) × 100%)
of 10%.
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Figure 1. Historical methods for NA production. 
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improved method described in a DuPont patent used MnO2, also in the presence of H2SO4, 
but at 130 °C and a pressure of 0.1 MPa for 3–6 h, with 75% efficiency [39]. Both methods 
are highly wasteful, require multiple processes and unit operations to obtain NA, and 
have a low atom economy of 21%. Allied Dye and Chemical Corporation patented a 
method to obtain NA by oxidizing 3-methylpyridine or quinoline with HClO4 in the 
presence of H2SO4 and with the use of a catalyst in the form of selenium oxide or metallic 
selenium, preferably in the presence of bromides [34]. The oxidation of 3-methylpyridine 
was carried out at 250–320 °C under atmospheric pressure for 15 min, yielding NA with 
50% efficiency. Quinoline oxidation was carried out at 150–190 °C for 30 min and then at 
320 °C for another 30 min to decarboxylate the quinolinic acid intermediate to NA, with 
an efficiency of 82% [34]. These methods produce a significant amount of waste, including 
HCl, use a dangerous oxidizing agent, HClO4, and have a relatively low atom economy of 
73%. 

The literature also describes methods to oxidize nicotine, 3-methylpyridine, and 
quinoline with H2SO4 in the presence of metal catalysts [36]. By oxidizing nicotine in the 
range of 230–320 °C for 25–225 min, the highest efficiency for NA production was 77% 
and was obtained using metallic selenium, whereas the use of HgSO4, Bi(NO3)3, or CuSeO3 
catalysts yielded maximum efficiencies of 46%, 34%, or 39%, respectively. The oxidation 
of 3-methylpyridine at 260–320 °C for 55–235 min using selenium metal as the catalyst 
resulted in a maximum yield of 51%, while HgSO4 allowed for only a 38% yield. Quinoline 
oxidation was carried out at 240–320 °C for 35–55 min and with a metal selenium catalyst 
for an almost 75% yield [36]. 

3. Industrial Methods for NA Production 
The industrial production of NA is based on the oxidation reaction of 5-ethyl-2-
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in the gas phase; the main product is pyridine, while 3-picoline is produced as a by-
product with 30–50% efficiency depending on the catalytic system [40]. The other method 
of obtaining 3-picoline is the catalytic hydrogenation of 2-methylglutaronitrile with a 50% 
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and efficient compared to 3-methylpyridine, making 5-ethyl-2-methylpyridine an 

Figure 1. Historical methods for NA production.



Materials 2022, 15, 765 3 of 14

The process using KMnO4, in the presence of H2SO4 at 70–90 ◦C for 6 h, produced
NA with 77% efficiency; however, it has only been practiced on a laboratory scale [35,38].
The improved method described in a DuPont patent used MnO2, also in the presence of
H2SO4, but at 130 ◦C and a pressure of 0.1 MPa for 3–6 h, with 75% efficiency [39]. Both
methods are highly wasteful, require multiple processes and unit operations to obtain NA,
and have a low atom economy of 21%. Allied Dye and Chemical Corporation patented
a method to obtain NA by oxidizing 3-methylpyridine or quinoline with HClO4 in the
presence of H2SO4 and with the use of a catalyst in the form of selenium oxide or metallic
selenium, preferably in the presence of bromides [34]. The oxidation of 3-methylpyridine
was carried out at 250–320 ◦C under atmospheric pressure for 15 min, yielding NA with
50% efficiency. Quinoline oxidation was carried out at 150–190 ◦C for 30 min and then at
320 ◦C for another 30 min to decarboxylate the quinolinic acid intermediate to NA, with an
efficiency of 82% [34]. These methods produce a significant amount of waste, including
HCl, use a dangerous oxidizing agent, HClO4, and have a relatively low atom economy
of 73%.

The literature also describes methods to oxidize nicotine, 3-methylpyridine, and
quinoline with H2SO4 in the presence of metal catalysts [36]. By oxidizing nicotine in the
range of 230–320 ◦C for 25–225 min, the highest efficiency for NA production was 77% and
was obtained using metallic selenium, whereas the use of HgSO4, Bi(NO3)3, or CuSeO3
catalysts yielded maximum efficiencies of 46%, 34%, or 39%, respectively. The oxidation
of 3-methylpyridine at 260–320 ◦C for 55–235 min using selenium metal as the catalyst
resulted in a maximum yield of 51%, while HgSO4 allowed for only a 38% yield. Quinoline
oxidation was carried out at 240–320 ◦C for 35–55 min and with a metal selenium catalyst
for an almost 75% yield [36].

3. Industrial Methods for NA Production

The industrial production of NA is based on the oxidation reaction of 5-ethyl-2-
methylpyridine or 3-methylpyridine. Figure 2 shows the methods for producing these raw
materials [1]. When producing 5-ethyl-2-methylpyridine, an intermediate results from the
trimerization of acetaldehyde to para-aldehyde in an acidic environment and is then reacted
with NH3. 3-Methylpyridine is obtained from acrolein, which is reacted with NH3 in the
gas phase; the main product is pyridine, while 3-picoline is produced as a by-product with
30–50% efficiency depending on the catalytic system [40]. The other method of obtaining
3-picoline is the catalytic hydrogenation of 2-methylglutaronitrile with a 50% yield [40].
The industrial process of obtaining 5-ethyl-2-methylpyridine is more selective and efficient
compared to 3-methylpyridine, making 5-ethyl-2-methylpyridine an attractive substrate
even though the atom economy (25%) for NA production is much lower using this raw
material [40,41].
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The Swiss Lonza group has been producing NA since 1956 [42]. One of the first tech-
nologies used by Lonza was the catalytic, liquid-phase oxidation of 5-ethyl-2-methylpyridine
with HNO3 (Figure 3). The oxidation process was carried out at 190–270 ◦C at 2–8 MPa [1,43]
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to produce an unstable intermediate, 2,5-pyridinedicarboxylic acid (isocinchomeronic acid).
The intermediate was decarboxylated at 220 ◦C to form NA, the crude product of which
was isolated by crystallization. The total reaction time was approximately 45 min, and the
first processes ran with 80% conversion and 70% efficiency [43].

Materials 2022, 15, x FOR PEER REVIEW 4 of 14 
 

 

attractive substrate even though the atom economy (25%) for NA production is much 
lower using this raw material [40,41]. 

NCH3

CH3
CH3

O

O

O

O

CH3

CH3CH3

[H+] NH3

-H2O

 

 
Figure 2. Industrial methods to produce 5-ethyl-2-methylpyridine or 3-methylpyridine. 

The Swiss Lonza group has been producing NA since 1956 [42]. One of the first 
technologies used by Lonza was the catalytic, liquid-phase oxidation of 5-ethyl-2-
methylpyridine with HNO3 (Figure 3). The oxidation process was carried out at 190–270 
°C at 2–8 MPa [1,43] to produce an unstable intermediate, 2,5-pyridinedicarboxylic acid 
(isocinchomeronic acid). The intermediate was decarboxylated at 220 °C to form NA, the 
crude product of which was isolated by crystallization. The total reaction time was 
approximately 45 min, and the first processes ran with 80% conversion and 70% efficiency 
[43]. 

 
Figure 3. Oxidation reaction of 5-ethyl-2-methylpyridine using HNO3. 

The Lonza group refined their process by increasing the stoichiometric excess of 
HNO3 in the range of 25–600%. With such a large excess of acid and at temperatures below 
20 °C, NA crystallized in the form of a colorless salt with HNO3. Once separated, the 
reaction mixture was dissolved in water, and the pH value was adjusted with the 
appropriate amount of base to release the crystalline NA. 

This process forms NO that oxidizes with the air to NO2, which is then absorbed into 
water to allow HNO3 to return to the process [43]. Due to the highly corrosive 
environment, the process uses a tubular reactor made of titanium or, if operated at the 
upper pressure limits, a steel reactor with a titanium coating. In this way, the continuous 
process of NA production achieves 96% conversion and a 91% yield [43]. 

Industrially, NA is also produced by gas-phase ammoxidation of 3-picoline to 3-
cyanopyridine, followed by hydrolysis to nicotinamide or NA (Figure 4). This process 
uses a fluidized bed reactor and a heterogeneous catalyst and has been of great interest 
for 30 years in Europe, Asia, and India [41,44]. 

 
Figure 4. Oxidative ammonolysis of 3-picoline followed by hydrolysis to NA. 

Figure 3. Oxidation reaction of 5-ethyl-2-methylpyridine using HNO3.

The Lonza group refined their process by increasing the stoichiometric excess of HNO3
in the range of 25–600%. With such a large excess of acid and at temperatures below 20 ◦C,
NA crystallized in the form of a colorless salt with HNO3. Once separated, the reaction
mixture was dissolved in water, and the pH value was adjusted with the appropriate
amount of base to release the crystalline NA.

This process forms NO that oxidizes with the air to NO2, which is then absorbed into
water to allow HNO3 to return to the process [43]. Due to the highly corrosive environment,
the process uses a tubular reactor made of titanium or, if operated at the upper pressure
limits, a steel reactor with a titanium coating. In this way, the continuous process of NA
production achieves 96% conversion and a 91% yield [43].

Industrially, NA is also produced by gas-phase ammoxidation of 3-picoline to 3-
cyanopyridine, followed by hydrolysis to nicotinamide or NA (Figure 4). This process
uses a fluidized bed reactor and a heterogeneous catalyst and has been of great interest for
30 years in Europe, Asia, and India [41,44].
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In a multi-tube bed reactor, 3-methylpyridine, air, and NH3 react at temperatures
in the range of 280–500 ◦C under a pressure of 0.5 MPa. Typically, the input mixture is
1–20 moles of NH3 and 2–20 moles of oxygen per 1 mole of 3-picoline, but the process
parameters depend on the type of catalytic system. Catalytic systems most often contain
vanadium(V) oxide, its mixtures, or other oxides containing metals such as titanium(IV),
zirconium(VI), and molybdenum(VI) for the process carried out at 340 ◦C [40]. For example,
ammoxidation of 3-methylpyridine in the presence of a molybdenum catalyst supported on
silica gel produced 3-cyanopyridine with a 95% yield, 99% conversion, and a residence time
of only 2.5 s at 380 ◦C [45]. Using V2O5, Lonza obtained an 83.5% yield of cyanopyridine
with a conversion rate of 89.3% [40,46]. The MoO3-V2O5 system used by Yuki Gousei,
as well as the V2O5-P2O5-SiO2 system used in the Koei Chemical process, led to an 82%
yield of cyanopyridine with a conversion rate of 96% [40,47,48]. The V2O5-Sb2O5-TiO2-
SiO2-SiC system used by Nippon Shokubai obtained an 85% yield of cyanopyridine [40].
Using the Sb2O5-V2O5-TiO2-montmorillonite-SiO2 system, Degussa obtained cyanopyri-
dine with a yield of 90% and a raw material conversion of 94% [40,49]. The system used
by Takeda Chemical is the best; V2O5-Sb2O5-Cr2O3-TiO2 produces an almost 99% yield of
cyanopyridine at 100% conversion [40,50].

The future lies in enzymatic methods that can efficiently and selectively produce NA
directly from 3-cyanopyridine [51].
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Table 1 presents selected advantages and disadvantages of the oxidation of 5-ethyl-2-
methylpyridine with HNO3.

Table 1. Advantages and disadvantages of the process of obtaining nicotinic acid from 5-ethyl-2-
methylpyridine.

Advantages Disadvantages

commercial raw material HNO3 as an oxidant, used in large excesses
high efficiency 91% NOx by-products
high conversion 96% highly corrosive reaction environment
well-known process low atom economy (ca. 25%)

oxidation time > 1 h
high pressure 2–8 MPa
high temperature 190–270 ◦C

4. Oxidation of 3-Methylpyridine in the Liquid Phase

The literature describes the oxidation of 3-methylpyridine in the liquid phase (Figure 5)
with the use of environmentally friendly oxidizing agents, such as oxygen, H2O2, organic
hydroperoxides, and peroxy acids, as well as non-ecological ones, such as HNO3.
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The first attempts to oxidize 3-methylpyridine with concentrated HNO3 in H2SO4
medium were made by Reilly Tar & Chemical Corporation in 1945 [52]. Almost 30 years
later, Lonza patented the oxidation of 3-methylpyridine to NA with HNO3 but without
H2SO4 [53]. The reaction was carried out at 260 ◦C under a pressure of 5–6 MPa to
obtain NA with an 89% yield and a raw material conversion rate of 69% [33,43,52]. In
addition to the low technological parameters, the process is associated with the same
disadvantages as discussed for the oxidation of 5-ethyl-2-methylpyridine. The process
produces approximately 180 kg of N2O per ton of NA, and thus the method does not appear
to be the best alternative, despite the lower greenhouse gas emissions and the higher atom
economy of approximately 36%.

In the twentieth and twenty-first centuries, production plants in Japan, including
Daicel, Mitsubishi, and Nissan, studied the oxidation of 3-picoline in the liquid phase with
oxygen or air using the Amoco catalytic system, Co(II) and Mn(II) compounds with the
addition of bromide salt, and most commonly with AcOH as the solvent [41].

Nissan proposed the oxidation of 3-methylpyridine with air in a catalytic system of
Co(OAc)2, Mn(OAc)2, NaBr, and HCl gas in AcOH solvent [53]. The process was carried
out at 80 ◦C and under a pressure of 10 MPa for 2 h to obtain 98% conversion and a 97%
yield. The presence of the chloride derivative is key for the method and affects the yield
of the process; when carried out without the presence of chlorides, the process achieves a
conversion of only 60–80% depending on the conditions used [54].

Mitsubishi developed a system in which 3-methylpyridine is oxidized against 0.15–0.5%
Co(OAc)2 and Mn(OAc)2 and 0.1–1.5% bromides in AcOH. The reaction was carried out
at 210 ◦C and under 2.5 MPa pressure for 3 h to result in 93.7% conversion with 99%
selectivity [55]. The company focused on developing a method where the final products
could be purified from catalysts used in the reaction. However, bromides remained a
problem at more than 600 ppm in the purified NA, and thus the obtained NA was passed
together with water and H2 through a reactor with a Pd catalyst deposited on active carbon.
The process was carried out at 130 ◦C, 0.6 MPa, for 2 h, to reduce the presence of bromides
in the purified NA by more than 90% [56]. In another rendition, Daicel investigated the
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Co(OAc)2 and Mn(OAc)2 system with the addition of N-hydroxyphthalimide (NHPI) to
obtain very pure NA at 150 ◦C and 2 MPa; unfortunately, the selectivity of the process was
only 80% [56].

A variant of 3-methylpyridine oxidation that uses oxygen or air without additional
metal catalysts is using a mixture of protic and aprotic solvents [57]. The best results
were an 85–100% yield for NA with the 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidone:
tetrahydrofuran (DMPU:THF) system, with oxygen serving as the oxidizing agent, where
the reaction proceeded at 60–80 ◦C and under 1 MPa pressure for 5–10 min. A system with
dimethoxyethane (DME) and THF obtained NA with only a 10% yield under analogous
conditions. A solvent system with potassium tert-amylate (t-OAmK), hexamethylphos-
phoramide (HMPA) in DMPU:THF with air allowed for a maximum yield of 78% NA at
60–80 ◦C and 1 MPa for 5–10 min [57].

Another way to obtain NA from 3-methylpyridine is catalytic oxidation with oxygen
in water under supercritical conditions. The process was carried out for 1.5 h at 380 ◦C
and 22 MPa pressure with the use of supercritical water in the presence of MbBr2 as a
catalyst, thereby producing NA with 30% conversion and 95% selectivity [58]. The reaction
carried out with the same catalyst at 260 ◦C and 22 MPa allowed, in turn, the conversion of
3-picoline to NA with 83% conversion and 66% selectivity [59].

The latest research on NA production focuses on using UV-A radiation in the photo-
catalytic oxidation process with TiO2 at various pH values in an aqueous suspension. The
commercially available Degussa-P25 catalyst has been used, as have the HPRT, HP60, and
HP100 catalysts, which were prepared at room temperature, 60 ◦C, and 100 ◦C, respectively,
with and without the presence of mineral acids. Oxidation at pH 7 for 3 h with the Degussa-
P25 catalyst resulted in 88% feed conversion and 4% selectivity to NA. The HP100 catalyst
with 3 M HCl catalyst produced NA with a maximum degree of conversion of 66% and
with 5% selectivity. The HPRT catalyst proved to be much better with a conversion of 40%
and a selectivity greater than 12%. Optimization of the pH to 2 for the Degussa-P25 catalyst
obtained a maximum conversion of 14% and selectivity of 15%; in turn, the pH of 12.7
made it possible to obtain 18% selectivity, with the conversion of raw material amounting
to 89%. At the same pH value of 12.7, the HP100-3M HCl catalyst produced decent results
of 60% conversion and 14% selectivity [60].

There are also reports on attempts to oxidize 3-picoline in the liquid phase, in the pres-
ence of a Ag-Mn3O4 catalytic system deposited on nanorods with a diameter of 20 nm [61].
Oxidation was carried out using H2O2 with MeCN as a solvent, at 70 ◦C, and under
atmospheric pressure for 15 h to obtain approximately 55% conversion, with selectivity
to NA reaching 97%. Another example of liquid-phase oxidation is the oxidation of 3-
picoline using tert-butyl hydroperoxide (TBHP) and oxygen as the oxidizing agents [62].
The process was performed at 80 ◦C for 48 h in a water solvent with reusable binaphthyl-
stabilized Pt nanoparticles (Pt-BNP), which served as a catalyst to obtain 58% efficiency in
producing NA.

Liquid-phase oxidation has also been investigated with peracetic acid using acetylper-
oxyborate (APB) as the oxidizing agent, along with the presence of Ir-Bi cluster complexes
on a silica support with DME solvent [63]. The processes carried out at 65 ◦C for 45 min
with Ir3Bi and Ir5Bi3 catalysts produced NA with a selectivity of 91% and 84%, respectively.
Ir and Bi catalysts produced NA with 67% and 43% selectivity, respectively.

Table 2 presents selected advantages and disadvantages of the oxidation of 3-methyl
pyridine with air in relation to the Co/Mn/Br system.
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Table 2. Advantages and disadvantages of the process of obtaining nicotinic acid by 3-methylpyridine
oxidation with air in a liquid phase catalyzed by Co/Mn/Br.

Advantages Disadvantages

commercial raw material the technology needs further research
high efficiency 97% highly corrosive reaction environment
high conversion 98% oxidation time > 3 h
oxygen as an oxidant high pressure 2–10 MPa
harmless by-products use of a polar solvent
high atom economy (87%)
temperature 80–210 ◦C

5. Oxidation of 3-Methylpyridine in the Gas Phase

Gas-phase oxidation of 3-methylpyridine using heterogeneous catalysts has been
known for more than 60 years, but only in the last 30 years have attempts been made
to develop a commercial process. According to the principles of “green chemistry”, the
process is solvent free and carried out in the presence of heterogeneous catalysts. Such late
interest results from many difficulties, including easy decarboxylation and desublimation at
the process temperature, the slower course of the reaction, and the formation of several by-
products because of complete oxidation as compared to the liquid-phase process [33,41,51].
The most recent review on producing NA was published in 2009 [51], but since then, there
have been literature reports concerning new catalyst systems and solutions for producing
NA from 3-methylpyridine in the gas phase.

Researchers at the Boreskov Institute and Lonza have developed pilot processes for
NA production using V2O5 and TiO2 oxide catalysts and proposed isolating NA by the
desublimation method, a Lonza technology based on spray drying [41]. Jubilant Life
Sciences used TiO2, V2O5, and Sb2O3 catalysts and decided to isolate NA by absorption
and crystallization [64]. Additionally, researchers at the Boreskov Institute carried out a
process by passing 3-methylpyridine, oxygen, and water vapor through a reactor with
a catalyst deposited on a carrier at a temperature of 250–290 ◦C. The influence of the
weight ratio of vanadium oxide to titanium oxide was also investigated, and the most
advantageous ratio was 20 wt% V2O5 to 80 wt% TiO2, which produced NA with an 85%
yield in 1.5 s, with a conversion rate of 91%. In addition to NA, the reaction produces CO2
and nicotinic aldehyde (PA) [65]. The reactor stream is then directed to a tubular crystallizer,
where NA is separated by desublimation at 160–200 ◦C to generate a final product with
99.5% NA [65]. Tests on a pilot scale used the V2O5-TiO2 catalyst at 260–290 ◦C with a
reaction time of less than 7 s and converted a maximum of 97% of the raw material, with a
maximum yield of NA of 75% [66].

Lonza investigated catalytic systems with V2O5 deposited on a silica support or
titanium oxide [33]. The raw material was almost quantitatively converted into NA, and
insignificant amounts of PA were produced. Instead, the focus was on product isolation
problems. After passing through the NA vapor reactor, hot air and water vapor partially
condensed during absorption and in the distillation column. The solubility of NA in water
is low even at 100 ◦C (9.8 g/100 mL) [1], meaning a considerable amount of water is needed
to dissolve the obtained NA product, water which then must be removed in the later
stages of the processing at much energy expense. An additional problem is the presence of
ammonium ions, which reduce the amount of NA that can be crystallized due to the good
solubility of ammonium nicotinate. Ammonium nicotinate decomposes above 160 ◦C, a
fact that prompted the Lonza group to absorb the NA product on an absorption column
and convert most of the NA product to an ammonium salt by adding NH3, and then spray
drying with a drying gas (air, nitrogen, argon) at 160–250 ◦C [67]. The final NA product
does not require additional purification and does not tend to cake.

Alternatively, Jubilant Life Sciences decided to absorb post-reaction gases in water,
filter, crystallize, and dry. The process of passing 3-methylpyridine, oxygen, and water
vapor through a reactor with a catalyst, consisting of TiO2, V2O5, and Sb2O3 deposited on
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a carrier, at a temperature of 250–290 ◦C obtained NA with almost 95% conversion and 91%
selectivity [64].

A literature review of the catalysts for oxidation over the last 50 years shows progress
in the design of catalytic systems that allow the reaction temperature to be decreased, as
well as a marked increase in the degree of conversion of raw material and selectivity to the
desired product [68]. The oldest catalytic systems were described in 1969 and consisted
of SnVO4 and TiVO4 in the presence of water vapor to oxidize 3-methylpyridine with air,
which produced PA and NA with a total selectivity of 75–77%. For SnVO4, the highest NA
yield was 35%, and for TiVO4, it was 50%. Lower NA yields were obtained with the V-Al
and V-Sn catalysts, whereas with the V-Ti catalysts developed in 1976, efficiency exceeded
50% [69]. A breakthrough in 3-methylpyridine oxidation came with the use of V-Ti systems,
resulting in an 85% yield followed by a surprising 97% yield with a selectivity of more than
99%. Using promoters of molybdenum, tellurium, tin, cesium, and zirconium increased
the activity of V-Ti catalysts but had little effect on selectivity. Catalysts with a lower V2O5
content (5–10%) and with additional oxides of chromium, iron, and tungsten achieved 90%
efficiency. The three-component catalysts obtained NA with a yield of approximately 82%
and selectivity in the range of 90–93%, regardless of the amount of vanadium. Comparison
of catalysts with different compositions led to the conclusion that the efficiency of V-Ti
catalysts decreased with increasing vanadium content in the range of 5–25% [68].

Degussa conducted research on the effect of the SO4
2– ion in the carrier. Catalysts

containing 0.5% SO4
2- exhibited efficiencies ranging from 84 to 97%, and when the SO4

2–

content increased to 1.5%, NA yield and selectivity decreased. This was most likely due to
the acid–base properties of the reaction mixture and the acidic and basic surface sites of
the catalysts. Acid centers can strongly influence the direction of conversion of aldehydes
to acids or complete oxidation products, while basic centers result in better selectivity to
aldehydes. When the SO4

2− ion concentration increased, excessive oxidation of both NA
and PA likely occurred [68].

Researchers at the Bekturov Institute of Chemical Sciences have studied the effect of
Al2O3, SnO2, and ZrO2 additives to vanadium catalysts [69,70]. Tests at 300 ◦C for a 1:1
ratio of V2O5:Al2O3 obtained NA with 64% efficiency and 94% selectivity, while a 2:1 ratio
obtained NA with only 47% efficiency but almost 96% selectivity [69]. The institute also
carried out a pilot-scale study, which showed greater activity and more favorable results
using the V2O5-ZrO2-TiO2 system as opposed to V2O5-SnO2-TiO2, and NA was obtained
with 75–77% efficiency and 90% selectivity [70].

Among vanadium-based catalysts, CrVO4 has been found to be most effective, with
an overall yield of PA and NA of approximately 50%. The aluminum and phosphorus
promoters strongly increase the overall yield to 69% and 83%, respectively. For the CrVP
catalyst, NA was obtained with an efficiency of 78%, while selectivity reached 84% [68].

There are reports in the literature on the use of vanadyl pyrophosphate (VPP) as
a catalyst for the oxidation of 3-picoline [71]. The process at 310 ◦C obtained NA with
only 14% efficiency, but efficiency increased up to 36% with the addition of steam to the
system. The presence of water also had a positive effect on the degree of conversion of
the raw material, up to a maximum yield of 55% at 330 ◦C, with optimization of the raw
material composition and reaction parameters. Additionally, an interesting solution was to
carry out the process in the gas phase using a microwave reactor [72]. The process used a
catalyst system with 20% V2O5 and 80% TiO2 that was heated with microwaves to achieve
95% selectivity to NA at a much lower temperature of 180 ◦C. This method also lowered
energy consumption.

Table 3 presents selected advantages and disadvantages of the gas-phase oxidation of
3-methylpyridine with air.
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Table 3. Advantages and disadvantages of obtaining nicotinic acid by 3-methylpyridine oxidation
with air in the gas phase.

Advantages Disadvantages

commercial raw material the technology needs further research
high efficiency 91% slightly corrosive reaction environment
high conversion 95% high temperature > 250 ◦C
oxygen as an oxidant the product impurities
harmless by-products
high atom economy (87%)
oxidation time < 10 min
low pressure 0.1 MPa

6. Oxidative Ammonolysis of 3-Methylpyridine

Oxidative ammonolysis of 3-methylpyridine in the gas phase to 3-cyanopyridine,
followed by hydrolysis to nicotinic acid amide or NA, is an industrial-scale process of great
interest for 30 years [41].

One of the first published methods was a Reilly Tar & Chemical Corporation patent in
1960 [40,41]. The method consisted of passing 3-methylpyridine, air, and NH3 through a
reactor with a catalyst bed at a temperature of 280–500 ◦C and a pressure up to 0.5 MPa [40].
The catalyst used in the method was most often V2O5, its mixtures, or other metal ox-
ides [40]. The progress described in the literature optimized this catalytic system [41].
An oxide system consisting of V2O5, MoO3, ZrO2, and TiO2 achieved 95% conversion
at 340 ◦C [1]. Further, a reaction using a molybdenum catalyst on silica gel, carried out
at 380 ◦C with a residence time of 2.5 s, obtained 3-cyanopyridine in a 95% yield with a
conversion of 99% [46]. Takeda Chemical used a catalyst consisting of V2O5, Sb2O5, Cr2O3,
and TiO2 to achieve a yield of 98.6% and 100% conversion [40].

V-W-O systems use a mixture of (NH4)6[H2W12O40]·nH2O, VOSO4·nH2O, and oxalic
acid and have allowed for 99.5% selectivity to 3-cyanopyridine [73]. The V-W-O system
made it possible to obtain higher technological indices than the VOx-WO3 systems de-
scribed in the literature and other vanadium-based systems.

The process of obtaining 3-cyanopyridine is perfectly adapted for industrial pro-
duction, but the main purpose of the process is to obtain nicotinic acid amide. Further
hydrolysis of the amide to NA is regarded as a side reaction that decreases selectivity.
Nevertheless, methods have been described to successfully obtain NA.

NA has been obtained by alkaline hydrolysis with the use of catalytic amounts of 10%
NaOH or KOH at 190 ◦C under a pressure of 1.5–2 MPa [1,74,75]. The obtained products
were passed through a column with an ion exchange resin, which separated NA from its
amide and resulted in a high purity of the products [76]. Another example described in
the literature was catalytic hydrolysis using a 5% NaOH and MnO2 solution carried out in
EtOH/H2O at 85–100 ◦C. After the process was complete, MnO2 was removed, and the
solvent was evaporated [77].

The use of various types of bacteria has been studied for 20 years, including Rhodococ-
cus rhodochrous that had high benzonitrilase activity and ensured 100% conversion of
3-cyanopyridine to NA [78]. Studies have also included the use of Nocardia rhodochrous
bacteria in column bioreactors and Bacillus pallidus bacteria that produced a thermostable
nitrilase to catalyze the hydrolysis of 3-cyanopyridine to NA without forming detectable
nicotinamide [79,80]. An additional biotransformation, fungal nitrilases may convert 3-
cyanopyridine to NA. The most promising biotransformation for NA production, however,
seems to be plant amidases that can be used in stirred membrane bioreactors, a potentially
continuous bioprocess that can be used in industry [81]. Still, the greatest challenge is the
duration of enzyme activity that is used for the biotransformation.

The use of bipolar membrane electrodialysis (BMED) is a green process that can
produce NA by oxidative ammonolysis [82]. The hydrolysis process yields the sodium salt
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of NA that can be converted to NA. Laboratory-scale tests have shown that for the highest
achieved efficiency of 95.9%, the process consumes 4.14 kWh of energy per 1 kg NA.

In the literature, there are attempts to obtain NA directly in the oxidative ammonolysis
process carried out in the liquid phase, using a catalyst of nanoclusters of Re2Sb, Re2Sb2, or
Re2Bi2 deposited on a silica support [83]. The process used a toluene solvent, was carried
out at 120–150 ◦C for 6 h, and achieved conversion rates of up to 70% with a maximum
selectivity to NA of 6.9% and a selectivity to 3-cyanopyridine of approximately 80%.

Table 4 presents selected advantages and disadvantages of the oxidative ammonolysis
process of 3-methylpyridine.

Table 4. Advantages and disadvantages of the process of obtaining nicotinic acid by the 3-
methylpyridine oxidative ammonolysis process.

Advantages Disadvantages

commercial raw material low efficiency 85%
high conversion 96% slightly corrosive reaction environment
well-known process high temperature > 250 ◦C
HNO3 + O2 as an oxidant process complexity

harmless by-products low yield of 3-cyanopyridine hydrolysis to
nicotinic acid

oxidation time < 10 min low atom economy (66% for the preparation of
3-cyanopyridine)

low pressure 0.1–1 MPa

7. Other Methods of Obtaining NA

The oxidative ammonolysis of 5-ethyl-2-methylpyridine has been studied for 30 years.
Problems in this process remain, and optimization is needed to limit the formation of
2,5-dicyanopyridine and increase the yield of 3-cyanopyridine. The developed methods
introduce the raw material into a reactor together with oxygen, NH3, and steam, use catalysts
V2O5, MoO3, and ZrO2, and perform the reaction at a temperature of 350–400 ◦C. The use
of the VTi8Ox catalyst at 350 ◦C allowed for a 75% yield of 3-cyanopyridine [84,85], which
would then be hydrolyzed in the next step of the process. The low yield of 3-cyanopyridine,
as well as problems with selective hydrolysis to NA, makes this process unjustified.

Electrochemical oxidation is another method that has been studied for several decades.
The initial results of the experiments led to the formation of tar that corroded the elec-
trodes. A system with a Pb-Ag anode with variable Ag content and a Pt cathode was
used to oxidize 3-methylpyridine but did not obtain satisfactory results. Oxidation of 5-
ethyl-2-methylpyridine gave 2,5-pyridinedicarboxylic acid and 6-methylnicotinic acid [86].
Oxidation of 3-methylpyridine using a cell with a Sn anode and Pt cathode increased
the NA concentration to saturation of the electrolyte with the product [87]. Laboratory
tests using Pb cells to oxidize 3-methylpyridine also achieved good selectivity and current
efficiency. This process has been estimated to consume 11 MWh of electricity to produce
1 ton of NA [41]; this power consumption makes the method uneconomical at current
energy prices.

8. Conclusions

The industrial process of NA production by oxidation of 5-ethyl-2-methylpyridine
with nitric acid is not environmentally friendly due to gaseous by-products (NOx) and low
atom economies. Manufacturers must meet the growing demand for the NA product and
develop a method that is selective, economical, and in line with the principles of green
chemistry. Hence, in recent years, many studies have been carried out, on both a laboratory
scale and a pilot scale.

The process of oxidizing 3-methylpyridine in the liquid phase using green oxidizing
agents has achieved relatively good selectivity to the desired NA product; the undoubted
advantage is the low amount of waste and high atom economy (87%). However, these



Materials 2022, 15, 765 11 of 14

processes use solvents that contribute to corrosiveness and require processes to purify and
separate the metallic catalysts in the solution, processes which are associated with high
energy expenditure and water consumption.

The oxidative ammonolysis of 3-methylpyridine is a green process as the only by-
product of the reaction is water. Unfortunately, the great disadvantage of this method is that
it is intended to produce nicotinamide and has problems associated with implementations
for the selective production of NA from 3-cyanopyridine.

Presently, the gas-phase oxidation of 3-picoline seems to be one of the best methods
to produce NA with high selectivity as well as a high atom economy of 87%. This process
offers very attractive advantages, such as the use of air as the oxidant, energy recovery
from the exothermic reaction, and low wastage. Nevertheless, some authors mentioned
that the obtained product may contain some impurities that limit its applications.

Based on the literature review, we believe that the oxidation of 3-methylpyridine to
NA in the liquid phase can also be implemented in the industry. The process appears to be
relatively simple and limited to a few unit operations. The use of air as an oxidizing agent
and the high yields and conversions are the advantages of this method. However, the high
corrosivity of the Co/Mn/Br catalytic system and resulting need to use an appropriate
construction material or corrosion inhibitors should be taken into account [88].
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