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Abstract: A simple method of synthesis of high pure tris(8-hydroxyquinoline)aluminum (Alq3) from
commercial available 5N Al2O3 and 8-hydroxyquinolinol has been developed. One-step exchange
chemical reaction has been conducted under controlled 8-hydrixyquinoline vapor at a temperature
of 190–240 ◦C with water removal by phosphorus anhydride. According to analysis of inductively
coupled plasma mass-spectrometry, the chemical purity of synthesized Alq3 was 99.998 wt%. Photo-
luminescence of the synthesized Alq3 has been measured and slightly differed from those of Alq3

obtained by traditional organic synthesis.

Keywords: tris(8-hydroxyquinoline)aluminum; pure substance; inductively coupled plasma mass
spectrometry

1. Introduction

In the last two decades, a large effort has been directed towards development of
wearable/implantable electronics based on organic semiconducting materials. The most
recent developments include environmental monitoring, implantable medical devices,
on-skin sensors, and disposable plastic electronics such as e-tickets, RFID tags, plastic
cards, etc. [1–14]. These devices require plentiful and low-cost materials and production
technologies supporting their dynamic development. Organic semiconducting material
technologies are interesting for their fine-tuning of characteristics due to the large variability
of chemical formulas at high productivity and low production costs.

To date OLED technologies have become widespread in various fields of techniques:
perfect TV displays, energy efficient lighting devices, IR sensors and displays for medical
application, etc. Tris(8-hydroxyquinoline)aluminum (Alq3) was the first OLED emission
material [15] and till now it has a wide application both as an emitting material and an
electron transport material for cheap commercial devices [1].

Conceptually, OLED devices are electronic semiconductor structures [6], and, as in
the case of inorganic semiconductors, organic materials that are used in multilayer OLED
structures must meet the requirements for semiconductors. In particular, the chemical
purity of organic semiconductors must be as high as inorganic ones. The successful
development of technologies for inorganic semiconductors and devices based on them
began more than 70 years ago, just when the chemical purity of 99.999 wt% (5N) became
generally available (Figure 1). To date, modern inorganic semiconductors are characterized
by a purity of 99.99999 wt% (7N) for GaAs technologies [16] to 99.999999999 wt% (11N) for
silicon technologies [17].
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Figure 1. Production dynamic (rel.%) of inorganic (left column) and organic (right column) semi-
conducting materials having different chemical purity (xN). 

Organic semiconducting materials (including phosphors for OLED technology) are 
generally produced by conducting of a chemical reaction in a complex liquid media. This 
technology needs pure solvents, organic precursors and multistep purification proce-
dures. 

For instance, the production of high pure Alq3 (99.995 wt%) still remains a compara-
tively expensive: the price for sublimated Alq3 99.9–99.999 wt% is 60–100 kEuro/kg [18,19]. 
The standard procedure includes the reaction of complex formation of aluminum salt 
(chloride, nitrate) with 8-hydroxyquinolinol in isopropanol solution with further sedi-
mentation by ammonia hydroxide, multiply washing by isopropanol, and finally vacuum 
sublimation [20]. This procedure needs high pure initial reagents and special extra-pure 
chemical equipment. 

In the presented research, we developed a simple one-step method of synthesis of 
tris(8-hydroxyquinolinate)aluminum from cheap commercial preparations with 5N and 
6N chemical purity. The synthesized Alq3 preparation was formed on the surface of Al2O3 
grains and the synthesized heterophase preparation could be a source of the chemical 
pure Alq3 for OLED technology. 

2. Materials and Methods 
2.1. Impurity Determination by ICP-MS 

To analyze chemical purity of initial and final preparations, we used inductively cou-
pled plasma mass spectrometry with preliminary transfer of the solid sample to the liquid 
phase by dissolving them in high-purity nitric (HNO3) acid (7N7), purified by a Berghof 
BSB-939-IR surface distillation system (Berghof GmbH, Eningen, Germany) or high-purity 
sulfuric (H2SO4) acid (8N Ultrapur, Sigma-Aldrich Chemie GmbH, Taufkirchen, Ger-
many) in a SPEEDWAVE-FOUR microwave decomposition system (Berghof GmbH, 
Eningen, Germany) equipped with DAP-100 PTFE autoclaves (Berghof GmbH, Eningen, 
Germany). We used extra pure water (AquaMax-Ultra 370 Series, Young Lin Instruments 
Co., Ltd., Anyang, South Korea) with a specific resistance of 18 MΩ·cm for dilution. 

Analytical measurements were carried out on a NexION 300D inductively coupled 
plasma mass spectrometer (ICP-MS) (PerkinElmer Inc., Waltham, MA, USA). The To-
talQuant method for determination of 65 chemical elements’ concentrations was used [21] 
with the operating parameters presented in Table 1. 

  

Figure 1. Production dynamic (rel.%) of inorganic (left column) and organic (right column) semicon-
ducting materials having different chemical purity (xN).

Organic semiconducting materials (including phosphors for OLED technology) are
generally produced by conducting of a chemical reaction in a complex liquid media. This
technology needs pure solvents, organic precursors and multistep purification procedures.

For instance, the production of high pure Alq3 (99.995 wt%) still remains a compara-
tively expensive: the price for sublimated Alq3 99.9–99.999 wt% is 60–100 kEuro/kg [18,19].
The standard procedure includes the reaction of complex formation of aluminum salt
(chloride, nitrate) with 8-hydroxyquinolinol in isopropanol solution with further sedi-
mentation by ammonia hydroxide, multiply washing by isopropanol, and finally vacuum
sublimation [20]. This procedure needs high pure initial reagents and special extra-pure
chemical equipment.

In the presented research, we developed a simple one-step method of synthesis of
tris(8-hydroxyquinolinate)aluminum from cheap commercial preparations with 5N and
6N chemical purity. The synthesized Alq3 preparation was formed on the surface of Al2O3
grains and the synthesized heterophase preparation could be a source of the chemical pure
Alq3 for OLED technology.

2. Materials and Methods
2.1. Impurity Determination by ICP-MS

To analyze chemical purity of initial and final preparations, we used inductively
coupled plasma mass spectrometry with preliminary transfer of the solid sample to the
liquid phase by dissolving them in high-purity nitric (HNO3) acid (7N7), purified by a
Berghof BSB-939-IR surface distillation system (Berghof GmbH, Eningen, Germany) or
high-purity sulfuric (H2SO4) acid (8N Ultrapur, Sigma-Aldrich Chemie GmbH, Taufkirchen,
Germany) in a SPEEDWAVE-FOUR microwave decomposition system (Berghof GmbH,
Eningen, Germany) equipped with DAP-100 PTFE autoclaves (Berghof GmbH, Eningen,
Germany). We used extra pure water (AquaMax-Ultra 370 Series, Young Lin Instruments
Co., Ltd., Anyang, South Korea) with a specific resistance of 18 MΩ·cm for dilution.

Analytical measurements were carried out on a NexION 300D inductively coupled
plasma mass spectrometer (ICP-MS) (PerkinElmer Inc., Waltham, MA, USA). The To-
talQuant method for determination of 65 chemical elements’ concentrations was used [21]
with the operating parameters presented in Table 1.
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Table 1. The operating mode of the NexION 300D instrument for conducting impurity analysis
of samples.

Nebulizer type Concentric (Meinhard), PFA
Spray chamber Scott double-pass chamber, PFA
Argon flow rate, L/min
through the nebulizer 0.96
plasma-forming 15
auxiliary 1.2
Generator power, W 1450
Collision gas (He) flow rate, L/min 4.6
Number of scan cycles 8

2.2. Initial Preparations

Powder Al2O3 purchased from Prima Ltd. (Korolev, Russia) was used as an Al-source
for Alq3 synthesis. The above preparation is usually used for sapphire crystal growth for
laser applications. According to the ICP-MS analysis (Figure 2), it was as pure as 99.998 wt%
(65 elements detected). A preliminary heat-treated (870 K) Al2O3 powder preparation was
used in a synthesis procedure.
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Figure 2. Impurity concentrations determined by ICP-MS in the initial preparations. Here and
after, the empty (white) bars indicate the limits of determination (LD) of ICP-MS analysis. The
concentrations of the non-presented elements were less 10−8 wt%.

8-hydroxyquionolinol (8-Hq) purchased from Komponent Reaktive Ltd. (Moscow, Rus-
sia) was additionally purified by vacuum sublimation to the chemical purity of 99.999 wt%
determined by 65 elements (Figure 2). As-sublimated 8-Hq was used directly in a synthe-
sis procedure.

2.3. SEM and Optical Microscopy Analysis

To analyze the preparation morphology, we used optical and electron microscopies.
We used a Stereo Discovery V.12 binocular microscope (CarlZeiss, Oberkochen, Germany)
with white and UV lighting.

SEM images of powder preparations were obtained using a VEGA-3 LMU scanning
electron microscope (TESCAN ORSAY HOLDING, Brno–Kohoutovice, Czech Republic) in
secondary electron (SE) mode with 5 kV accelerating voltage.

2.4. Spectral Parameter Measurements

All of the luminescence measurements were carried out at room temperature. We
used a Fluorolog FL3-22 spectrofluorimeter (Horiba Jobin Yvon, Longjumeau, France) with
double-grating excitation and emission monochromators for luminescence measurements
over 400 to 700 nm wavelength range with a 0.1 nm step. PL spectra deconvolutions were
carried out with OriginPro 8 SR4 (OriginLab Corp., Northampton, MA, USA) software
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using the Fit Multiple Peak procedure. The luminescence decay kinetics were studied by
the excitation of a pulsed diode laser (λ = 377 nm, ∆τ = 1.5 ns) and a Xenon 450W Ushio
UXL-450S/O lamp (355 nm). Processing of the luminescence decay curves was carried out
using the Fit Exponential procedure of an OriginPro 8 SR4 software. All of the decay curves
were described by two exponentials (criterion Adj. R-Square > 0.998). The final data were
averaged over 5 measurements.

3. Results and Discussion

The general idea of high pure substances synthesis is that the best results could be obtained
when we used the minimal set of initial preparations to conduct the synthesis reaction.

In our case the formal synthesis was described by the heterophase reaction (1)

Al2Os
3 + 3 8Hqv → Alqs

3 + 3 H2Ov (1)

The heterophase synthesis was conducted in a two-zone resistive furnace in a quartz-
glass reactor (Figure 3). The 8-Hq source was placed at 328–333 K (T1) at the closed end
of the reactor, while Al2O3 powder was placed in a hot zone at 463–513 K (T2). To move
the equilibrium towards the reaction products, we captured the water vapor by solid
preliminary dried P2O5, which was placed in the quartz glass vessel at the cold open end of
the reactor at temperature about 308–318 K (T3). There was no need to put a pre-desiccant
between P2O5, and the open end of the tube with its total length 20 cm because the flux of 8-
Hq and H2O vapors was directed from the closed end to the open end of the reactor. During
the test experiments without Al2O3 preparation, we did not observe P2O5 degradation for
50 h of the processing.
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Figure 3. Scheme of setup for synthesis of Alq3 and temperature distribution in the setup.

Analysis of grains morphology after synthesis showed that the grain size distribution
was the same as for the initial Al2O3 powder (Figure 4a). However, under UV lighting, we
observed bright green—yellowish photoluminescence for the grains treated under 8-Hq
vapor (Figure 4b right half). SEM analysis in SE mode showed that the number of output
secondary electrons form initial Al2O3 grains (Figure 4c left half) was more than that from
the grains treated under 8-Hq vapor (Figure 4c right half), because we observed a brighter
image for the initial Al2O3 grains. All these observations indicated that we synthesized a
new compound on Al2O3 grains surface and the thickness of the product was very small.

Spectral analysis showed that depending on a sample position in the furnace (see Figure 3)
the λmax

PL shifted from 496 nm to 474 nm (λexc = 365 nm) (Figure 5) with the corresponding
increase of PL intensity more than in seven times (Table 2).
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Figure 4. Microphotographs (a,b) and SEM image (c) of powder Al2O3 preparations under day light
(a) and UV lighting (b) before (left half) and after heat treatment under 8-Hq vapor (right half).



Materials 2022, 15, 734 6 of 8Materials 2022, 15, x 6 of 8 
 

 

 
Figure 5. Normalized PL spectra (λexc = 365 nm) of Alq3 samples synthesized by the direct reaction 
at T = 463 K and by wet synthesis. The numbers correspond to the position of samples in the furnace 
at the high-temperature synthesis (see Figure 1 and Table 2). 

Table 2. PL peaks parameters for Alq3 samples synthesized by the direct synthesis and by the wet 
technique [20] (number 0). 

Number Peak Area FWHM, nm Center, nm Height, cps 
0 1.05 × 1010 113.00 527 8.69 × 107 
1 8.43 × 108 113.94 496 7.04 × 106 
2 3.40 × 108 118.47 489 2.72 × 106 
3 2.03 × 108 119.47 480 1.61 × 106 
4 1.31 × 108 122.47 474 1.02 × 106 

Low PL intensity of direct-synthesized Alq3 preparations comparing to the wet-syn-
thesized Alq3 we explained by very small thickness of the synthesized compound on the 
surface of Al2O3 grains. The hypsochromic shift of PL maximum for the direct-synthesized 
Alq3 comparing with the wet-synthesized Alq3 could results from summarizing of PL 
lighting with the reflected excitation light from the interface surface of Alq3 and Al2O3. We 
must also take into consideration the scheme of polymorph transformation for Alq3 [22]. 
In the case of δ-Alq3 (or γ-Alq3) the PL maximum in the films was found to be 474 nm [23]. 

Analysis of PL decay kinetics (Table 3, Figures S1–S5) showed that they were suc-
cessfully described by two-exponential equation. The short-lived centers had the lifetime 
about 2 ns, while the long-lived centers had the lifetime of 16–17 ns. We observed that the 
wet–synthesized sample has a decay kinetics specific for α-Alq3 [20], and it was longer 
than that for the samples obtained by the direct synthesis. 

We failed to find any data on PL decay kinetics for different polymorphs of Alq3 in 
the literature. Therefore, we assumed that for δ-Alq3 (or γ-Alq3), which were probably 
obtained in our experiments, the PL decay kinetics was shorter than for α-Alq3. 

Table 3. PL decay kinetics of Alq3 samples synthesized by the direct synthesis and by the wet tech-
nique [20] (number 0), described by the equation Y = A1 × exp(−x/τ1) + A2 × exp(−x/τ2) + Y0. 

Number 
𝛌𝐏𝐋𝐦𝐚𝐱,  
nm Y0 A1 

τ1,  
ns A2 

τ2,  
ns 

0 527 102.39 ± 0.71 6503 ± 134 8.56 ± 0.19 8945 ± 172 21.14 ± 0.15 
1 496 127.54 ± 1.01 41694 ± 822 2.78 ± 0.03 5694 ± 58 16.91 ± 0.11 
2 489 80.30 ± 0.92 39579 ± 800 2.71 ± 0.03 6413 ± 50 17.23 ± 0.09 
3 480 45.02 ± 0.87 51000 ± 1319 2.31 ± 0.03 6596 ± 44 16.67 ± 0.08 
4 474 30.73 ± 0.86 78664 ± 2359 1.97 ± 0.02 6395 ± 40 16.17 ± 0.07 

Figure 5. Normalized PL spectra (λexc = 365 nm) of Alq3 samples synthesized by the direct reaction
at T = 463 K and by wet synthesis. The numbers correspond to the position of samples in the furnace
at the high-temperature synthesis (see Figure 1 and Table 2).

Table 2. PL peaks parameters for Alq3 samples synthesized by the direct synthesis and by the wet
technique [20] (number 0).

Number Peak Area FWHM, nm Center, nm Height, cps

0 1.05 × 1010 113.00 527 8.69 × 107

1 8.43 × 108 113.94 496 7.04 × 106

2 3.40 × 108 118.47 489 2.72 × 106

3 2.03 × 108 119.47 480 1.61 × 106

4 1.31 × 108 122.47 474 1.02 × 106

Low PL intensity of direct-synthesized Alq3 preparations comparing to the wet-
synthesized Alq3 we explained by very small thickness of the synthesized compound on the
surface of Al2O3 grains. The hypsochromic shift of PL maximum for the direct-synthesized
Alq3 comparing with the wet-synthesized Alq3 could results from summarizing of PL
lighting with the reflected excitation light from the interface surface of Alq3 and Al2O3. We
must also take into consideration the scheme of polymorph transformation for Alq3 [22].
In the case of δ-Alq3 (or γ-Alq3) the PL maximum in the films was found to be 474 nm [23].

Analysis of PL decay kinetics (Table 3, Figures S1–S5) showed that they were suc-
cessfully described by two-exponential equation. The short-lived centers had the lifetime
about 2 ns, while the long-lived centers had the lifetime of 16–17 ns. We observed that the
wet–synthesized sample has a decay kinetics specific for α-Alq3 [20], and it was longer
than that for the samples obtained by the direct synthesis.

Table 3. PL decay kinetics of Alq3 samples synthesized by the direct synthesis and by the wet
technique [20] (number 0), described by the equation Y = A1 × exp(−x/τ1) + A2 × exp(−x/τ2) + Y0.

Number λmax
PL ,
nm Y0 A1 τ1,

ns A2 τ2,
ns

0 527 102.39 ± 0.71 6503 ± 134 8.56 ± 0.19 8945 ± 172 21.14 ± 0.15
1 496 127.54 ± 1.01 41694 ± 822 2.78 ± 0.03 5694 ± 58 16.91 ± 0.11
2 489 80.30 ± 0.92 39579 ± 800 2.71 ± 0.03 6413 ± 50 17.23 ± 0.09
3 480 45.02 ± 0.87 51000 ± 1319 2.31 ± 0.03 6596 ± 44 16.67 ± 0.08
4 474 30.73 ± 0.86 78664 ± 2359 1.97 ± 0.02 6395 ± 40 16.17 ± 0.07

We failed to find any data on PL decay kinetics for different polymorphs of Alq3 in the
literature. Therefore, we assumed that for δ-Alq3 (or γ-Alq3), which were probably obtained in
our experiments, the PL decay kinetics was shorter than for α-Alq3.
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According to ICP-MS analysis, as-synthesized Alq3 has the chemical purity of 99.998 wt%
(Figure 6). The major impurities were Si and K. We assume these impurities are inherited from
the container material: a quartz-glass reactor and a quartz-glass vessel with 8-Hq.
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Figure 6. Impurity concentrations determined by ICP-MS in as-synthesized Alq3.

High purity aluminum oxide is often termed as high purity alumina (HPA). It is a high-
value, white, granular chemical produced commercially. Analysis of the world alumina
market showed that 5N and 6N Al2O3 are available preparation at a comparatively low
price [24]. 8-Hq is simply purified by a sublimation procedure to the level of 99.999 wt%.
Thus, we could say that there are commercially available sources for simple synthesis of
high pure Alq3.

4. Conclusions

A new approach to the synthesis of tris(8-hydroxyquinolate) aluminum showed the
fundamental possibility of preparation an electroluminescent high-purity material using
fairly simple operations and an easy procedure. One of the advantages of the produced
material is its stability to the environment. We did not observe any degradation when
storage the synthesized preparations in common used vessels without additional sealing
or filling with an inert gas. Further refinement of the developed technique, for instance,
using glassy carbon reactor, will make it possible to obtain cheap and even more high-pure
materials for OLED technologies.
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Alq3 preparation obtained by the «wet» synthesis, Figure S2: PL decay kinetics at 496 nm for the
Alq3 preparation (N1) obtained by the direct synthesis, Figure S3: PL decay kinetics at 489 nm for the
Alq3 preparation (N2) obtained by the direct synthesis, Figure S4: PL decay kinetics at 480 nm for the
Alq3 preparation (N3) obtained by the direct synthesis, Figure S5: PL decay kinetics at 474 nm for the
Alq3 preparation (N4) obtained by the direct synthesis.
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