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Anna M. Stręk 1,*, Marek Dudzik 2 and Tomasz Machniewicz 3

1 Faculty of Civil Engineering, Cracow University of Technology, 31-155 Cracow, Poland
2 Faculty of Electrical and Computer Engineering, Cracow University of Technology, 31-155 Cracow, Poland;

marekdudzik@pk.edu.pl
3 Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology,

30-059 Cracow, Poland; machniew@agh.edu.pl
* Correspondence: anna.strek@pk.edu.pl

Abstract: The article presents a novel application of the most up-to-date computational approach,
i.e., artificial intelligence, to the problem of the compression of closed-cell aluminium. The objective
of the research was to investigate whether the phenomenon can be described by neural networks
and to determine the details of the network architecture so that the assumed criteria of accuracy,
ability to prognose and repeatability would be complied. The methodology consisted of the follow-
ing stages: experimental compression of foam specimens, choice of machine learning parameters,
implementation of an algorithm for building different structures of artificial neural networks (ANNs),
a two-step verification of the quality of built models and finally the choice of the most appropriate
ones. The studied ANNs were two-layer feedforward networks with varying neuron numbers in the
hidden layer. The following measures of evaluation were assumed: mean square error (MSE), sum of
absolute errors (SAE) and mean absolute relative error (MARE). Obtained results show that networks
trained with the assumed learning parameters which had 4 to 11 neurons in the hidden layer were
appropriate for modelling and prognosing the compression of closed-cell aluminium in the assumed
domains; however, they fulfilled accuracy and repeatability conditions differently. The network
with six neurons in the hidden layer provided the best accuracy of prognosis at MARE ≤ 2.7% but
little robustness. On the other hand, the structure with a complexity of 11 neurons gave a similar
high-quality of prognosis at MARE ≤ 3.0% but with a much better robustness indication (80%).
The results also allowed the determination of the minimum threshold of the accuracy of prognosis:
MARE ≥ 1.66%. In conclusion, the research shows that the phenomenon of the compression of
aluminium foam is able to be described by neural networks within the frames of made assumptions
and allowed for the determination of detailed specifications of structure and learning parameters for
building models with good-quality accuracy and robustness.

Keywords: artificial neural network design; two-layered feedforward network; compressive be-
haviour; aluminium foam

1. Introduction
1.1. Problem Origins

Closed-cell aluminium is a well-known engineering material, mostly used where light-
weight applications require satisfactory mechanical properties [1–3] or energy absorption as
a determinant [2,4]. Other properties, which make this material multifunctional, are: sound
wave attenuation [5,6], electromagnetic wave absorption [7,8], vibration intimidation [9],
thermal conductivity [10,11], relatively easy shape tailoring [12] and potential for usage
in composites [13–15]. Examples of the usage of aluminium foams include, among others:
the automotive industry, space industry, energy and battery field, military applications
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and machine construction [16–20]. We would also like to highlight civil engineering and
architecture here, since these application fields are unjustly underestimated in the metal
foam industry even though they have significant potential. Examples of the usage of
closed and open cellular metals include: structural elements (e.g., wall slabs, staircase slabs,
parking slabs) [17,21,22], interior and exterior architectural design [23,24], highway sound
absorbers [5,25], architectural electromagnetic shielding [26], sound absorbers in metro
tunnels [17], dividing wall slabs with sound insulation (e.g., for lecture halls) [27] and the
novel concept of earthquake protection against building pounding [28].

Taking into consideration so much engineering and design interest in closed-cell
aluminium foams, it is a natural consequence that much scientific attention is drawn to
the appropriate description of this material in various aspects. A significant number of
works focus on structural characterization, e.g., [16,29–31], property analysis, e.g., [1–11,32],
manufacturing methods, e.g., [12,16,33], experimental investigations, e.g., [34–39] and
modelling. As for modelling, this field is widely researched, and the number of publications
about this subject is extensive. They cover the modelling of basic mechanical properties
or constitutive relations with different approaches: the analytical derivation of models
based on the foam’s cell geometry, incorporation of probabilistic approach, application
of theory of elasticity and numerical solutions with finite-element methods, e.g., [40–48].
Application of the most up-to-date numerical tool, i.e., neural networks, to the modelling of
mechanical characteristics of metal foams (open-cell) can be found in papers [49–52]. The
authors are not aware of any works which apply this valuable method to the modelling of
base relations in closed-cell metal foams. However, the authors note that neural networks
have been used in the modelling of closed-cell polymer cellulars [53]. Neural networks are
more often used for the analysis of specific features of metal foams and sponges, mainly
heat exchange, e.g., [54,55].

1.2. Problem Statement and Proposed Solution’s Generals

There are extensive specific material models for closed-cell aluminium foams, which
could be a starting point in the present discussion, such as the general relation given in
Expression (1) [40]. It reflects the intuitive dependence of the mechanical behaviour of foam
on its structural nature:

cellular material property
skeleton property

= C
(
ρ

ρs

)n
, (1)

Formula (1) relates by a power law a chosen cellular material’s property and a respec-
tive skeleton’s property to both the cellular material’s density ρ and skeleton’s density ρs.
Parameters C and n are supposed to be determined experimentally for the given material.
This formula may assume specific forms, depending on what kind of property is desired
(compressive strength, material’s modulus, etc.) and on a general characterization of the
considered material (closed- or open-cellular; elastic, plastic or brittle). However, it does
not express a continuous model. Parameters C and n were already determined for some
specific foams and sponges [40], but they are given mostly in the form of intervals of values
and should be confronted with experimental data each time. Additionally, Relation (1)
requires one to know the skeleton’s density and the respective skeleton’s property in order
to determine the analogous foam’s property. This fact may be a serious inconvenience in the
case when the foam is bought as a ready product from an external supplier and data about
the skeleton’s material are inaccessible. However, despite all its shortcomings, the crucial
premise of (1) is that a material’s density is reflected in its behaviour. This dependency was
a key for the assumption of the form of a general relationship that was the basis for neural
network modelling in the presented research:

σ = f (ε, ρ). (2)
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Formula (2) refers to a general relationship between strain ε, the material’s apparent
density ρ and its response in uniaxial static compression as expressed by stress σ.

The main goal of the presented research was then to use neural networks to find
the most appropriate model, which, according to the above general formula, would be
able to estimate a stress response for a given strain of a closed-cell aluminium foam of a
given density.

Together with the assumption about the general form of Relation (2), some choices
about the artificial intelligence tool also had to be determined. The discussion on neural
network structural specifications such as the number of layers, activation functions, the
number of inputs, the optimization of weights, the number of neurons, preprocessing of
inputs, the choice of learning parameters, inclusion of statistical approach, etc., has been
ongoing in recent years, e.g., [56–60]. However, it is a common belief that no universal
method for assuming these parameters exists or that there is rather little guidance [57,61,62].
In consequence, the approach to each data set and each application has to be designed
individually or within a class of similarity. In the face of a lack of prior works using neural
networks for the modelling of closed-cell foams, it was decided that the main directions
for the network structure in the presented study would be based on previous research on
open-cell aluminium [49–51].

1.3. Research Significance

Artificial intelligence is an interesting, modern approach in engineering [63–65]. It can be
used to address, among other things, mechanical problems in structural engineering [66,67],
in civil engineering and architecture [68–71] and in material engineering [72–76]. As has
already been said, metal foams can find their place in these fields, so building good-quality
models for cellular metals with the help of neural networks is a new, tempting solution
worth investigation and development. The starting point has already been reached for
open-cell aluminium [49–51], and now the research has been continued for closed-cell
aluminium foam—the results of which are reported in this article.

The presented research consisted of a few stages. It was decided compressive tests
would first be performed to obtain experimental data for network training (Sections 2 and 3.1).
Next, a general form of the network structure was accepted: a two-layer feedforward
network with a Levenberg–Marquardt training algorithm (Section 3.2). Specification of
hyperparameters was performed in a specially designed algorithm (Sections 3.3 and 3.4).
Results were assessed in a two-step evaluation procedure according to assumed measures
(Sections 3.5 and 4). All in all, the research was aimed at answering the following questions:

• Is it possible to describe the phenomenon of compression of aluminium foams with a
model generated from neural networks based on the assumed general relation?

• What assumptions/general choices about the networks’ structure and learning param-
eters should be determined?

• How should the obtained results be evaluated? What criteria and what measures
should be assumed?

• What structure and learning parameters should be assumed to most adequately de-
scribe the phenomenon?

• Is the model valid only for the training data (particular model), or is it capable of
prognosing for new data (general model)?

The obtained results prove that these questions can be answered positively and with
details that are described in the present paper.

2. Material and Experiment
2.1. Material

The studied material was aluminium foam with the following general morphological
characteristics: closed-cell, stochastic and isotropic (in representative volume). Material was
cut into cubic specimens of 5 × 5 × 5 cm3. Detailed samples’ dimensions were determined
according to procedure from [77] with callipers with a 0.01 mm scale VIS (VIS, Warszawa,
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Poland) and Vogel 202040.3 (Vogel Germany GmbH & Co. KG, Kevelaer, Germany).
Masses of foams were measured using balance WPS600/C (Radwag, Poland). Apparent
density of specimens was calculated as the ratio of mass over volume; average density
was ρ = 0.240 g/cm3. Details of specimens’ characteristics are presented in Table 1, and
a photo of one of the samples is shown in Figure 1a. Photos of all specimens before the
experiments are enclosed in Appendix A.
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Figure 1. Experiment of uniaxial compression: (a) an aluminium foam cubic specimen; (b) experi-
mental set with one of the samples between the presses ready for the compression test.

Table 1. Characteristics of the samples.

Sample ID V (mm3) m (g) ρ (g/cm3)

X_Z_02 122,902.09 36.55 0.297
Z_01 127,739.18 35.56 0.278
Z_02 126,160.72 35.90 0.285
Z_03 122,854.76 28.27 0.230
Z_05 124,804.39 26.72 0.214

X_Z_01_p 120,565.13 26.11 0.217
X_Z_06_p 110,950.83 24.83 0.224
X_Z_08_p 113,904.18 27.92 0.245

Z_06_p 125,270.04 28.13 0.225
Z_09_p 125,154.28 29.15 0.233
Z_12_p 122,038.14 24.36 0.200
Z_14_p 124,430.57 29.35 0.236
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2.2. Uniaxial Compression Experiments

Samples were tested using MTS 810 testing machine of class 1 (MTS Systems Corpora-
tion, Eden Prairie, MN, USA) with the additional force sensor interface (capacity: 25 kN).
Experimental data were gathered with the help of the computer programme TestWorks4
(MTS Systems Corporation, Eden Prairie, MN, USA, version V4.08D). Photographs were
taken with Casio Exilim EX-Z55 camera (Casio Computer Co, Ltd., Tokyo, Japan). The
tests were conducted at room temperature. The compression procedure was performed
quasi-statically—the strain rate was assumed as 2.5 × 10−4 m/s. The initial force (preload
force) was assumed as 10 N. Figure 1b presents one of the specimens in the testing machine.
All specimens were compressed up to strain ∼ 70%. Testing was performed in accordance
with the procedure from [34–37].

Figure 2 shows results of the compression experiments in the form of a stress–strain
graph. One can observe that the material’s response is connected to its density so that
the plot values of the lightest samples are the lowest and those of the heaviest are the
highest. Additionally, all plots exhibit traits characteristic of compression of a closed-cell
metal foam [40]: the initial steep region interpreted as the elastic phase, then the first
local maxima associated with compressive strength, followed by the plateau region where
densification occurs and lastly, a section where the curves become steep again. It is worth
mentioning that during densification individual cells or cell groups collapse plastically,
which is reflected in the graph by many local maxima and minima appearing alternately
among the plateaus.

General material features, which were determined based on experimental results, included
average compressive strength σc = 1.40 MPa, average plateau strength σpl = 1.44 MPa and
average plateau end εpl.f = 45.78%.
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3. Methods: Computations with Artificial Neural Networks

The main concept of the research stage devoted to neural networks was to generate
and train a considerable set of comparable networks, then assess them according to as-
sumed criteria and finally—based on the choice of the ‘best’ network—determine the most
adequate neural network structure and learning parameters for building a model of the
phenomenon of closed-cell aluminium compression.

Before the realization of this idea, a set of assumptions was determined. The most
important pre-choice was designing a two-step evaluation—this assumption affected all
specific research actions. It was decided that we would generate and train all networks
using experimental data for 11 (out of 12) specimens. Obtained networks were then evalu-
ated for the first time in terms of whether they were good-quality models of compression of
those particular 11 samples. This step was important from the point of view of understand-
ing the complexity of the physical phenomenon of aluminium foam compression, which
was approached to be described. The data for the left-out sample (12th) were used in the
second evaluation in terms of whether the networks were capable of adequate prognosis.
This step was important for the generalization potential of the obtained models.

Other assumptions involved choosing neural network learning parameters, designing
the path for the building and training of networks and selection of criteria measures.
They will be discussed below, together with the detailed description of the proposed
computational method. First, the processing and preparation of experimental data will
be reported (Section 3.1). Next, detailed information about the structure of the assumed
networks will be given (Section 3.2). Following that, the choice of learning parameters
(Section 3.3.) and the algorithm used to build and train networks (Section 3.4) will be
described. Finally, evaluation criteria for accuracy will be discussed (Section 3.5).

Calculations were performed using Matlab R2017b and R2019A in conjunction with
Excel 2016.

3.1. Data for the Networks

During the experimental stage 12 aluminium foam specimens underwent compression.
Collected data were initially preprocessed to suit as arguments and targets for neural
networks (Section 3.1.1). Thereafter, the data set was divided into parts dedicated to
network learning and verification (Section 3.1.2). The last aspect of data preprocessing was
normalization, and this had already been performed within the NN computations. The
reverse procedure (denormalization) had to be performed after the training of networks
(Section 3.1.2).

3.1.1. Initial Preprocessing of Experimental Data

Raw data collected during experiments with data acquisition frequency of 100 Hz
were subject to initial preprocessing consisting of smoothing—to attenuate noise on the
load and displacemnet transducer signals—and rediscretization—to set a uniform strain
data vector, common for all specimens. Smoothing of the data was performed in the time
domain using cubic smoothing splines [78,79]. The aim of smoothing was to eliminate
the scatter of the raw data and, at the same time, to preserve the original stress–strain
response, as exemplified in Figure 3. For this purpose the inbuilt Matlab function csaps
was used with a smoothing parameter p = 0.01 [80]. The parameter’s p value was chosen
by a visual examination of the stress–strain plots corresponding to the raw and smoothed
data for the interval p ∈ 〈0.01; 0.99〉 (examples are depicted in Figure A2 in Appendix B).
As a result, smoothed sigma–epsilon data for every specimen contained 1000 data pairs,
in the strain range from 0 to 69%, which was the widest common range recorded for all
specimens. Such a number of points ensured the possibility of sufficiently precise mapping
of the considered stress–strain curves. Due to the assumption that the strain vector was
common to all specimens, neural networks were expected to correctly predict only the
stress values as the responses to the given strains. Simultaneously, the same number of
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data points assures the same impact of each specimen on the learning/validation process
of neural networks.
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Figure 3. Exemplary comparison of raw stress–strain data with data smoothed using cubic smoothing
splines with the smoothing parameter p = 0.01 (specimen Z_14_p).

Depending on specimens’ density and stochastic cellular structure their compressive
response varied, which—let it be recalled again—can be seen in the above Figure 2: Plots for
lighter samples are in the bottom part, while plots for the heavier ones are in the top. Density
then, along with strain, had to be the input arguments for the networks. The target was to
be stress. This is in agreement with the already cited theoretical approach as in Formula (1)
and with the primary assumption expressed in Formula (2). Thus, arguments for the neural
networks were set into n = 12,000 vectors (1000 for each sample): Ai = [εi, ρi]

T, where:
i = 1, 2, . . . , n; εi—the initially preprocessed value of strain from experiments for the given
sample in (%); and ρi—the apparent density of the given sample in (g/cm3). The targets
were experimental values of stress σi in (MPa) after initial preprocessing. The sequence of
indices i in arguments and targets is of course corresponding.

3.1.2. Division of the Data Set

The experimental data set obtained for 12 specimens was divided in general into
two subsets:

1. Data of 11 specimens, which were devoted to building the NN model of the phe-
nomenon of compression of these particular aluminium foam samples;

2. Data of 1 specimen, which were to be used later for verification of whether the obtained
model could be used as a general model, that is, for prognosing the phenomenon of the
compression of aluminium foam with respect to different materials’ apparent density.
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As for building the particular model, the assumed neural network learning procedure
consisted of three stages: training, validation (network self-verification) and testing (ex-
position to new data) [81–83]. So the data set from the compression of 11 specimens had
to be subdivided to assure data for all three stages. It was assumed that 60% of the data
would be devoted to the training phase, 20% to validation and 20% to testing. This was
practically conducted by assigning sequentially every fifth input–target pair starting from
i = 4 to the validation data subset and every fifth input–target pair starting from i = 5 to the
test data subset. The remaining data constituted the data subset for the training phase. The
division into subsets was not changed, so the subsets contained exactly the same data for
each studied network.

Experimental results for specimen Z_14_p were separated as the data for verification
of the prognosis capability. This sample was chosen because its graph was more or less in
the middle of all individual stress–strain plots (Figure 2).

3.1.3. Normalization and Denormalization

As for the normalization, the inbuilt Matlab function mapminmax was used [84–86].
This function is a linear transformation of data comprising a certain range into the interval
of given desired boundaries and can be expressed as in Formula (3):

V′ =
V −Vmin

Vmax −Vmin
·
(
V′max −V′min

)
+ V′min. (3)

In Formula (3): V is the value to be transformed; V′ is the new value; Vmax, Vmin
are original interval boundaries; and V′max, V′min are the desired range boundaries (in
normalization they are assumed as −1 and 1). In our study vectors Ai were normalized
respectively into the following input vectors: Xi =

[
x1,i = εnorm,i, x2,i = ρnorm,i

]T,
where i = 1, 2, . . . , n.

Such prepared data were used in network training. Networks’ outputs, which were
supposed to correspond to stresses, were obtained. Yet, their values were within the
interval of normalization 〈−1, 1〉: yi = σappr.norm,i. Hence, the reverse procedure of output

denormalization was necessary: yi = σappr.norm,i
post−processing→ yi = σappr,i.

3.2. Assumed Artifitial Networks Architecture

The authors assumed the general network structure type and activation function
types according to what is recommended for nonlinear function approximation in the
literature [87] and also to what had been proved to work well in a previously investigated
case of open-cell metals [49,50].

Figure 4 shows a detailed scheme of the network architecture, which will be ex-
plained below in detail. The index i = 1, 2, . . . , n, which indicates the numbering of
the given input data and the respective target, is omitted in the below discussion and
Expressions (4)–(13) for simplification. This does not affect the logic of the reasoning since
networks use all inputs and targets for training and verification, so all data (all i-s) are used,
and each is only used once.

The neural network architecture was chosen as a feedforward network with two layers:
one hidden layer, labelled in the research with {1} and one output layer labelled with {2}.
Argument A, after normalization, entered the hidden layer {1} as input X. The number
of neurons in the hidden layer was assumed as varying within the range s{1} = 〈1; 50〉.
The function tansig—a hyperbolic tangent sigmoid (mathematically equivalent to tanh [84])—
was chosen as the activation function for the hidden layer. It was denoted as f {1}activ and
expressed as in Formula (4):

f {1}activ

(
arg{1}

)
=

e2·arg{1} − 1

e2·arg{1} + 1
= tan h

(
arg{1}

)
, (4)
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where the argument of the transfer function in the hidden layer was defined as:

arg{1} = W{1}·X + B{1}. (5)

Symbols in Formula (5) denoted the following magnitudes:

• X—the input vector, mathematically formulated as in Equation (6) below;
• B{1}—the column vector of biases for layer {1}, mathematically formulated as in

Equation (7) below;
• W{1}—the matrix of weights of inputs for layer {1}, mathematically formulated as in

Equation (8) below:
X = [x1, x2]

T, (6)

B{1} =
[
b{1}1 , b{1}2 , . . . , b{1}p−1, b{1}p , b{1}p+1, . . . , b{1}

s{1}

]T
, (7)

W{1} =



w{1}1,1 w{1}1,2 w{1}1,3 w{1}1,4

w{1}2,1 w{1}2,2 w{1}2,3 w{1}2,4
...

...
...

...
w{1}p−1,1 w{1}p−1,2 w{1}p−1,3 w{1}p−1,4

w{1}p,1 w{1}p,2 w{1}p,3 w{1}p,4

w{1}p+1,1 w{1}p+1,2 w{1}p+1,3 w{1}p+1,4
...

...
...

...
w{1}

s{1} ,1
w{1}

s{1} ,2
w{1}

s{1} ,3
w{1}

s{1} ,4



(8)

Computations in the hidden layer {1} led to the column vector of outputs Y{1} of the
hidden layer {1}. This vector had the form shown in Formula (9):

Y{1} =
[
y{1}1 , y{1}2 , . . . , y{1}p−1, y{1}p , y{1}p+1, . . . , y{1}

s{1}

]T
. (9)

Vector Y{1} then entered the output layer {2}. The number of neurons in layer {2}
was unchangeable and was assumed as s{2} = 1, taking into account the single variable
output [88]. The activation function for the output layer, f {2}activ, was chosen as purelin [84]
and expressed as in Formula (10):

f {2}activ

(
arg{2}

)
= a·arg{2}, (10)

where a was a directional coefficient assumed as constant a = 1 and the argument of the
transfer function in the output layer was defined by the following Formula (11):

arg{2} = W{2}·Y{1} + b{2}1 . (11)

Symbols in the above expression denote the following magnitudes:

• Y{1}—the hidden layer outputs, as in Formula (9);

• b{2}1 —the bias for the output layer, a scalar value;
• W{2}—the row vector of weights of inputs for layer {2}, mathematically formulated as

in Equation (12) below:

W{2} =
[

w{2}1,1 w{2}1,2 . . . w{2}1,j−1 w{2}1,j w{2}1,j+1 . . . w{2}
1,s{1}

]
. (12)
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The final result of network training y was the output of the layer {2}: y{2}, as in
Formula (13) [89]:

y = y{2} = f {2}activ

(
W{2}·

(
f {1}activ

(
W{1}·X + B{1}

))
+ b{2}1

)
. (13)

In the last stage, the outputs underwent denormalization so as to express approxi-
mated stress.
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3.3. Choice of Learning Parameters

The selection of learning parameters, such as activation functions, training algorithm,
performance function and its goal, learning rate, momentum and others should be in
correspondence with the specific data assigned to the learning process and the phenomenon
that they represent [90]. Below are the presented choices determined for this study and their
justification. The numerical values of the assumed learning parameters are summarized in
Table 2.

Table 2. Learning parameters for each approach.

Learning Parameter Value

performance function goal 0
minimum performance gradient 10−10

maximum number of epochs to train 100,000
maximum validation failures 12

maximum time to train in seconds infinity
learning rate 0.50
momentum 2.0

As for the activation functions, a hyperbolic tangent sigmoid function (Formula (4))
was implemented in the hidden layer {1}. According to [87], tansig is a recommendation for
addressing nonlinear problems, and the closed-cell aluminium compression is a nonlinear
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phenomenon. Additionally, the hyperbolic tangent sigmoid function was successfully
verified in preliminary calculations and previous studies on the modelling of open-cell
aluminium [49,50]. The activation function for the output layer {2} was the linear activation
function—purelin (Formula (10)).

Regarding the training algorithm, the Levenberg–Marquardt procedure was selected [91].
For this procedure the mean square error, as defined in Formula (14), was chosen as the
performance function:

MSE =
∑n

i = 1(ti − oi)
2

n
=

∑n
i = 1(ei)

2

n
, (14)

where:

ti—i-th target for the network;
oi—i-th output for the network;
i—individual data index;
n—number of all data.

The error was defined as in Expression (15):

ei = ti − oi. (15)

The performance function’s goal was set as 0, and the minimum performance gradient
was assumed as 10−10. Based on the former application of neural network modelling to
the compressive behaviour of cellular metals [49,50] the number of epochs to train was set
as 100,000.

The learning rate and momentum were assumed as the result of a specially designed
procedure. The procedure consisted of the examination of a number of networks in terms
of assigning them various values of these two learning parameters and comparing the
obtained values of the performance function (MSE) in each case. Based on the robustness
analysis for a related phenomenon of compression in open-cell aluminium [49,50], it
was decided that the architecture of examined networks would have the complexity of
12 neurons in the hidden layer. Learning rate values were taken from the range 〈0.05; 1.00〉
with the step 0.05. Momentum values were taken from the range 〈0.1; 3.0〉 with the step
0.1. Results are shown in Figure 5; the chosen values were 2.0 for momentum and 0.05 for
the learning rate, and they occurred for the minimum MSEmin = 0.023 MPa2. Additional
remarks about the presented calibration can be found in Appendix C, Figure A3.
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3.4. Algorithm for Building and Training Networks

In order to generate a considerable number of comparable networks that modelled
the aluminium foam compression, the algorithm shown in Figure 6 was implemented.
The algorithm consisted of two procedures: P1 (parent) and P2 (nested). The main aim of
P1 was to provide varying unit network architecture parameters by attributing a given
number of neurons s{1} to hidden layers of NNs. The aim of P2 was to build, train, validate
and test the given network, which was structured according to parameters from P1, and
also to compute measures used in further criterial network evaluation. Please note, that
in accordance with the general research concept and the main assumption explained in
the beginning of Section 3, the data used in P2 were the subset for 11 out of 12 specimens.
In conclusion, the algorithm (P1 + P2) served to build, train and test individual models;
however, the first-step collective evaluation was performed later (Section 3.5).

The range of s{1} in P1 was assumed as s{1} = 〈1; 50〉. Such a range was selected due
to the specificity of the data for NN. Additionally, previous studies regarding open-cell
metals [49,50] have shown that such an interval allows for additional conclusions about
robustness and overfitting [82,87].

In the first iteration of a network learning process the initial values of weights and
biases in the first layer are assigned randomly. This means that networks with the same
architecture specifications almost certainly lead to different solutions. Taking this fact into
account, in the designed algorithm there were not only networks varying in the hidden
layer neuron size built but also for each given s{1}, and 10 networks were created, trained,
validated and tested (procedure P2). These calculations were labelled as approaches and
numbered consecutively from 1 to 10. Such repetitions increased the probability of obtaining
the minimum of the global performance function [84,89]. An additional advantage of
multiple approaches is that they enable the discussion of robustness.
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3.5. Evaluation Criteria

At this point it should be noted that the choice of learning parameters (mostly the
selection of the performance function and its goal, Section 3.3) already imposed certain
aspects of the evaluation approach. This is inevitable and ‘internally’ connected to building
networks and assuming their structure and learning mode.

As for the evaluation of network results ‘from the outside’, there may be multiple
approaches assumed. Two most obvious paths are: one may expect the network to either
provide the most accurate outputs or to provide results in a short time, which also applies
to a simpler model. Additionally, the repeatability of results may play a role. In general,
then, balancing between—or combining—different evaluation strategies is what designers
choose most often, and so the same was implemented in the present research. A formal
description of the mentioned evaluation approaches and mathematical expressions for the
respective criteria are given in Sections 3.5.1–3.5.4.

In the present research, the complexity of the structure of the neural network consists
of the number of neurons in the hidden layer {1}. The parameter which characterizes this
complexity is s{1}. As was scrupulously explained in Section 3.2, this parameter decides the
sizes of the matrix W{1} and the vectors B{1} and W{2}. So, one can say that the number
of neurons in the hidden layer characterizes the modelled phenomenon together with the
data assigned to the learning process. The aim of the evaluation in the present study, then,
is to choose such an s{1}, which would provide the most appropriate model.

3.5.1. The Idea of a Two-Step Evaluation

This study was designed to conduct a two-step evaluation (compare: the key assump-
tion described in the beginning of Section 3), which will now be explained thoroughly.

The networks built and trained in the algorithmic computations were particular
models of the phenomenon of the compression of 11 physical objects composed of closed-
cell aluminium. Part of the experimental data for these specimens was devoted to learning:
3/5 of data to the training stage and 1/5 of data to the validation stage. The remaining
1/5 of data were devoted to testing the model against unknown information, which still
concerned the 11 specimens. Results from the test stage were the subject of the first-step
evaluation. This evaluation allowed for a collective view of all particular models and the
choice of the most appropriate model of the compression of the 11 specimens.

The following step consisted of exposing the trained networks obtained from the
algorithm to data for another physical object—the 12th sample. Results of this mapping
were subject to the second-step evaluation. This time the performed evaluation allowed for
the assessment of whether the networks could be used not only as particular models but
also as general models capable of prognosis. If the answer was positive, the second-step
evaluation also allowed for choosing the best general model.

Such a design of the evaluation stages reflects the bias of the data that we intentionally
wanted to introduce; by the assumption of the relation type expressed in Formula (2) it
was assumed that apparent density affected the response of aluminium foam subjected
to compression. This was the basis for holding one specimen away, so that the prediction
potential of the given model was verified with respect to the new apparent density value
formed outside the values that the model would ‘know’.

3.5.2. Accuracy of Outputs, Overfitting

Accuracy and overfitting are two sides of the same coin, and the criteria to assay them
may be formulated analogously. In the used approach, accuracy would be assessed in the
first-step evaluation and overfitting in the second-step evaluation.

In the first case the mean absolute relative error calculated for the network testing
stage obtained for the given approach was chosen as the measure used for the formulation
of the assessment criterion [92]. The criterion reads: the minimal value of all mean absolute
relative errors obtained for all architectures and all approaches from the test stage is the
indicator of the ‘best’ network. In other words, it indicates the particular model with
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s{1}best neurons in the hidden layer and trained at the particular approachbest, for which
the condition is fulfilled. Such a formulated main criterion is symbolically expressed as in
Formula (16):

Crit11 = min
{
(MARETest)s{1} ,approach

}
, (16)

where:

Crit11—value of the measure assumed for Criterion 1 used for the first-step evaluation;
s{1}—given number of neurons in the hidden layer;
approach—given number of repetitions of the network learning for the given network
architecture;
(MARETest)s{1} ,approach—maximum absolute relative error obtained for the testing stage,
according to the Formula (17):

(MARETest)s{1} ,approach = mean

{(∣∣∣∣ tiTest − oiTest
tiTest

∣∣∣∣)
s{1} ,approach

}
, (17)

where:

tiTest—i-th target for the network in the testing stage;
oiTest—i-th output for the network in the testing stage;
i—individual data index, should exhaust all data.

The above criteria for the best accuracy should be complemented by an additional
criterion to prevent the choice of the model, which is overfitted. That is, to prevent the
situation in which the chosen best network memorized the data instead of working out
relations hidden in the data. Such a network would not be capable of prognosis, so it could
not be used as a general model. For this reason, the second-step evaluation was proposed,
in which results of the verification of the network were analyzed against data previously
unknown to it. Again, a mean absolute relative error was chosen as the criterion measure.
The criterion takes the form symbolically written in Formula (18):

Crit12 = (MAREVerif)s{1}best,approachbest
≤ Crit12.threshold, (18)

where:

Crit12—value of the measure assumed for Criterion 1 used for the second-step evaluation;
(MAREVerif)s{1}best,approachbest

—mean absolute relative error from the verification of the

network with the given s{1}best and taught in the given approachbest against external data;
Crit12.threshold—threshold for Criterion 1 used for the second-step evaluation;

In cases where accuracy is particularly important one may demand that:

Crit12.threshold ≈ Crit11. (19)

In the event of considerable overfitting, it would not be possible to fulfil Expression (19).
One would then iteratively verify networks respective to next consecutive local minima
among the set

{
(MARETest)s{1} ,approach

}
until Condition (19) is met.

There might be more detailed demands imposed on the outputs, e.g., that outputs are
equally credible in the whole mapping range or that none of the absolute relative errors
exceed a certain value. In such cases one might choose other or additional measures as
auxiliaries in evaluation criteria. Such a measure could be, for example, the maximum
absolute relative error obtained for the network with the given number of neurons in the
hidden layer and in the given approach, (MaxARE)s{1} ,approach, as in Formula (20):

(MaxARE)s{1} ,approach = max

{(∣∣∣∣ ti − oi
ti

∣∣∣∣)
s{1} ,approach

}
, (20)
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where all symbols at the right side of the equation are defined as in Relations (14,17).

3.5.3. Speed of Calculations

When balancing model complexity and computation time is needed, one should
note that there are three main circumstances that affect the speed of network operation:
computation capacity of the computing machine, precision of significant numbers (also
depending on the data format) and complexity of calculations resulting from the size of the
network structure. So, from the viewpoint of the network design, the crucial factor is the
minimum network complexity that assures satisfactory outputs. The criterion for finding
the minimum sufficient number of neurons s{1}min (and the assigned approachmin) might
be to demand that the assumed measure, let it be mean absolute relative error from the
test stage, does not exceed a certain level. Mathematically, in the first-step evaluation, the
criterion reads as in Expression (21) below:

Crit21 = (MARETest)s{1} ,approach ≤ Crit21.threshold, (21)

where:

Crit22—value of the measure assumed for Criterion 2 used for the first-step evaluation;
Crit22.threshold—threshold for Criterion 2 used for the first-step evaluation;
s{1}, approach and (MARETest)s{1} ,approach—defined as in Formulas (16) and (17).

For the second-step evaluation this could be formulated in Condition (22) below:

Crit22 = (MAREVerif)s{1}min,approachmin
≤ Crit22.threshold, (22)

where:

Crit2—value of the measure assumed for Criterion 2 used for the second-step evaluation;
(MAREVerif)s{1}best,approachbest

—mean absolute relative error from the verification of the

network with the given s{1}min and taught in the given approachmin against external data;
Crit22.threshold—threshold for Criterion 2 used for the second-step evaluation.

In the case Condition (22) is not satisfied, one should then verify networks with an
increased number of neurons in the hidden layer or agree to lower the accuracy demand by
increasing the threshold until Expression (22) is met.

The assumption of the mean absolute relative error value as the criterion measure is
not the only possibility. In the case the designer or user is more interested in obtaining
results which have the same reliability in the whole interval or having no errors (not only
the mean) that exceed the assumed threshold, they could select another measure, such as
the maximum absolute relative error, as in Definition (20).

3.5.4. Robustness

Balancing accuracy and computation speed does not exploit the network evalua-
tion problem. Obtained networks should also be verified with regard to robustness,
which can be understood as insensitiveness to the randomness of the initial bias and
weight assumptions. One would be searching for such a number of neurons in the hidden
layer, for which, regardless of the random parameters, repeatability of the results is en-
sured [93]. Analysis of robustness may indicate more than one specific network complexity
s{1}robust =

{
s{1}robust,j

}
, which would comply with the demand of repeatability.

In the present research the sum of absolute errors from validation is assumed as the
measure for robustness criterion [94]. This criterion is expressed in Formula (23) below:

Crit3 =
∣∣∣(SAEValid)s{1} ,approach −

1
k ∑k

approach = 1(SAEValid)s{1} ,approach

∣∣∣ ≤ Crit3threshold,
for all approach ∈ 〈1; k〉,

(23)

where:
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Crit3—value of the measure assumed for Criterion 3;
k—total number of approaches for the given s{1};
Crit3threshold—threshold for Criterion 3;
(SAEValid)s{1} ,approach—as in Formula (24):

SAE = ∑n
i = 1(ti − oi) = ∑n

i = 1 ei, (24)

where remaining symbols are denoted as in (14,15).

The strict demand would be to assume that the threshold is near or equal to zero:

Crit3threshold ≈ 0. (25)

However, a strongly posed demand such as Demand (25) is not necessary in all
cases. Moreover, there would be instances for which a lighter condition would be justified:
only limited (23) and not necessarily (25). This would include cases for which for ‘only’
a considerable majority of approaches for the given s{1}robust,j would meet (23) and a
negligible number of networks would not. In some cases, this would also be acceptable
solution. Let it be expressed it as Alternative Criterion 3 (26) below:

AltCrit3 =
∣∣∣(SAEValid)s{1} ,approach −

1
k ∑k

approach = 1(SAEValid)s{1} ,approach

∣∣∣ ≤ AltCrit3threshold,
for M of all approach ∈ 〈1; k〉,

(26)

where:

AltCrit3—value of the measure assumed for Alternative Criterion 3;
AltCrit3threshold—threshold for Alternative Criterion 3, which may also not necessarily be
assumed as 0;
M—number or percentage value for total approaches that must comply with Condition (26);
other symbols—as defined in (23).

4. Results and Discussion

As was said in Sections 3.1.2 and 3.5.1, experimental data from the compression of
12 specimens were divided into two sets: the data of 11 specimens were devoted to building
particular models, and their first-step evaluation and the data of one sample were left aside
for external verification in the second-step evaluation. Sample Z_14_p was selected for the
external verification. In consequence, the results are now presented as follows:

• Section 4.1 will give results from the validation stage from the training of networks
(11 sample data set).

• Section 4.2 will be devoted to choosing the most adequate network according to criteria
of the first- and second-step evaluation and thus will show results from the test stage
of teaching networks (11 sample data set) as well as from the verification of networks
against external data (specimen Z_14_p).

• Section 4.3 will present detailed results for the final chosen networks.

Please note that the colour and notification convention is common for all figures
presented in Section 4 and Appendix D. The convention will be explained in detail by the
description of mean square error results in Section 4.1 and later on is applied analogously
and treated as known.

4.1. Internal Network Evaluation and Robustness

It was assumed that the performance function for the analyzed networks was the mean
square error MSE, Definition (14). The goal for this function was set as 0. In Figure 7 below,
there are the presented results obtained for the performance function at the validation
stage for all networks. Individual mean square errors are depicted as hollow blue dots.
Additionally, there are solid orange dots in the plot denoted as av_MSE, which refer to the
arithmetic average of MSEs obtained for all approaches for the given number of neurons
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in the hidden layer s{1}. A trend line for magnitude av_MSE is also shown (dashed
orange line).
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The general conclusion drawn from these results might be that modelling of the
compression of closed-cell aluminium with networks of increasing complexity of the
hidden layer is not a chaotic but an ordered phenomenon. The relation between complexity
and convergence, understood as nearing to the achievement of the performance function’s
goal, can be very well described by a power law (determinacy coefficient for such a relation
was obtained as R2 = 0.9852).

The problem of robustness will now be discussed. Looking at Figure 8 and taking into
account Criterion 3 (23) and Demand (25), one can observe that the difference between
SAEValids from individual es and the average of all approaches for the given s{1} tends to
be zero for all instances of the approach for s{1}robust ≥ 18. We can also slightly alleviate
the robustness condition and utilize Alternative Criterion 3 (26) with a threshold near 0,
assuming M9 = 9 of 10 approaches or M8 = 8 of 10 approaches. In these cases, we read
from Figure 8 that s{1}robust.M9 ≥ 14 and s{1}robust.M8 ≥ 11.
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The results are in agreement with the pre-assumption determined at the stage of the
choice of learning parameters. At that phase the influence of learning rate and momentum
on the training process of networks with s{1} = 12 neurons in the hidden layer was
evaluated. Such a choice fits Alternative Criterion 3 (26) with the parameter M8 = 8.

4.2. Choice of the Most Appropriate Network Specifications

In general, we are looking for the most appropriate number of neurons in the hidden
layer that would guarantee the desired outputs’ quality with regard to the assumed criteria.
The total interval of s{1} in the studied algorithm was s{1} = 〈1; 50〉. In Section 4.1 it
was already stated that this interval should be narrowed to an s{1} less than 18 or 14 or
11 neurons, depending on the level of the desired results’ repeatability. These boundaries
should be taken into account in the evaluation of models. Both the first- and second-step
evaluation are referred to in Figures 9 and 10 below. Figure 9 shows the mean absolute
relative error from the test stage of training networks, MARETest, with respect to the size of
the hidden layer. Figure 10 gives the mean absolute relative error from the verification of
trained networks (particular models) against external data, MAREVerif, with respect to the
size of the hidden layer. Please note that the vertical axis in Figure 10 was scaled. Due to
this graphic processing, some of the results could not fit in the plots. This was performed
in order to present the results clearly and legibly in the range of the hidden layer neuron
number important for the discussion. The omission of some of the results in these plots
did not affect reasoning or conclusions. In Appendix D we include the respective graph
(Figure A4), which gives all obtained results without vertical axis scaling.

4.2.1. Most Accurate Outputs, Overfitting

In the first-step evaluation, according to Criterion (16) for accuracy, the minimum value
of MARETest and the respective network structure for it (identified by s{1}best, approachbest)
are sought. Table 3 presents results found in this search. The complexity of the ‘best’
network was 48 neurons in the hidden layer, which is far beyond the boundaries set in the
analysis of robustness. The application of the second-step evaluation shows that for this
network overfitting was on the unsatisfactory level (the last column of Table 3), and though
the particular model was the best in terms of accuracy, it cannot be used for prognosis.
One could iteratively search for consequent minima in Crit11, but judging from the lack of
diversity in the results until the limit of robustness, this path would be too inefficient to
follow. Instead, we proceed to the alternative approach described in Section 3.5.2.

Materials 2022, 14, x FOR PEER REVIEW 21 of 43 
 

 

 

Figure 9. Mean absolute relative error from the test stage. 

 

Figure 10. Mean absolute relative error from verification of external data. 

Table 3. Criterial measures and results from evaluation with criteria for accuracy (16) and overfit-

ting (18). 

������ �{�}
����  ������������ ������ 

0.507% 48 10 35.049% 

4.2.2. Outputs in Terms of Increasing Speed of Calculations 

In this analysis Criterion (21) and (22) were used with the mean absolute relative 

errors chosen as the measures ��������, ��������� , respectively, in the first- and second-

step evaluation. It was decided that several threshold values in Criterion (21) would be 

assumed in the first-step evaluation, so multiple indications of �{�}
��� and the respective 

 �������ℎ��� were obtained. Then Criterion (22) was applied in the second-step evalua-

tion to the indicated models. Results from this evaluation are summarized in Table 4. 

  

Figure 9. Mean absolute relative error from the test stage.



Materials 2022, 15, 1262 20 of 41

Materials 2022, 14, x FOR PEER REVIEW 21 of 43 
 

 

 

Figure 9. Mean absolute relative error from the test stage. 

 

Figure 10. Mean absolute relative error from verification of external data. 

Table 3. Criterial measures and results from evaluation with criteria for accuracy (16) and overfit-

ting (18). 

������ �{�}
����  ������������ ������ 

0.507% 48 10 35.049% 

4.2.2. Outputs in Terms of Increasing Speed of Calculations 

In this analysis Criterion (21) and (22) were used with the mean absolute relative 

errors chosen as the measures ��������, ��������� , respectively, in the first- and second-

step evaluation. It was decided that several threshold values in Criterion (21) would be 

assumed in the first-step evaluation, so multiple indications of �{�}
��� and the respective 

 �������ℎ��� were obtained. Then Criterion (22) was applied in the second-step evalua-

tion to the indicated models. Results from this evaluation are summarized in Table 4. 

  

Figure 10. Mean absolute relative error from verification of external data.

Table 3. Criterial measures and results from evaluation with criteria for accuracy (16) and overfit-
ting (18).

Crit11 s{1}
best approachbest Crit12

0.507% 48 10 35.049%

4.2.2. Outputs in Terms of Increasing Speed of Calculations

In this analysis Criterion (21) and (22) were used with the mean absolute relative
errors chosen as the measures MARETest, MAREVerif, respectively, in the first- and second-
step evaluation. It was decided that several threshold values in Criterion (21) would be
assumed in the first-step evaluation, so multiple indications of s{1}min and the respective
approachmin were obtained. Then Criterion (22) was applied in the second-step evaluation
to the indicated models. Results from this evaluation are summarized in Table 4.

Table 4. Criterial measures and results from evaluation with Criteria (21) and (22).

Crit21.threshold Crit21 s{1}
min approachmin Crit22

|Crit21−Crit22|
Crit21.threshold

5% 4.455% 4 2 8.688% 85%
4% 3.572% 6 6 2.689% 22%
3% 2.767% 7 3 4.731% 65%

2.5% 2.313% 8 2 3.881% 63%
2% 1.959% 11 4 2.976% 51%

1.5% 1.497% 17 4 2.521% 68%
1% 0.997% 24 8 4.187% 319%

Looking at Figure 9, one notices that all particular models with s{1} ≥ 5 (except
one) produced a mean absolute relative error on a good engineering accuracy level of
less than MARETest ≤ 5%. The 5% threshold had already been obtained for the first
time by a particular model with four neurons in the hidden layer. The simplest network[

s{1}min, approachmin

]
= [4, 2] provides a relatively good particular model but gives an

almost two-times-greater mean absolute relative error when it comes to prognosis. Distinc-
tively good results were obtained for the network

[
s{1}min, approachmin

]
= [6, 6]; errors

obtained in the verification of prognosing the capability of the model were even better than
in the particular model itself. It should be noted that all the remaining networks listed in
Table 4 exhibited MAREVerif ≤ 5%, which is a good engineering accuracy level for progno-
sis capability. Lastly, none of the analyzed particular models achieved a better accuracy in
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prognosis than MAREVerif.min = 1.661% (the network
[
s{1}min, approachmin

]
= [14, 5]).

This could mean that it is extremely difficult to obtain a model capable of a more accurate
prognosis without changing the structure or learning parameter assumptions and that at
least such a value of error is inevitable. One more observation should be noted: Figure 10
shows that for networks with ≥13 neurons, instances of approaches with considerable
overfitting already start to occur.

The networks with four and six neurons in the hidden layer, distinguished in the
previous paragraph, do not fall into the intervals, which assures robustness (s{1}robust ≥ 18,
s{1}robust.M9 ≥ 14, s{1}robust.M8 ≥ 11). This condition is fulfilled by the model[
s{1}min, approachmin

]
= [11, 4], for which MARETest ≤ 2% and MAREVerif ≤ 3%. These

two values confirm that the particular model here is very good in terms of accuracy, and it
also has the ability to provide high-quality prognoses. The probability of obtaining similar
a quality in a model in repeating network training is sufficient (s{1}robust.M8 ≥ 11).

In Section 4.2. the analysis of robustness was presented. Quite strict demands, includ-
ing Crit3threshold ≈ 0 and AltCrit3threshold ≈ 0 in Conditions (23) and (26), respectively,
were assumed. Nevertheless, one does not have to be that rigorous. Let us now comple-
ment the analysis of repeatability, but for the stage of the first- and second-step evaluation.
This requires the introduction of another measure: av_MARE—the arithmetic average of
the MAREs obtained for all approaches for the given number of neurons in the hidden
layer s{1}:

av_MARE =
1
k ∑k

approach = 1

(
MAREs{1} ,approach

)
, (27)

where:

s{1}—given fixed number of neurons in the hidden layer;
k—total number of approaches for the given s{1}; here k = 10.

In the first-step evaluation the measure defined in Formula (27) is the average mean
absolute relative error for the test stage in training of the given network (av_MARETest),
and in the second-step evaluation it is the mean absolute relative error from the verification
of the given network against external data (av_MAREVerif).

By application of Measure (27) in Criterion (21), it was possible to indicate the number
of neurons in the hidden layer for which the new measure complied with the assumed
thresholds s{1}

min.av.M.T. Results are summarized in the first three columns of Table 5.
The results show that if we regard the average results of all approaches for a given s{1},
av_MARETest ≤ 5% is fulfilled already for five neurons in the hidden layer. We also found
confirmation that networks with at least 11 neurons in the hidden layer have very good
accuracy on average: av_MARETest ≤ 2.5%.

Table 5. Number of neurons in the hidden layer for which thresholds in Criteria (21) and (22) are
fulfilled with av_MARE as the criterion measure.

Crit21.threshold s{1}
min.av.M.T. Crit21 Crit22.threshold s{1}

min.av.M.V. Crit22

5% 5 4.775% 10% 4 9.701%
4% 8 3.850% 9% 5 8.579%
3% 11 2.419% 8% 6 7.106%

2.5% 11 2.419% 7% 8 6.014%
2% 15 1.771% 6% 9 5.519%

1.5% 21 1.406% 5% 11 4.051%
1% 33 0.967% 4% — —

The average mean absolute error was also substituted in Criterion (22) in the second-
step evaluation. This time, however, the criterion thresholds had to be elevated. They are
listed in Table 5 together with corresponding minimum numbers of neurons in the hidden
layer s{1}min.av.M.V. and obtained values of the criterion measure in columns 4–6. The first
thing that catches attention is that none of the networks achieved av_MARETest ≤ 4%, and
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only the result for s{1}min.av.M.V. = 11 is slightly above this limit. It turns out that the
criterion measure value obtained for networks with 11 neurons in the hidden layer was
the global minimum for s{1}min.av.M.V. ∈ 〈1, 50〉. This once again shows that such model
complexity produces good-quality outputs with relatively low errors both in the particular
model as well as in prognosis. Lower complexity networks do not satisfy the engineering
precision threshold of 5%.

4.3. Results for Optimal Networks

Considerations presented in Sections 4.1 and 4.2 allowed for choosing particular
networks to finally show as examples of how the structure and learning parameters of
neural network models influence the quality of the description of the phenomenon of the
compression of aluminium foams. We selected the following networks:

1. The network
[
s{1}min, approachmin

]
= [4, 2] is the least complex structure, but

still provides acceptable accuracy itself (MARETest)4,2 = 4.455% and for prognosis
(MAREVerif)4,2 = 8.688%; however, four neurons do not guarantee robustness.

2. The network
[
s{1}min, approachmin

]
= [6, 6] is still a relatively simple structure but as-

sures good accuracy itself (MARETest)6,6 = 3.572% and for prognosis (MAREVerif)6,6 =
2.689%; but six neurons do not guarantee robustness.

3. The network
[
s{1}min, approachmin

]
= [11, 4] is a relatively complex structure; how-

ever, it shows very good accuracy on many levels, including (MARETest)11,4 = 1.959%
and for prognosis (MAREVerif)11,4 = 2.976%; also, 11 neurons are within the bound-
ary of 80% robustness.

4. The network
[
s{1}best, approachbest

]
= [48, 10] is a very complex structure, showing

extremely good particular accuracy (MARETest)48,10 = 0.507% and very adverse
overfitting in prognosis (MAREVerif)48,10 = 35.049%; 48 neurons are very safe in
terms of robustness.

The performance function’s course for the above networks is presented in Figure 11.
Results of the least mean square error MSE together with the epoch, for which they were
attained, are located at the top of each plot and in Table 6.

It can be observed that the structure with 11 neurons needs about two times more
operations than the structure with four neurons. Additionally, the very complex structure
with 48 neurons needs about five times more operations than the simplest network. On
the other hand, the minimum of the mean square error is about five times smaller for
the network [11, 4] than for [4, 2] and hundred times smaller for the most complex one
with respect to the simplest one. Taking into consideration these results, one notices that
11 neurons in the hidden layer provide satisfactory performance results still at a relatively
low cost of calculation time.

Figure 12 below presents plots of regression for joined stages of network training
(training + validation + test). Values of the Pearson coefficient are shown at the top of
each graph. Equations for the linear regression line are given at the left side of each graph.
These plots are supplemented by the regression of each training stage separately, but
those graphs were moved to Appendix E: Figures A5–A8. One can observe that Pearson’s
coefficient increases together with the increase in network complexity. However, all results
are R ≥ 0.99, which means that all particular models provide very good correlation between
outputs and targets.
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Figure 11. Performance function’s course: (a) network
[
s{1}min, approachmin

]
= [4, 2]; (b) network[

s{1}min, approachmin

]
= [6, 6]; (c) network

[
s{1}min, approachmin

]
= [11, 4]; and (d) network[

s{1}best, approachbest

]
= [48, 10].

Table 6. Performance of chosen networks.

[s{1},approach] MSEmin
MSEmin

MSEmin,[4,2]
epoch epoch

epoch[4,2]

[4, 2] 0.0096888 1.00 1139 1.00
[6, 6] 0.005076 0.52 1882 1.65
[11, 4] 0.0016933 0.17 2539 2.23
[48, 10] 0.00010296 0.01 5959 5.23
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Figure 12. Regression for all training stages: (a) network
[
s{1}min, approachmin

]
= [4, 2]; (b) network[

s{1}min, approachmin

]
= [6, 6]; (c) network

[
s{1}min, approachmin

]
= [11, 4]; and (d) network[

s{1}best, approachbest

]
= [48, 10].

Figures 13–16 depict the four chosen particular models (red dots), errors (light blue)
and targets (dark blue). Those plots allow one to see how all individual outputs and
targets relate. For the networks with 4, 6 and 11 neurons in the hidden layers we observed
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satisfactory quality, while the particular network with 48 neurons in the hidden layer maps
targets almost perfectly.
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Figure 16. Particular model
[
s{1}min, approachmin

]
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After the graphical presentation of the performance function, regression and accuracy
of particular models, it is now time to present the prognosis capability of the chosen
networks. At first, Figure 17 shows the regression for the verification of an external
specimen. There are included values of the Pearson coefficient at the top of each graph
and equations for the linear regression line at the left side of each graph. One can observe
that for the networks with 4, 6 and 11 neurons in the hidden layer the correlation between
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outputs and targets is on a very good level R ≥ 0.997. On the other hand, a lack of
correlation for the network with 48 neurons confirms considerable overfitting in this case
(R = 0.5992).
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Figure 17. Regression for verification of external specimen data: (a) network[
s{1}min, approachmin

]
= [4, 2]; (b) network

[
s{1}min, approachmin

]
= [6, 6]; (c) network[

s{1}min, approachmin

]
= [11, 4]; and (d) network

[
s{1}best, approachbest

]
= [48, 10].

Lastly, Figures 18–21 present the detailed results of the prognosis of the chosen four
models (red dots), errors (light blue) and targets (dark blue). In Figure 18 (network [4, 2])
the prognosis is over the actual stress–strain plot. Figures 19 and 20 show that for 6 and
11 neurons in the hidden layer large regions of the actual stress–strain plot overlap with
the prognosed outputs. Figure 20 depicts how inaccurate the prognosis from the network
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with 48 neurons in the hidden layer is. Such a result is a consequence of the considerable
overfitting in this network.
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[
s{1}min, approachmin

]
= [6, 6] (red dots). Additionally, errors (light

blue) and targets (dark blue) are given.
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5. Conclusions

The presented research aimed to verify the possibility of describing the phenomenon
of the compression of closed-cell aluminium by means of neural networks. Additionally, it
was expected that specifications for a good-quality model would be found.
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The starting point was the assumption of the general relationship between strength
measures and apparent density for cellular materials: σ = f (ε, ρ) (2). Data from compres-
sion experiments were used to train neural networks varying in structure. The verification
of the obtained models was a two-step procedure: 1. Verification of particular models
built using an 11-sample data set was achieved, and 2. completely new data were intro-
duced to the networks, and verification of prognosis was performed. A series of criteria
(16)–(26) were proposed and used for the evaluation of accuracy, over- and underfitting
and robustness. The study was performed in the following domains: strain ε ∈ 〈0, 69〉%
and apparent density ρ ∈ 〈0.200, 0.297〉 g/cm3; furthermore, the specimen used for the
second-step evaluation had an apparent density ρ = 0.236 g/cm3.

Obtained results prove the hypothesis that neural networks are appropriate tools for
building models of the phenomenon of the compression of aluminium foams. Additionally,
the results enabled the identification of specifications of computations with artificial intelli-
gence, which allows one to build good-quality models. These two general conclusions are
now described in detail to list the specific contributions of our research:

1. The following neural network architecture specifications can be successfully used to
model the addressed phenomenon: a two-layer feedforward NN with one hidden
layer and one output layer. As for the activation functions, one may use the hyperbolic
tangent sigmoid function in the hidden layer and the linear activation function for
the output layer. As for the training algorithm, the Levenberg–Marquardt procedure
was verified positively. For this procedure, the mean square error was used as the
performance function with 0 as its goal. The learning rate and momentum should be
calibrated; however, for the given experimental data and the number of neurons in
the hidden layer assumed as 12 (near optimum) the results show that the influence of
these two parameters was not the deciding factor. Values for momentum, learning
rate, number of epochs to train, gradient and maximum validation failures, which
were applied and recommended, are given in Table 2.

2. Regarding the number of neurons in the hidden layer, the interval s{1} = 〈1; 50〉
was investigated. It was shown that even a relatively low complexity of four neu-
rons can provide a satisfactory particular model and acceptable accuracy for the
prognosis ((MARETest)4,2 = 4.5%, (MAREVerif)4,2 = 8.7%); nevertheless, the
probability of obtaining such results by the first approach of training a model is
low. Increasing the complexity by two neurons—up to six—considerably improves
the accuracy of a particular model itself and prognosis ((MARETest)6,6 = 3.6%,
(MAREVerif)6,6 = 2.7%); however, robustness is not satisfied for such networks.
If one is interested in complying with insensitivity in the random assumption of
weights and biases, networks with 11 neurons in the hidden layer provide robust-
ness with a probability of 0.8 and a very good accuracy level at the same time
((MARETest)11,4 = 2.0%, (MAREVerif)11,4 = 3.0%). A greater number of neu-
rons in the hidden layer (>11) also gives accurate results, but the accuracy is not
increased substantially, and the overfitting risk is higher with 13 neurons or more.

3. In order to choose the model which most appropriately prognoses the mechanical
characteristics of the studied materials, it is necessary to consider certain statistical
measures for the assessment of the obtained results. In particular, evaluation parame-
ters which indicate the occurrence of single instants of significant deviations between
a mapped value and the respective target (e.g., MaxARE) should be introduced. Such
individual considerable errors might disqualify a given model even if overall mean
error would be on satisfactory level (for example MARE, MSE).

4. A series of criteria (16)–(26) is proposed to evaluate obtained models in a two-step
evaluation. The idea of the two-step verification allows one to assess the fitting of
the particular model to the data with which it was trained and to assess whether this
particular model is capable of prognosing. Based on the presented research, it is recom-
mended that the two-step model evaluation is performed with regard to the following
qualities and measures explained in Section 3.5: accuracy (MARETest, MAREVerif),
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under- and overfitting (MARETest, MAREVerif, av_MARETest, av_MAREVerif) and
robustness (SAEValid).

5. The relationship between the number of neurons in the hidden layer and convergence
(meant as nearing to MSEValid = 0) can be very well described by a power law,
which proves that the modelling of closed-cell aluminium during compression is
not a chaotic but ordered phenomenon. However, at the same time the results show
that for networks with 13 neurons and more, instances burdened with considerable
overfitting start to occur. These two facts may indicate that in the pursuit of better
accuracy, instead of increasing the number of neurons in the hidden layer {1}, one may
choose to lower it while also adding another hidden layer. However, the multilayer
network approach was beyond the scope of the presented work and is planned as
further research.

6. None of the analyzed particular models had an accuracy in prognosis better than
MAREVerif.min = 1.661%. This threshold, below which even the most complex
networks were unable to perform, is the premise for the idea that when using the
tool of artificial intelligence, one has to balance the satisfactory demand of accuracy,
network complexity and number of experimental data used for model training. The
more data that are obtained from experiments, the better the accuracy, but the larger
the computational time and costs of data harvesting also. On the other hand, if
one agrees on some inevitable threshold of prognosis quality, they may be still be
successful, but this still requires less time and cost investment.

As for the potential for further development, the following ideas seem interesting. One
could assume another form of the initial relation (2), for example, by also incorporating mor-
phological data of the material (e.g., cell wall thickness, average cell size) into the equation.
Additionally, in the present research the verification of external data was performed for the
specimen from the middle of the interval of density. One could extend this procedure to
cross-validation and see how models would be capable of extrapolation. Other approaches
could include using multilayer perceptions or different quality assessment criteria. Finally,
one could investigate how neural networks model certain characteristics of closed-cell
aluminium, which are important from material design or application engineering points
of view—such research has already been started by the authors, the results of which are
promising and will be published soon [95].
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Appendix B

The examples in Figure A2 demonstrate the effect of the parameter p used to smooth
the stress–strain experimental data on the resulting NN-input dataset, as described in
Section 3.1.1.
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Appendix C

In the calibration of learning parameters, which was described in Section 3.4, the
momentum and learning rate were examined in relation to the performance function MSE.
Here an additional remark is supplied to this analysis: the vast majority of the results falls
into the interval MSEmajority ∈ 〈0.0015; 0.002〉 MPa2, and the maximum instance is not
greater by one order. This may be interpreted as the negligible influence of the choice of
learning rate and momentum on the NN training process within the investigated ranges.
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Appendix D

Figure 10 from Section 4 was scaled in order to present results clearly and legibly. Due
to this graphic processing, some of the results could not fit in the drawing. The omission
of some results in the plot in the main body of the article did not affect the conclusions or
reasoning. Here the plot respective to Figure 10 from Section 4 is presented, but with all
obtained results for the reader to have the complete picture—Figure A4.
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Appendix E

Here are provided figures that are complementary to Figure 12 from Section 4.3.
Figures A5–A8 present plots of regression for all stages of network training (training, valida-
tion, test) and for the three stages cumulatively for the networks[

s{1}min, approachmin

]
= [4, 2],

[
s{1}min, approachmin

]
= [6, 6],

[
s{1}min, approachmin

]
=

[11, 4] and
[
s{1}best, approachbest

]
= [48, 10]. Values of the Pearson coefficient are shown

at the top of each graph. The equation for the linear regression line is given on the left side
of each graph.
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Met. Foam. 2017, 1, 15–41. [CrossRef]
6. Lu, T.; Hess, A.; Ashby, M. Sound absorption in metallic foams. J. Appl. Phys. 1999, 85, 7528–7539. [CrossRef]
7. Catarinucci, L.; Monti, G.; Tarricone, L. Metal foams for electromagnetics: Experimental, numerical and analytical characterization.

Prog. Electromagn. Res. B 2012, 45, 1–18. [CrossRef]
8. Xu, Z.; Hao, H. Electromagnetic interference shielding effectiveness of aluminum foams with different porosity. J. Alloy. Compd.

2014, 617, 207–213. [CrossRef]
9. Albertelli, P.; Esposito, S.; Mussi, V.; Goletti, M.; Monno, M. Effect of metal foam on vibration damping and its modelling. Int. J.

Adv. Manuf. Technol. 2021, 117, 2349–2358. [CrossRef]

http://doi.org/10.1016/j.ijengsci.2017.08.006
http://doi.org/10.1016/j.msea.2009.03.067
http://doi.org/10.1016/S0167-577X(03)00430-0
http://doi.org/10.1016/j.actaastro.2016.06.047
http://doi.org/10.23977/metf.2017.11002
http://doi.org/10.1063/1.370550
http://doi.org/10.2528/PIERB12082913
http://doi.org/10.1016/j.jallcom.2014.07.188
http://doi.org/10.1007/s00170-021-07172-6


Materials 2022, 15, 1262 39 of 41
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