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Abstract: Notably, 7xxx series aluminum alloy has become the most popular nonferrous alloy,
extensively used in industry, construction and transportation trades, due to its high comprehensive
properties such as high static strength, high strength, heat resistance, high toughness, damage
resistance, low density, low quenching sensitivity and rich resource. The biggest challenge for
aluminum alloy today is to greatly improve the corrosion resistance of the alloy, while maintaining
its strength. The preparation method of 7xxx series aluminum alloy requires controlling time lapses
in the process of heating, holding and cooling, and there are many species precipitates in the crystal,
but the precipitated strengthening phase is a single type of equilibrium η′ phase. Therefore, more
attention should be paid to how to increase the volume fraction of η′ precipitates and modify the
comprehensive performance of the material and focus more on the microstructure of the precipitates.
This article reviews the progress of 7xxx series aluminum alloy materials in micro-alloying, aging
precipitation sequence, the strengthening-toughening mechanism and the preparation method. The
effect of adding trace elements to the microstructure and properties of 7xxx series aluminum alloy
and the problems existing in aging precipitation characteristics and the reinforcement mechanism
are discussed. The future development direction of 7xxx series aluminum alloy is predicted by
developing a method for the process-microstructure-property correlation of materials to explore
the characteristic microstructure, micro-alloying, controlling alloy microstructure and optimizing
heat-treatment technology.

Keywords: 7xxx series aluminum alloys; micro-alloying; aging precipitation sequence; strengthening-
toughening mechanism; preparation method

1. Introduction

The first generation of 7xxx super-hard aluminum alloy was investigated in 1930,
and developers are now looking at fifth generation aluminum alloy materials. Notably,
7xxx series aluminum alloy can be strengthened by heat-treatment and can achieve 490–
820 MPa [1–5]. According to the addition of elements, alloys are mainly classified into
two categories: Al-Zn-Mg alloy has exhibited better weldability and general corrosion
resistance, and high strength can be obtained when heat treatment is appropriate; the
other is developed on the basis of Al-Zn-Mg alloy by adding Cu, which has high specific
strength, low density, yield strength close to tensile strength, and exhibits better corrosion
resistance and high toughness. It is the highest strength series of aluminum alloy and is
easy to machine, and is applied widely in large aircraft manufacturing and aerospace, and
internationally recognized as the main aviation material [6–8]. In this paper, the new prin-
ciple of process-microstructure-performance correlation is used to continuously improve
the microstructure-performance characterization method of aluminum alloy, based on the
composition-process-microstructure-performance relationship of 7xxx series aluminum
alloy, which shows good prospects for the future development direction of aluminum alloy.
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2. Micro-Alloying

After adding Zr, Mn, V, Cr and other micro-elements to 7xxx series aluminum alloy,
the hardness of the alloy decreases and the hardenability decreases, in turn, during slow
quenching. In this section, the effects of four kinds of elements on the properties of 7xxx
series aluminum alloy are discussed, respectively. Table 1 summarizes the related properties
of Al-Zn-Mg-Cu alloy.

Table 1. Summary of alloy elements on relevant properties of Al-Zn-Mg-Cu [3,6,8–18].

Element Precipitate Content (ω%) Main Effect

Zn + Mg η (MgZn2); T (Al2Mg2Zn3) 0.0–10 (Zn ≥ 0.9) Increased tensile strength; heat treatment effect

Zn + Mg ≥ 10% Decreased conductivity, fracture toughness, stress-corrosion
resistance, and spalling-corrosion resistance

Mg β (Al8Mg5) 0.0–4.0 (Mg ≥ 0.0) Reduced welding crack tendency

Mg + C S (CuMgAl2) Zn/Mg > 2.2 Cu > Mg Improved alloy strength

Cu θ (CuAl2) ≤3 Improved corrosion resistance

Expanded the stable temperature range of GP zone,
improved the tensile strength, plasticity and fatigue strength

Cr Incoherent E
(Al18Cr2Mg3) ≤0.35 Nucleation and precipitation of coarse equilibrium phase

(CrMn)Al12;
(CrFe)Al7

0.1–0.2 Fine grain strengthening; inhibits recrystallization
nucleation and growth; Improve anti SCC ability

Mn Al6Mn 0.2–0.4
Improved maximum tensile strength and fracture
toughness, performance of low cycle fatigue, quenching
sensitivity

Al20Cu2Mn3 >0.4 Reduced the number of strengthening phases

Zr Al3Zr 0.05–0.16 Improved the strength, toughness, aging effect and
corrosion resistance of the alloy

Ag 0.16 Promoted the formation of GP region and transition phase;
delayed the over-aging of the alloy

Co (Co,Fe)Al9, Co2Al9 0.05≤ ≥0.2 Improved the hardenability; retention of subcrystalline
structure

Ti 0.01–0.08 Refined grain, improved casting properties

Er Al3Er; Al8Cu4Er 0.1–0.15 Improved the toughness; hardenability; dimples appear

Sc Al3Sc 0.1–0.4 Grain refinement; recrystallization inhibition

Sc + Zr Al3(Sc,Zr) 0.6 Improved anti SCC ability

Y Al3Y 0.3 Improved the hardness, tensile strength, elongation

Gd Al3(Gd,Zr) 0.11 Hindered dislocation; grain boundary movement

Si Mg2Si; AlFeMnSi ≥0.15 Reduced plasticity and fracture toughness

Fe Al6FeMn ≥0.15 Reduced plasticity and fracture toughness

2.1. Main Alloy Elements

In Al-Zn-Mg alloy, Zn and Mg are the main alloy elements, comprising not more
than 7.5%. With the increase in Zn and Mg content, the ultimate tensile strength and heat
treatment effect improved. When the content of Mg + Cu ≤ 7%, the alloy exhibits better
stress-corrosion resistance, and the welding crack tendency decreases with the increase in
Mg. The main function of the Cu element in Al-Zn-Mg-Cu alloy is to improve the corrosion
resistance of the material, and the Cu element also has a certain enhancement effect [19].
Zn and Mg will form η (MgZn2) phase and T (Al2Mg2Zn3) phase after co-existence and
aging. Mg/Zn mass ratio in the range of 5:2–7:1 can refine the precipitates and improve
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the strength of the alloy; when the content of Zn + Mg ≥ 10%, the electrical conductivity,
fracture toughness, stress-corrosion resistance and exfoliation corrosion resistance of the
alloy begin to decrease [20].

When the content of Zn/Mg > 2.2 and Cu > Mg, the strengthening phase S (CuMgAl2)
can enhance the strength of the alloy. The increase in Cu content will promote the recrystal-
lization of the alloy, increase the density of the precipitated phase, and reduce the potential
difference between the grain boundary and the grain [21]. The effect on PFZ (precipitation
free zone) width is small, and the stress-corrosion resistance of the alloy is improved. If the
element ratio is not within this range, S phase is the brittle phase that destroys the proper-
ties of the alloy. The size difference between the Cu atom and the Al atom is quite distinct;
consequently, the crystal lattice deformation of Cu dissolved in Al-based solid solution in
the form of replacement solid solution will reduce the hardenability of aluminum alloy
and promote the precipitation of second phase in quenching [22]. In the process, the aging
strengthening effect is reduced, and the quenching sensitivity of the alloy is reduced. The
artificial aging process of the alloy in the range 100–200 ◦C is accelerated, expanding the
stable temperature range of the GP (pre-dissolved atomic segregation area) region and
improve the ultimate tensile strength, plasticity and fatigue strength. However, the addition
of Cu tends to produce intercrystalline corrosion and pitting corrosion. The commonly used
chemical composition of 7xxx series aluminum alloys is shown in Table 2 [20,21,23–26]. In
addition to the main alloy elements such as Zn, Mg and Cu, there are also minor Mn and
Cr elements that not only form new strengthening phases with the main alloy elements
to increase the alloy strength, but also simultaneously improve the thermal strength and
corrosion resistance.

Table 2. 7xxx series aluminum alloy grade and main chemical composition (w%) [20,21,23–26].

Allloys Si Fe Cu Mn Mg Cr Zn Ti Zr Other Al

Each Total

7A01 0.30 0.30 0.01 - - - 0.9–1.3 - - 0.03 - Bal.
7A03 0.20 0.20 1.8–2.4 0.10 1.2–1.6 0.05 6.0–6.7 0.02–0.08 - 0.05 0.10 Bal.
7A04 0.50 0.50 1.4–2.0 0.20–0.60 1.8–2.8 0.10–0.25 5.0–7.0 0.10 - 0.05 0.10 Bal.
7A05 0.25 0.25 0.20 0.15–0.40 1.1–1.7 0.05–0.15 4.4–5.0 0.02–0.06 0.10–0.25 0.05 0.15 Bal.
7A09 0.50 0.50 1.2–2.0 0.15 2.0–3.0 0.16–0.30 5.1–6.1 0.10 - 0.05 0.10 Bal.
7A10 0.30 0.30 0.50–1.0 0.20–0.35 3.0–4.0 0.10–0.30 3.2–4.2 0.10 - 0.05 0.10 Bal.
7A19 0.30 0.40 0.08–0.30 0.30–0.50 1.3–1.9 0.10–0.20 1.5–5.3 - 0.08–0.20 0.05 0.15 Bal.
7A33 0.25 0.30 0.25–0.55 0.05 2.2–2.7 0.10–0.20 4.6–5.4 0.05 - 0.05 0.10 Bal.
7A52 0.25 0.30 0.05–0.20 0.20–0.50 2.0–2.8 0.15–0.25 4.0–4.8 0.05–0.18 0.05–0.15 0.05 0.15 Bal.
7003 0.30 0.35 0.20 0.30 0.50–1.0 0.20 5.0–6.5 0.20 0.05–0.25 0.05 0.15 Bal.
7020 0.35 0.20 0.20 0.05–0.50 1.0–1.4 0.10–0.35 4.0–5.0 - 0.08–0.20 0.05 0.15 Bal.
7022 0.50 0.50 0.50–1.0 0.10–0.40 - 0.10–0.30 4.3–5.2 - - 0.05 0.15 Bal.
7050 0.12 0.15 2.0–2.6 0.10 1.9–2.6 0.04 5.7–6.7 0.06 0.08–0.15 0.05 0.15 Bal.
7075 0.40 0.50 1.2–2.0 0.03 2.1–2.9 0.18–0.28 5.1–6.1 0.02 - 0.05 0.15 Bal.
7475 0.10 0.12 1.2–1.9 0.06 1.9–2.6 0.18–0.25 5.2–6.2 0.06 - 0.05 0.15 Bal.

2.2. Microalloying Elements

Adding microcontent of Zr, Mn, Cr, Ag elements in 7xxx series aluminum alloy can
not only improve the recrystallization temperature of the alloy, but also refine crystal grain,
thus giving the alloy high mechanical properties and anti-corrosion capacity.

2.2.1. Zr and Mn Transition Elements

Fang et al. [24] found that the addition of Zr (0.1~0.15%) in 7xxx series aluminum alloy
can form Al3Zr dispersion phase with significant strengthening effect on the alloy. The
pinning effect of Al3Zr on the grain boundary can inhibit the recrystallization and grain
growth behavior of the alloy, and improve the yield strength, tensile strength and elongation
of the alloy. Due to the extremely low solubility of Zr in aluminum, Al3Zr particles are easily
precipitated with the addition of microcrystalline Zr element. It is concluded that Al3Zr is
a small particle dispersed in the grain and on the crystal boundaries, which is beneficial to
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refine the alloy grain, improve the strength, toughness, aging effect and corrosion resistance
of the alloy.

There are only three ways for Zr to exist in aluminum alloy [25]: (1) Solid solution in
the matrix; (2) In the process of solid solution or homogenization, coherent or incoherent
Al3Zr (D023) dispersion particles are released from the supersaturated solid solution, which
acts as dispersion strengtheners; (3) During the melting process, Zr element segregates from
the matrix, resulting in the formation of Al3Zr primary crystals with coarse size, which is
not conducive to the alloy’s performance.

Md Shahnewaz et al. [27] found that the addition of Mn in 7xxx series aluminum
alloy forms Al6Mn particles improves the stress-corrosion resistance of the alloy. Al6Mn
does not affect the width of PFZ and can increase the maximum tensile strength, frac-
ture toughness, and simultaneously improve the low cyclic fatigue performance. Valeev
SH I et al. [28] pointed out that excessive Mn content would lead to the emergence of
Al20Cu2Mn3 and other second-phase compounds in aluminum alloys, which reduced the
number of strengthening elements and strengthening phases in aluminum alloys, and the
quenching sensitivity increased with the excess level of Mn content.

2.2.2. Cr and Ag Microalloying Elements

Notably, 7xxx series aluminum alloy has strong quenching sensitivity, and it is difficult
to prepare rather thick plates with consistent strength [8,29]. If Zr is substituted with
Cr, the quenching sensitivity can be greatly reduced and the effect of Cr on inhibiting
recrystallization of 7xxx series aluminum alloy can be retained. Many investigations have
shown that [24,30–32]: Cr element can form fine second phases of intermetallic compounds
such as E (Al18Cr2Mg3) phase, (CrMn)Al12 and (CrFe)Al7 in aluminum alloy, which can
effectively prevent the recrystallization nucleation and growth of aluminum alloy during
processing. Micro amounts of Cr will improve the stress-corrosion resistance of aluminum
alloy, and it will combine better with Cu. Generally, the content of Cr in aluminum alloy
is 0.1–0.2%. However, in recent years, due to the better comprehensive performance of
dispersion particles generated by Zr and other elements or aluminum matrix, Zr is used to
replace Cr.

Adding minor Ag (0.16%) to Al-Zn-Mg-Cu-Zr alloy disclosed that Ag could promote
the formation of GP zone and transition phase [33], improve the stability of transition phase,
delay the over-aging of the alloy, and thus improve the thermal stability of aluminum
alloy [34]. Figure 1 XRD shows that the addition of Ag element in 7xxx series aluminum
alloy does not change the main phase composition.
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Figure 1. XRD pattern of as-cast 7075 (0 Ag) alloy and 0.4 Ag alloy. Adapted with permission from
ref. [34]. 2015 Xu.

Figure 2 shows the rolled structure of the alloy with different content of the Ag element.
After homogenization treatment and rolling deformation of 7075 alloy, it can be seen that
the grains become longer along the rolling direction. After homogenization treatment, there
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are still superior second phases around the grains. The second phase of the alloy containing
Ag is less than that of the alloy without Ag, and the aggregation phenomenon is weakened.
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2.3. Rare Earth Elements

There are 17 rare earth elements, which are the third subfamily of the periodic table.
The addition of rare earth elements can purify, modify, micro alloy, and strengthen and
improve the electrical conductivity of aluminum alloys. Depending on the different perfor-
mance needs of aluminum alloys, the mass fraction of rare earth elements in the range of
0.1–0.4% is the best proportion [35]. Table 3 [20,24,36–38] explains the characteristics of the
main rare earth elements in aluminum.

Table 3. Properties of major rare earth elements and their properties in aluminum [20,24,36–38].

Element HV
Atomic
Radius

(nm)

Relative
Difference with

Al Atomic
Radius (%)

Electronegativity
Electronegativity
Difference with

Al

Melting Point of Pure
Aluminum and

Eutectic Temperature
Difference (◦C)

Eutectic POINT
Composition

(w(RE)%)

Er 700 0.1757 23 1.2 0.3 5 1
Sc 850 0.1641 14.8 1.3 0.2 5 0.3
Y 600 0.1803 26.2 1.2 0.3 10 3.3
La 400 0.1877 31.4 1.1 0.4 20 2.5
Ce 250 0.1824 27.6 1.05 0.45 20 2
Nd 350 0.1522 27.5 1.2 0.3 20 7.4
Sm 450 0.1802 26.1 1.2 0.3 28 1.5
Eu - 0.2041 42.8 1.1 0.4 - -
Gd 550 0.1801 26 1.2 0.3 17 2
Tb 600 0.1783 24.8 1.2 0.3 16 1.8
Dy 550 0.1775 24.2 1.2 0.3 24 8.2
Ho 600 0.1767 23.7 1.2 0.3 13 2.6
Tm 650 0.1747 22.3 1.2 0.3 16 1.7
Yb 250 0.1939 35.7 1.1 0.4 35 4

It can be discerned from Table 3 that the difference between the melting point of pure
aluminum and the eutectic temperatures of rare earth elements Er and Sc is relatively low,
and the eutectic point composition of Sc is the lowest, w (Sc)% ≈ 0.3%, w (Er) ≈ 1.0%.
Therefore, it can be perceived that the properties of 7xxx series aluminum alloy with the
addition of Sc will be remarkably improved.

2.3.1. Er

Liu et al. [39] identified the effect of rare earth element Er on the failure behavior
of 7xxx series aluminum alloy. The results show that the addition of Er can enhance the
strength of 7xxx series alloy. When Zr and rare earth elements coexist, the performance
of the alloy gets better. When the mass fraction of Zr is 0.14%, Er has a strong ability to
improve strength (4.2%). When the mass fraction of Zr is 0.27%, Er has a weak ability to
improve strength (3.1%); a trace addition of Er can improve the plasticity of the material;
the fracture mechanism of the alloy without Er is brittle fracture, and secondary cracks
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appear. The toughness of the alloy with a trace addition of Er is enhanced, and dimples
appear, which changes from brittle fracture to ductile fracture mode [40].

2.3.2. Sc

Due to the decrease in the recrystallization fraction and the discontinuous distribu-
tion of GBPs, 0.06 wt% Sc added to medium strength Al-Zn-Mg alloy has excellent SCC
resistance under aging conditions [41]. Excessive addition of 0.11 wt% Sc can increase
the electrochemical activity and hydrogen embrittlement rate of GBPs and PFZ, thereby
reducing the SCC resistance of the alloy.

Figure 3 exhibits the peak SCC sensitivity index (ISCC) of the three alloys. Figure 4
shows the SCC crack growth path diagram of the three alloys. Due to the decrease in
the recrystallization fraction and the discontinuous distribution of GBPs, 0.06 wt% Sc
added to medium strength Al-Zn-Mg alloy has superordinary SCC resistance and excellent
mechanical properties, even under aging conditions. Excessive addition of 0.11 wt% will
increase the electrochemical activity and hydrogen embrittlement rate of GBPs and PFZ,
and reduce the SCC resistance of the alloy.
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2.3.3. Sc and Zr

The addition of trace amounts of Sc and Zr in Al Zn-Mg-Cu alloy is more beneficial for
improving the extremely fine Al3 (Sc, Zr) particles, and the alloy obtains higher strength
and ductility, because the dispersed Al3 (Sc, Zr) particles with L12 structure are formed
during homogenization. Al3 (Sc, Zr) particles with L12 structure precipitates at any time
into coherent Al3 (Sc,Zr) particles with D023 structure. L12 structure precipitated can
effectively hinder recrystallization, inhibit grain growth, and improve the mechanical
properties of the alloy [42]. Sc is a transitional element in rare earth elements and has
been used as a kind effective grain refiner to replace Ti/TiB. Primary Al3Sc particles can
be used for excellent heterogeneous nucleation and can effectively refine the grain size of
aluminum alloy during solidification. In the Al−Sc binary system, the recrystallization can
be effectively retained by adding between 0.15 and 0.20% Sc. Xiao et al. [43] found that
compared with the addition of 0.10% Zr, the alloy with 0.07% Sc and 0.07% Zr can resist
recrystallization more effectively and improve the mechanical properties of 7xxx series
aluminum alloy.

2.3.4. Y

In recent years, it has been found that a small amount of Y can refine the secondary
dendrites of 7xxx alloy, reduce the size of eutectic compounds and improve the impact
toughness of the alloy. According to the composition of the main alloy elements, Al3Y,
Al6Cu6Y or Y12Al3Zn rare earth compounds will be formed, which have an obvious effect
on grain refinement. Li et al. [44] found that after adding 0.25 Er and 0.15 Y to 7xxx
series aluminum alloy, the dissolution temperature of eutectic compound increased, the
nucleation rate increased, and the fine grain strengthening was achieved. Table 3 points
out that the atomic radius difference between the Y atom and the Al atom is 26%. The
deformation mechanism of Y in 7xxx series aluminum alloy is that when the Y atom
enters the aluminum alloy, the lattice distortion and the free energy of the alloy increase,
and the rare earth phase compounds containing Y can only be distributed at the grain
boundary. Furthermore, when Y enters the alloy, the second phase at the grain boundary
increases, which inhibits the growth of grains. The generated Al3Y, Al6Cu6Y or Y12Al3Zn
rare earth compounds as the core of heterogeneous nucleation can strengthen the aluminum
alloy. If the rare earth element Y is excessive, the second phase will be enriched, and the
comprehensive properties of the alloy will be greatly reduced. Due to the low price of rare
earth element Y, it is an important additive element with potential for future development.

2.3.5. Gd

The rare earth element Gd also has a certain influence on the high temperature prop-
erties of the alloy. The addition of rare earth element Gd to the 7xxx series aluminum
alloy forms a uniformly distributed L12-type Al3 (Gd, Zr) dispersed phase, rather than
a core-shell-shaped Al3 (Sc, Zr) dispersed phase produced by adding Sc element to the
7xxx series aluminum alloy. Chen et al. [45] found that the addition of 0.11% Gd in 7xxx
series aluminum alloy has a significant effect on hindering dislocation and grain boundary
movement, stabilizing a large number of deformation and recovery structures of fine sub-
grain boundaries. The stress-corrosion crack propagation rate of the alloy was effectively
delayed. The addition of 0.11% Gd element to 7056 aluminum alloy also increased the KI
(critical stress intensity factor) of 7056 from 5.45 MPa·m1/2 to 10.59 MPa·m1/2.

Mei et al. [46] identified, as shown in the Figure 5, that after high temperature solution
treatment, the alloy without Gd added fully recrystallized, forming equiaxed recrystal-
lized grains, and the alloy with Gd added still maintains fine fibrous unrecrystallization
microstructure, indicating that the formed dispersion phase can effectively hinder the trans-
formation of deformation-recovery microstructure to sub-grain microstructure, thereby
inhibiting the recrystallization of the matrix. This shows that the rare earth element Gd
is mainly distributed among dendrites in 7075 aluminum alloy with Al3Gd compound.
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Adding Gd within the effective range can improve the tensile strength and elongation of
aluminum alloy.
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2.4. Non-Metallic Inclusions Element

Fe and Si elements are harmful impurities in 7xxx series aluminum alloys. The main
phases of impurity elements Fe and Si in 7xxx series aluminum alloys are brittle phases
such as Al7Cu2Fe, MgSi2, AlFeMnSi and eutectic compounds [20,24]. Due to the impurity
particles containing Fe and Si being distributed inside the grains or on the grain boundaries,
and they are difficult to dissolve at high temperature, it easily produces the banded structure
that is arranged intermittently along the deformation direction during hot deformation.
In the process of plastic deformation, due to the uncoordinated deformation of the brittle
phase matrix, microcracks are easily generated on some grain-matrix boundaries and
become the source of macroscopic cracks, which have an unfavorable influence on the
plasticity and fracture toughness of the alloy. At present, the mass fraction of Fe and Si
impurities in 7xxx series aluminum alloys should be limited to below 0.15% [20,24].

3. Aging Precipitation Sequence and Strengthening-Toughening Mechanism of 7xxx
Series Aluminum Alloy

The main phases that can be brought about between the elements of Al-Zn-Mg-Cu
quaternary alloy mainly include α phase (Al matrix), θ phase (CuAl2), S phase (Al2CuMg),
η phase (MgZn2), β phase (Al8Mg5) and T phase (Al2Mg2Zn3). The precipitated phases
affect the main properties of the material [47].

3.1. Precipitated Sequence

Figure 6 [48] shows the temperature dependence of Al-rich angle of equilibrium phase
in 7xxx series aluminum alloys. According to the phase diagram, the increase in Cu content
promotes the appearance of θ phase. When the Cu content is lower, the phase composition
is mainly affected by the Zn/Mg ratio. When the Zn/Mg ratio is extremely small, all the
amounts are composed of α + S + T phase or medium α + T phase without η phase; when
the Zn/Mg ratio increased, η phase began to appear and gradually increased, accompanied
by S phase and T phase.
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Figure 6. Variable temperature section of aluminum rich angle of equilibrium phase of 7xxx series
aluminum alloy. Adapted with permission from ref. [48]. 2018 Zhang and Deng.

The precipitation sequence of precipitates in 7xxx series aluminum alloy is classified
into three types: the first is GP zone (supersaturated solid solution SSS→ GP I zone→ GP
II zone→ η′ phase→ η phase); the second is when the Mg content is high, supersaturated
solid solution SSS appears in defects and grain boundaries, the precipitation order is:
(supersaturated solid solution SSS→ T phase and macroscopic Al-Zn-Mg-Cu phase→
η phase); finally, when the supersaturated solid solution SSS appears in the vacancy-rich
region, the precipitation order is (SSS→ VRC (vacancy-related cluster) vacancy enrichment
→ T phase and coarse Al-Zn-Mg-Cu phase → η phase). The three kinds of different
precipitation behavior eventually formed a stable η phase; the precipitation order is shown
in Figure 7 [48]. The main strengthening phases of Al-Zn-Mg-Cu alloy include GP zone
and η′ phase. The GP zone is a fully coherent Mg and Zn enrichment zone with the
aluminum matrix, which is spherical (GP I zone) or strip (GP II zone), while the η′ phase is
a hexagonal plate metastable phase, semi-coherent with the aluminum matrix, which is
the uppermost aging strengthening phase. The η phase is a disc-shaped equilibrium phase
that is not coherent with the matrix [49]. If there is T phase under certain composition
conditions, η phase will be replaced by T phase. Due to the existence of Cu atoms in the
alloy, the S phase will appear at the grain boundaries at a certain Zn/Mg ratio. It will act
as a cathode to continuously dissolve the surrounding matrix to form pitting corrosion,
which will also lead to poor fracture properties of aluminum alloys. Table 4 summarizes
the main precipitated phases and their structure characteristics in 7xxx series aluminum
alloys [1,6,48,49].
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Table 4. Morphology and structure characteristics of main precipitates in 7xxx series aluminum
alloy [50–54].

Precipitation Crystal
Structure Lattice Constant/nm Morphology And Crystal

Orientation
Precipitation

Temperature/◦C

a b c

Metastable
phase

H′ (MgZn2) Hexagonal
system (L12) 0.496 - 1.403

semi-Coherent,
(0001)η′//{111}Al;

(11–20)η′//<112>Al;
(10–10)η′//(110)Al;
habit plane(111)Al

120–250

ηp
(Al2Mg2Zn8)

Hexagonal
system 0.496 - 0.935

semi-Coherent,
(0001)ηp//{111}Al;

(11–20)ηp//<112>Al;
(10–10)ηp//(110)Al

300–400

T′

(Al2Mg2Zn3) Cubic system 500 - - Incoherent;
Equiaxed Polytopic 471–476

S′ (Al2CuMg) Orthorhombic
system 0.4012 0.9265 0.7124 Incoherent; Bar shape 456~482

Stable
phase

η (MgZn2) (D023) 0.516–0.522 - 0.849–0.855

Incoherent; 13 orientation
relationship; classic

orientation relationship
(0001)η//{111}Al,
(10–10)η//{110}Al

150–476

S (Al2CuMg) Orthorhombic
system 0.4 0.025 0.715 semi-Coherent 400–494

T (Al2Mg2Zn3) Cubic system 1.416 - -
Coherent,

(060)T//(111)Al;(103)//
(2–20)Al;

Low temperature
precipitation: 174

θ (CuAl2) Tetragonal
system 0.607 - 0.487 Coherent

451; Low
temperature

precipitation: 80

According to the crystallography theory [11,55], there are four equivalent variants of
η phase on the Al plane. As shown in Figure 8a, four disk η phases with the same thickness
and diameter keep their (0001)η habit planes parallel to four equivalent {111}Al planes,
which are defined as V1–V4 variants. Figure 8b shows that V1 and V2 variants are marginal,
while V3 and V4 variants are elliptical, as observed in the direction {110}Al. It can be seen
from Figure 8 that when the temperature is lower than 100 ◦C, the η precipitates in the
alloy are mainly V3 and V4. When the temperature range is 125–175 ◦C, V1 and V2 mainly
contain η precipitates [55].
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Figure 8. Schematic illustrations showing four types of η variants V1-4 on {111}Al (a) The three-
dimensional view, and (b) the projection from {110}Al direction. Adapted with permission from
ref. [55]. 2021 Zang et al.

Figure 9a shows that η′ phase is thin margin (elongated) on {111}Al plane. The insertion
of the upper left corner shows the fast fourier transform (FFT) pattern diagram of the η′



Materials 2022, 15, 1216 11 of 26

phase with weak scattering. When the temperature reaches 175 ◦C, Figure 9e, η′ thickness
and radius increase, respectively. A larger radius and thickness of η precipitates can also be
observed. The clearer observation results in Figure 9g show the obvious aboriginal lattice
distortion caused by the incoherence between η phase and α-Al matrix.
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various heat treatments: (a) sample I (25 ◦C); (b) sample II (100 ◦C); (c) sample III (125 ◦C); (d) sample
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Khalfallah et al. [56] found by DSC that the formation of GP region is controlled by
the migration of Zn and Mg atoms, while η′ metastable and η precipitation of stable phase
is affected by the migration and diffusion of solute atoms. Berg et al. [57] found that GP
I region was formed in a wide temperature range from room temperature to 140–150 ◦C,
and was independent of quenching temperature. These regions are consistent with the
aluminum matrix. Based on the AlCu(I) type subunit, the interior of the matrix lattice is
arranged as Zn and Al or Mg, and the periodic inverse boundary is formed after quenching
above 450 ◦C and aging above 70 ◦C. According to the diffraction theory, the GPII region is
identified as a Zn-rich layer on the {111} plane, the inside of which is arranged in a slender
crystal orientation. The habit plane of GPII region is the {111} plane, indicating that not
all GP regions can be transformed into η′ phase. The η′ phase is seven-layer {111}Al thick,
with O (orthorhombic) and R (rhombohedral) subunit units inside. Each ligand is formed
by the push-ring contact between two atoms and six atoms. It can be seen that the GP zone
with smaller size has higher surface energy, which is more unstable than the GP zone with
larger size. With the aging process, the GP zone with smaller size is transformed into η′

phase. Figure 10 [58] shows the lattice and crystal structure of 7xxx series aluminum alloy
under haddf-stem.

3.2. Strengthening and Toughening Mechanism
3.2.1. Strengthening

The strengthening and toughening of 7xxx series aluminum alloy deformation mainly
includes solid solution strengthening, second phase strengthening, grain boundary strength-
ening and processing strengthening. The existing problem is still that the comprehensive
performance of strength and toughness and stress-corrosion resistance are low. According
to the aging precipitation [55,59–62], the phase, GBPs and PFZ of the precipitated alloy after
aging determine the properties of the aluminum alloy. Reducing the slip of the eutectic
surface and narrowing the PFZ of the grain boundary, optimizing the composition design
of the alloy and improving the heat treatment method are the specific means to improve the
comprehensive properties of the alloy [46]. Improving the properties of the aluminum alloy
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cannot only start from the composition design, but also must understand the performance
theory and characterization method of the microstructure in depth [63]. Dai et al. [64]
researched the mechanical properties of 7xxx series aluminum alloy at 470 ◦C under differ-
ent solution times. With the extension of solution holding time, the tensile strength and
elongation of the alloy increased first to the peak and then decreased gradually. Under
470 ◦C solution state, the tensile strength and yield strength of the alloy were the highest
when the aging time was 120 min, which were 475.3 MPa and 448.6 MPa, respectively.
After solution treatment and aging at 120 ◦C for 24h, the tensile strength reached a peak
of 613.5 MPa at 120 min, and the yield strength reached a peak of 578.5 MPa at 160 min.
Figure 11 shows the changes of mechanical properties of the alloy at the peak point of
tensile strength and yield strength at 470 ◦C for different solution times.
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When the second phase is uniformly distributed in the matrix with fine dispersed par-
ticles, the precipitation strengthening or aging strengthening (dislocation cutting through
the second phase mechanism) occurs when the second phase precipitates and produces a
strengthening phase through the aging treatment of the supersaturated solid solution. If
the second phase particles are strengthened by powder metallurgy, it is called dispersion
strengthening [61,65]. The elements of the material composition affect the strength of the
second phase particles, grain boundaries, grain size and orientation, grain boundaries
and separation, and residual stress in the material. The formation of the second phase
particles belongs to the diffusion-type phase transformation. When the dislocation meets
the metastable precipitates such as η′ (MgZn2) phase, ηp (Al2Mg2Zn8) phase, S′ (Al2CuMg)
phase, β′ (Al8Mg5) phase and T′ (Al2Mg2Zn3) in 7xxx series aluminum alloy, the dislo-
cation will cut through the above metastable precipitates and deform with the matrix at
the same time. The strength of the alloy is improved by increasing the interface energy
between the second phase particles and the interface. When the dislocation meets the
precipitated phase η with larger steady-state size, it is incoherent with the matrix. The
dislocation will be subjected to the second-phase particles to make the dislocation line bend
larger and form the second-phase particle dislocation ring. Other dislocations bypass the
second-phase particles. The effect of the bypass mechanism on strengthening is enhanced
with the increase in particles and the decrease in the size [62].

Kai Huang et al. [66] found that when Sc content was up to 0.25%, the grain dispersion
strengthening refinement effect was effective, the particle size was more uniform, and the
secondary dendrite spacing decreased. When the amount added was more than 0.30%, no
grain refinement effect was observed, as shown in Figure 12.
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Figure 13 shows the high density Al (ScxYy) particles in Al-0.25Y-0.25Sc alloy grains,
some of which are located in the dislocation position near GBs. The precipitates first
precipitate and grow at GBs, and then transform into a stable phase by absorbing the solute
atoms around the particles [67]. The second phase particles of Al3(ScxYy) can prevent the
movement of substructure and dislocation, and as the alloy has the smallest particle size, its
corrosion resistance is the best. Zhang et al. [68] found that the second phase particles could
inhibit the precipitation and aggregation of θ-CuAl2 phase at GBs, which greatly reduced
the corrosion sensitivity of the alloy. When the η′ (MgZn2) phase is transformed into η
phase, the strength and plasticity of the alloy decrease instead. The η phase distributed at
the grain boundary will cause the formation of PFZ. Dislocation and stress concentration
can lead to the expansion of PFZ into cracks [69].
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Both grain-boundary strengthening and processing-strengthening strengthen the ma-
terial by changing the grain size. The prominent role of melting, and grain refinement,
in improving the mechanical properties of aluminum products are two key issues [70].
The most obvious improvement in grain refinement is the increase in strength at room
temperature, which can be explained theoretically by the Hall–Petch formula. In the poly-
crystalline, the yield strength is transferred from the grain with prior plastic deformation to
the adjacent grain with slip. This transfer is reflected in the stress concentration generated
by the dislocation accumulation group near the grain boundary of the slip grain. When
the applied stress and other conditions reach a certain value, the number of dislocations
is proportional to the distance between the obstacle causing the accumulation and the
dislocation source at the grain boundary. Therefore, the larger the grain is, the larger is the
distance, the larger the number of dislocations, and the greater is the stress concentration.
The opportunity for plastic deformation is much larger than with small grains. This is why
ductility increases with grain coarsening and decreases with grain size decreasing [62,70].
Compared with the second phase strengthening and deformation hardening, the grain
boundary strengthening can improve the strength, toughness and ductility, and reduce the
defects such as separation and porosity of castings [71].

3.2.2. Strengthening and Toughening Method

The strengthening and toughening methods of 7xxx series aluminum alloys should
not be limited to the simple design of the alloy composition in the “stir-frying style”.
We should focus more on the microstructure of the precipitates and the microstructure
improvement methods after heat treatment. More attention should be paid to how to
eliminate S (Al2CuMg) phase, θ (CuAl2) phase and T (Al2Mg2Zn3) phase, and how to
control the content of Mg/Zn to reduce the incoherent precipitation caused by η′ (MgZn2)
phase. The addition of Zr and Sc atoms can form the dispersed Al3(Sc,Zr) particles that are
coherent with the matrix, which can refine the grains and inhibit the recrystallization of the
grain boundary. However, the transformation of Al3(Sc,Zr) particles from coherent to non-
coherent should be avoided during the migration of the grain boundary. The non-coherent
second phase particles will make the stress-corrosion resistance of the material worse and
the quenching sensitivity higher.

Furthermore, the method of strengthening and toughening aluminum alloy should
be combined with theoretical simulation and experiment, focusing on the optimization of
7xxx series aluminum alloy deformation processing and heat treatment on the microstruc-
ture and stress changes. Alistair Garne et al. [72] found the quenching of 7050 and 7085
aluminum alloy η phase nucleation simulation, shown in Figure 14, and obtained the
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quenching process between the two alloys’ q-GBPs (quenching state) and a-GBPs (aging
state) composition in the volume composition difference. Menzemer et al. [73] studied the
fracture surface morphology of 7085 at various temperatures, as shown in Figure 15. The
alloy quenched in cold water showed the main intergranular fracture characteristics. When
quenching in oil medium, the fracture surface transforms into a combination of transverse
and intergranular fracture. It can be seen that heat treatment methods such as hierarchical
solid solution and aging can promote the dispersion and homogenization of η′ phase, and
hinder the coarsening of PFZ region, thereby improving the strength and toughness of the
alloy [74].
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3.2.3. First-Principle Calculation of Precipitation Strengthening Phase

The first principle is based on the density functional theory (DFT), using the relativistic
corrected projection augmented wave (PAW) method to describe the virtual element ratio;
the crystal structure of the precipitated phase can be calculated, and the stability of the
crystal structure can be judged. Liu et al. [75] calculated the interface energy of Al/Al3Sc,
Al/Al3Er and Al3Sc/Al3Er in Al-Sc-Er alloy in three directions, based on the PBE function
in VASP software. It was found that the interface structure of (100) surface was the best, and
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the interface energy of Al/Al3Er was the largest, as shown in Figure 16. The L12-Al3ScxEr1-x
precipitates mainly formed a core-shell structure, with Al3Er as the core, and Al3Sc as the
shell.
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Dong et al. [76] discussed the effect of doping elements (M) on the structural stability
and mechanical properties of Al3Sc doped with Zr, Ti, Y and Li, as shown in Figure 16.
The calculation shows that the structural stability, elastic properties and anisotropy of
Al24Sc6Zr2 and Al24Sc6Ti2 are superior. Sun et al. [77] calculated that the point defects of
L12-Al3Sc were mainly Al vacancies and Sc antisite defects on the Al sublattice, as shown
in Figure 17. Various mechanical properties of the material were calculated by the first
principle method and the mechanical equation, which was convenient for the study of the
total amount and proportion of the main alloy elements of the aluminum alloy, and was a
new direction in the field of material design [61].
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Figure 17. Structures of Al3Sc cell structure of alloy elements (M = Sc, Zr, Ti, Y, Li) doped with
different doping concentrations: (a) 2 × 2 × 2 supercell; doped with the alloying element (M = Sc, Zr,
Ti, Y, Li) at different doping concentrations, (b) 3.125%, and (c) 6.25%. Blue, green, and pink balls
represent (M = Zr/Ti/Y/Li), Sc, and Al atoms, accordingly. Adapted with permission from ref. [77].
2013 Sun et al.

4. Preparation Method of 7xxx Series Aluminum Alloy

With regards to 7xxx series aluminum alloy, Fe and Si elements are considered as
a natural impurities; solid solubility at room temperature is extremely low for insoluble
intermetallic particles; insoluble intermetallic particles only through deformation and heat
treatment alter the morphology, crystal type and composition [78]. All coarse intermetallic
particles are principal formed in the process of direct cold casting. The non-uniformity
of alloy is the difficulty and critical in the design and preparation of large-scale materials.



Materials 2022, 15, 1216 17 of 26

For avoiding performance loss in the manufacturing process. The integrated molding
of materials is also a development trend. The sophisticated formation mechanism of
macroscopic, microscopic and multi-scale structures involved in the relationship of al-
loy composition-process-structure-performance is the main reason for determining the
properties of materials [79,80]. Figure 18 shows the process-microstructure-performance
relationship of 7xxx series aluminum alloy.
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Adapted with permission from ref. [79]. 2019 Deng and Zhang.

4.1. Casting Processes

The commonly used casting process for 7xxx series aluminum alloy is assigned to
semi- continuous casting and squeeze casting. The casting structure mainly consists of
primary α-Al, MgZn2, AlCuMg, Al2Cu and other second phases. With the decrease in
pouring temperature, the primary α-Al dendrites in the slurry gradually decrease, and
the near-isometric primary phase gradually increases. The grain size decreases, and the
average roundness increases. In the solidification process of casting, the equilibrium or
metastable phase formed by liquid-solid eutectic reaction occurs [80–82]. Bai [83] measured
the chemical-mechanical properties of semi-solid 7050 alloy by in situ solidification method.
It was found that the tensile strength and plasticity of the alloy initially decreased sharply
with the decrease in solid fraction, which was due to the sharp decrease in the degree of
intercrystalline polymerization of the semi-solid alloy with the increase in liquid phase.
The tensile strength of the alloy decreased only slightly while the plasticity increased
significantly. Thus, in the casting process it is most important to avoid macro segregation,
cracks and other defects.

4.2. Multistage Homogenization Heat Treatment of Ingot

Firstly, 7xxx series aluminum alloy has a high degree of alloying, and the dendrite
segregation of chemical composition in the ingot is especially obvious. The ingot of this
alloy must be homogenized in the processing to eliminate the dendrite segregation of
alloying elements and low melting point non-equilibrium eutectic phase, and reduce the
heterogeneity of composition and structure. In practical engineering, the melting point of
the non-equilibrium eutectic phase is usually measured by differential thermal analysis
(DTA) or the differential scanning calorimetry (DSC) curve, and the melting temperature
below the melting temperature of non-equilibrium eutectic phase is selected as the starting
temperature of homogenization [84].

Secondly, another purpose of homogenization heat treatment is to regulate the be-
havior of high melting point precipitates of microalloying elements. The homogenization
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temperature of 7xxx alloy ingots is usually below 470 ◦C, because 480 ◦C is considered to be
the over-burning temperature of 7xxx series aluminum alloy [79,85], at which time a large
amount of residual components may still exist. In the case of large and thick aluminum
alloy sheets or shaped ingots, it is difficult to synchronize the lifting and cooling rates, so it
cannot be optimized only by single-stage homogenization. Wang et al. [86] found that the
highest temperature of two-stage homogenization treatment of 7B04 aluminum alloy can
reach 500 ◦C. The most appropriate homogenization heat treatment process is heating at
10 ◦C/h to 470 ◦C for 64 h, and then heating at 1 ◦C/h to 500 ◦C for 10 h. By comparing the
non-equilibrium solidification components of 7B04 aluminum alloy ingot after ultra-high
temperature homogenization at 500 ◦C, they were completely dissolved in the alloy matrix;
the hot rolling plasticity is much better than that of the traditional hot rolling plasticity
after homogenization at 470 ◦C.

The morphologies of 7055 and 7055-0.25Sc ingots after homogenization are shown in
Figure 19 [87]. The energy dispersive X-ray spectroscopy (EDS) spectrum of particle A,
Figure 12a shows that the particle is in the θ phase. The EDS results measured by particle B
in Figure 19b correspond to w (AlCuSc) phase. In the Al-Cu-Sc system with high copper
content, Sc atoms diffuse to the θ phase, resulting in the transformation of θ phase into w
phase during homogenization [88,89]. When the total mass fraction of Sc and Zr exceeds
0.45 wt%, w phase, primary Al3 (Sc, Zr) phase and refined grains are insufficient, and
the mechanical properties of 7055-xZrySc rolled plate treated with T6 deteriorate, thus
7055-0.25Sc rolled plate shows the optimal mechanical properties in the prepared alloy.
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4.3. Forming Process

The conventional deformation processes of 7xxx alloy, including equal channel angular
pressing (ECAP), asynchronous rolling (ASR), high pressure torsion (HPT), accumulative
roll-over (ARB) and reciprocating extrusion (CEC), include rolling, extrusion, and forg-
ing [79]. Additive manufacturing is a technology of manufacturing solid parts by the
gradual build-up of materials. Powder metallurgy (PM), and severe plastic deformation
(SPD) are well-known technological solutions used to achieve properties [90,91]. In recent
years, some high energy beam welding, including electron beam welding (EBW) and laser
welding (LBW), and friction stir welding (FSW) have been applied to weld 7xxx aluminum
alloy. Friction stir welding (FSW) is a solid-phase joining technology, rapidly developed
in recent decades. The biggest difference from other welding processes mentioned above
is that FSW has a low welding temperature, and no welding pool is generated during
welding [92].

Whether using a traditional forming process or a new additive manufacturing process,
what is required is to research the elimination of manufacturing defects through the defor-
mation process, and the production of ultra-fine grain microstructure resulting from work
hardening and fine-grain strengthening to improve the mechanical properties of materials
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and increase the precipitation density of η′ phase, which is also a far-reaching method used
for strengthening alloys in industry.

Asynchronous rolling can be called snake rolling according to the process characteris-
tics. Asynchronous rolling introduces shear strain and increases the deformation of the core
plate, which can effectively solve the serious uneven strain distribution of aluminum alloy
plate in the symmetric rolling process. Xu et al. [93] found that the strength performance
of the alloy plate increased with the increase in the speed ratio, and the elongation and
fracture toughness decreased. When the speed ratio is the same, with the increase in offset,
the strength of serpentine rolled sheet decreases, and the elongation and fracture toughness
increases significantly. In the condition where offset is 10 mm and speed ratio is 1:1, the
crack unit nucleation energy of the serpentine rolled sample increases by 14~36%. Xia [94]
simulated the asynchronous rolling of magnesium alloy sheets. The results show that
under the condition of the same total deformation, the multi-pass asynchronous rolling
with small speed ratio cannot only effectively obtain large shear strain accumulation, but
also the distribution of equivalent strain is more uniform than that of large speed ratio
rolling, and the multi-pass alternating asynchronous rolling can significantly improve the
high uniformity of thick plates.

Figure 20 shows the schematic diagram of snake rolling [95]. As shown in the figure,
the lower roller moves a distance (∆) horizontally relative to the upper roller, and the
peripheral speed ratio (vu/vl) between the upper and lower rollers can be adjusted by
altering the speed ratio (ωu/ωl) or diameter (du/dl). Extensive studies have shown
that the snake rolling method can, not only refine the grain, but also change the crystal
structure [96–98].
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4.4. Heat Treatment Method

The purpose of heat treatment is to adjust the method suitable for the material proper-
ties according to grain size, solute atoms, GBPs and microstructure of precipitates, mainly
including solid solution treatment and artificial aging treatment. Methods such as single-
stage and multi-stage solution, peak aging, excessive aging, multi-stage aging and regres-
sion re-aging are widely applicable.

4.4.1. Solution Treatment

Solid solution treatment, known as quenching, is the basis of strengthening heat treat-
ment (quenching and aging) of aluminum alloy strengthened by heat treatment [99]. Solid
solution treatment is classified into single-stage solid solution treatment (SST), enhanced
solid solution treatment (EST), high temperature pre-precipitation (HTPP) and multi-stage
solid solution treatment (MST) [100–102]. The objective of solid solution is to dissolve
the alloying elements into the aluminum matrix to achieve a well strengthening effect
in the subsequent aging precipitation stage. The single-stage temperature and constant-
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temperature multi-stage solid solution method can effectively alleviate the coarsening of
alloy grains at high temperature. In multi-stage solution treatment (MST), the heating and
holding process is divided into several stages from low temperature to high temperature,
which can significantly improve the comprehensive performance of aluminum alloy. Feng
et al. [100] used (470 ◦C,1H) + (480 ◦C,1H) two-stage solid solution treatment for 7A55 alloy
to eliminate the non-equilibrium of the surface layer of 7A55 aluminum alloy thick plate η′.
With high phase volume fraction, the heterogeneity of hardness and conductivity of 7A55
aluminum alloy thick plate can be improved. The commonly used solid solution process of
7xxx series aluminum alloy is [103,104] 450 ◦C/2 h + 460 ◦C/2 h + 470 ◦C/2 h + 480 ◦C/2 h.
After water-cooled solid solution strengthening and 121 ◦C/12 h aging treatment, the
alloy can obtain better mechanical properties, and the strength, hardness and plasticity
become superior. Figure 21 [105] shows the second-phase distribution after different solid
solution treatments. It can be seen that the solution treatment will significantly affect the
grain size of the alloy and the solid solution degree of the solute atoms, thus changing the
precipitation kinetics of the alloy in the subsequent aging process, and the number and
density of the aging precipitates will ultimately determine the overall performance of the
alloy.
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4.4.2. Aging Treatment

The traditional 7xxx series aluminum alloy has high strength after peak aging (T6) treat-
ment, but its SCC performance is low. Although over-aging treatment can greatly improve
the corrosion resistance of the alloy, the strength loss is large. In order to solve this problem,
regression re-aging (RRA) is introduced to balance the properties of materials [106,107].
Zheng et al. [108] improved T6176 intermittent aging system for 7475 aluminum alloy thick
plate, and obtained the strength equivalent of T6 state and the local corrosion performance
better than that of T73. Aging is a non-isothermal process. Ding [109] identified the ef-
fects of T6, four-stage aging, three-stage aging and T74 on thermal stability by tensile test,
transmission electron microscopy (TEM) and atomic probe tomography (APT). The results
showed that the tensile strength of the four-stage aging sample decreased by only 5.05%
after thermal exposure at 120 ◦C for 500 h. For the regression re-aging (RRA) treatment
with stricter control of heat treatment time, the temperature of this process is high, and the
precipitated phase will experience multiple reactions of dissolution, nucleation, growth
and coarsening, respectively, or simultaneously in different regression temperature ranges.
The hardness of 7xxx series aluminum alloy is higher than that of T651 (HV180) when the
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RRA heat treatment is carried out at a relatively low temperature (180 ◦C) and with a short
degradation period. However, with the increase in temperature, the hardness decreases
with the increase in the degradation period. After RRA treatment at 180 ◦C for 4 min, the
hardness is the highest. The hardness of 7xxx series aluminum alloy is higher than that
of T651 (HV180) when RRA heat treatment is carried out at a relatively low temperature
(180 ◦C) and with a short degradation period, but with the increase in temperature, the
hardness decreases with the increase in degradation period, and the hardness reaches
the highest after RRA heat treatment at 180 ◦C for 4 min [79,110]. Liao [111] carried out
different combinations of pre-aging, regression treatment and re-aging systems on 7055,
and obtained the optimum RRA system for actual production in the factory, which is
120 ◦C/24 h + 175 ◦C/1.5 h + 120 ◦C/24 h, in which the heating rate is 35 ◦C/h, and the
cooling method is air cooling. The results show that the pre-aging temperature has more
effect on the size of the precipitated phase than the re-aging temperature. After RRA treat-
ment [112], the material will be over-aged. During the re-aging process, a new precipitate
occurs in the η′ phase, while the coarse η′ precipitate grows and transforms into the η
phase. It shows the regression stage undergoes heating, heat preservation, cooling and
other processes, and there are many kinds of precipitates in the crystal, and the evolution
law is sophisticated. However, the precipitation is a single type of equilibrium. Therefore,
for the RRA treatment, the grain boundary precipitates can be selected as the object, and the
non-isothermal regression kinetic model can be established to guide the precise regulation
of aging process parameters.

5. Challenges and Conclusions

The biggest challenge for aluminum alloy today is that in order to greatly improve
the corrosion resistance of the alloy, the strength loss is large. Both cannot be improved
at the same time. Furthermore, due to the low melting point of aluminum alloy, its high
temperature properties need to be improved. More attention should be paid to how to
simultaneously improve the corrosion resistance and strength at the same time. Additive
manufacturing of aluminum alloy, which has the characteristics of uniform chemical
composition, high density, open forming environment, unlimited size of forming parts
and high forming rate, is also the focus of future research. The optimization of alloy
composition design and improvement of heat treatment method are the specific means to
improve the comprehensive performance of 7xxx series aluminum alloy. The break-through
of aluminum alloy composition design-microstructure characterization theory and research
method promotes the development process of high strength aluminum alloy. Based on the
research content, the research directions and methods of 7xxx series aluminum alloys in
the future are determined as follows:

• To investigate the total amount and proportion of the main alloy elements and the
action law of microalloying elements, Thermo-Calc, VASP, Factsage, Materials Studio
and other software can be employed to integrate theoretical calculation, simulation and
experiment. The research and development, performance improvement and product
development period of alloys can be considerably shortened, and the efficiency can be
improved immensely.

• Under the guidance of the calculation results of the first-principles theory, the microstructure-
property characterization method of aluminum alloy was continuously improved ac-
cording to the relationship among alloy composition, process, microstructure and prop-
erty. The new principle and characterization method of the process-microstructure-
property correlation of materials was developed to explore the characteristic mi-
crostructure 7xxx series aluminum alloy materials with high static strength, high
strength, heat resistance, high toughness, damage resistance, low density, low quench-
ing sensitivity, and high comprehensive performance, at the cutting edge.

• The η′ Phase is the only strengthening phase in the alloy, in order to increase the
volume fraction of η′ precipitates and modify strength, rare earth elements should
be added to the alloy, while controlling the Mg/Zn mass ratio in the range of 5:2–7:1
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can refine the precipitates and improve the strength of the alloy and keep the alloy
corrosion resistant.

• Sc rare earth element is currently the most significant alloying element, Al3(Sc,Zr)
particles with L12 structure precipitated at any time into coherent Al3(Sc,Zr) particles
with D023 structure can effectively hinder recrystallization, inhibit grain growth, and
improve the mechanical properties of the alloy. Er and Sc rare earth elements are
relatively low, and the eutectic point composition of Sc is the lowest, w (Sc)% ≈ 0.3%,
w (Er) ≈ 1.0%. Therefore, it can be perceived that the properties of 7xxx series alu-
minum alloy with Sc addition will be remarkably improved. Er is much cheaper than
Sc; consequently, Er is a potential rare earth element to replace Sc.

• The width, GBPs sum, distribution and continuity of the average PFZ determine
the overall performance of the material; the purpose of different homogenization,
multi-stage aging and RRA heat treatment is to adjust the method suitably to achieve
material properties, according to grain size, solute atoms, GBPs and microstructure of
precipitates.

• Although the heat treatment process of 7xxx series aluminum alloy requires control-
ling time lapses in the process of heating, holding and cooling, and there are many
species precipitates in the crystal and the evolution mechanism is heterogeneous, the
precipitated strengthening phase is a single type of equilibrium η′ phase. Therefore,
for the heat treatment process, the grain boundary precipitate can be selected as the
object, and the non-isothermal regression kinetic model was established to guide the
accurate regulation of aging process parameters. More attention should be paid to
how to increase the volume fraction of η′ precipitates and modify the comprehensive
performance of the material by the regression re-aging method.

• Asynchronous rolling introduces shear strain and increases the deformation of the core
plate, which can effectively solve the serious uneven strain distribution of aluminum
alloy plate in the symmetric rolling process. The snake rolling method can not only
refine the grain, but also change the crystal structure, therefore, it can be popularized
for use.
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91. Bidulská, J.; Bidulský, R.; Grande, M.A.; Kvačkaj, T. Different formation routes of pore structure in aluminum powder metallurgy

alloy. Materials 2019, 12, 3724. [CrossRef]
92. Rai, R.; De, A.; Bhadeshia, H.K.D.H.; DebRoy, T. Review: Friction stir welding tools. Sci. Technol. Weld. Joi. 2011, 16, 325–342.

[CrossRef]
93. Xu, F.S.; Zhang, J.; Deng, Y.L.; Zhang, X.M. Effect of snake rolling on strength, toughness and microstructure of Al-Cu-Mg alloy

plate. Chin. J. Nonferr. Met. 2017, 27, 2005–2011.
94. Xia, W.J. Researeh on Special Rolling Techniques of Wrought Magnesium Alloy Sheet. Ph.D. Thesis, Hunan University, Hunan,

China, 2010.
95. Li, S.; Qin, N.; Liu, J.; Zhang, X. Microstructure, texture and mechanical properties of AA1060 aluminum plate processed by snake

rolling. Mater. Des. 2016, 90, 1010–1017. [CrossRef]
96. Zhang, T.; Wu, Y.X.; Gong, H.; Zheng, X.Z.; Jiang, S.S. Effects of rolling parameters of snake hot rolling on strain distribution of

aluminum alloy 7075. Trans. Nonferr. Met. Soc. China 2014, 24, 2150–2156. [CrossRef]

http://doi.org/10.1088/2053-1591/abda06
http://doi.org/10.1016/j.msea.2012.05.035
http://doi.org/10.1016/j.mseb.2012.04.008
http://doi.org/10.1007/s40195-017-0565-8
http://doi.org/10.1016/j.jmst.2017.10.021
http://doi.org/10.1016/j.actamat.2020.10.021
http://doi.org/10.1007/s11665-009-9524-5
http://doi.org/10.1016/j.actamat.2021.117338
http://doi.org/10.1016/j.jre.2020.08.005
http://doi.org/10.3390/ma12091539
http://doi.org/10.1016/S1003-6326(14)63306-9
http://doi.org/10.1007/s12598-017-0985-7
http://doi.org/10.1016/j.jmst.2018.09.004
http://doi.org/10.1016/S1003-6326(07)60094-6
http://doi.org/10.1007/s12613-019-1840-7
http://doi.org/10.1016/j.jallcom.2014.06.033
http://doi.org/10.1016/j.jallcom.2011.07.050
http://doi.org/10.12776/ams.v23i3.988
http://doi.org/10.3390/ma12223724
http://doi.org/10.1179/1362171811Y.0000000023
http://doi.org/10.1016/j.matdes.2015.11.054
http://doi.org/10.1016/S1003-6326(14)63326-4


Materials 2022, 15, 1216 26 of 26

97. Qin, G.H.; Yang, Y.; Li, Q.; Lin, F. Analysis and prediction of muti-pass snake hot rolling for 7075 aluminum alloy thick plate. Opt.
Precis. Eng. 2017, 25, 437–446.

98. Song, M.; Liu, X.H.; Liu, X.; Liu, L.Z. Ultrafine microstructure and texture evolution of aluminum foil by asymmetric rolling. J.
Ccent. S. Univ. 2017, 24, 2783–2792. [CrossRef]

99. Liang, S.B. Extrusion and Heat Treatment of Aluminum Alloy, 1st ed.; Central South University Press: Changsha, China, 2015;
pp. 470–472.

100. Feng, D.; Liu, S.D.; Han, N.M.; Chen, H.M.; Cao, W.K.; Han, Z.J. Multifactorial effects on microstructure, properties and
through-thickness inhomogeneity of 7A55-RRA treated aluminum alloy thick plate. Chin. J. Nonferr. Met. 2019, 29, 1150–1160.

101. Wang, J.Y. The Mechanism Research of Strength, Thoughness and Aging Stability of AA7021 Aluminum Alloy Thin Plates. Ph.D.
Thesis, University of Science and Technology Beijing, Beijing, China, 2019.

102. Wang, F.F.; Meng, W.; Zhang, H.W.; Han, Z.Q. Effects of under-ageing treatment on microstructure and mechanical properties of
squeeze-cast Al-Zn-Mg-Cu alloy. Trans. Nonferr. Met. Soc. China 2018, 28, 1920–1927. [CrossRef]

103. Wang, X.G.; Ma, L.Y. Microstructure and property Evolution of Al-Zn-Mg-Cu alloy with Ho addition during homogenization.
Rare Met. Mater. Eng. 2021, 50, 2771–2776.

104. Zhang, K.R.; Xu, X.J.; Zhang, J. Effect of multistage solution and aging treatment on microstructure and properties of 7xxx series
ultra-high strength cold extruded aluminum alloy. Heat Treat Metal. 2021, 46, 165–168.

105. Zhang, C.S.; Zhang, Z.G.; Liu, M.P.; Bao, E.C.; Chen, L.; Zhao, G.Q. Effects of single- and multi-stage solid solution treatments
on microstructure and properties of as-extruded AA7055 helical profile. Trans. Nonferr. Met. Soc. China 2021, 31, 1885–1901.
[CrossRef]

106. Liu, P.; Hu, L.L.; Zhang, Q.H.; Yang, C.P.; Yu, Z.S.; Zhang, J.Q.; Hu, J.M.; Cao, F.H. Effect of aging treatment on microstructure and
corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous solutions with different aggressiveions. J. Mater. Sci. Technol. 2021,
64, 85–98. [CrossRef]

107. Qu, M.; Tang, J.G.; Ye, L.Y.; Li, C.B.; Li, J.X.; Zhou, W.; Deng, Y.L. Comparative study on the effect of over-aging and addition of
Zr on the corrosion resistance of Al-Zn-Mg alloy. Mater. Rev. 2020, 34, 2083–2087.

108. Zheng, X.; Tang, J.G.; Zhang, Y.; Chen, M.Y.; Liu, S.D.; Zhu, Y.T.; He, K.H.; Zhang, X.M. Effect of intermittent aging on mechanical
properties and local corrosion properties of Al-Zn-Mg-Cu aluminum alloy thick plate. Chin. J. Nonferr. Met. 2022. Available
online: http://kns.cnki.net/kcms/detail/43.1238.tg.20211022.1156.003.html (accessed on 20 January 2022).

109. Ding, Q.W. Microstructure and Properties of Age-Hardenable Al-Mg-Zn Aluminum Alloy and the Process Optimization. Ph.D.
Thesis, University of Science and Technology Beijing, Beijing, China, 2019.

110. Gokhan, O.; Ahmet, K. Properties of AA7075 aluminum alloy in aging and retrogression and reaging process. Trans. Nonferr. Met.
Soc. China 2017, 27, 2357–2362.

111. Liao, B. Basic Research on Deformation Behavior and Heat Treatment Characteristics of 7055 Aluminum Alloy Thick Plate. Ph.D.
Thesis, Chongqing University, Chongqing, China, 2019.

112. Jaburek, N.; Merklein, M. Influence of a retrogression and reaging (RRA)-treatment on the mechanical and microstructural
characteristics of the aluminium alloy AlZn4.5Mg1. Prod. Eng. Res. Devel. 2015, 9, 161–166. [CrossRef]

http://doi.org/10.1007/s11771-017-3692-5
http://doi.org/10.1016/S1003-6326(18)64837-X
http://doi.org/10.1016/S1003-6326(21)65624-8
http://doi.org/10.1016/j.jmst.2019.09.030
http://kns.cnki.net/kcms/detail/43.1238.tg.20211022.1156.003.html
http://doi.org/10.1007/s11740-014-0593-4

	Introduction 
	Micro-Alloying 
	Main Alloy Elements 
	Microalloying Elements 
	Zr and Mn Transition Elements 
	Cr and Ag Microalloying Elements 

	Rare Earth Elements 
	Er 
	Sc 
	Sc and Zr 
	Y 
	Gd 

	Non-Metallic Inclusions Element 

	Aging Precipitation Sequence and Strengthening-Toughening Mechanism of 7xxx Series Aluminum Alloy 
	Precipitated Sequence 
	Strengthening and Toughening Mechanism 
	Strengthening 
	Strengthening and Toughening Method 
	First-Principle Calculation of Precipitation Strengthening Phase 


	Preparation Method of 7xxx Series Aluminum Alloy 
	Casting Processes 
	Multistage Homogenization Heat Treatment of Ingot 
	Forming Process 
	Heat Treatment Method 
	Solution Treatment 
	Aging Treatment 


	Challenges and Conclusions 
	References

