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Abstract: In this paper, evolution of microstructures, electrical properties and defects of the double
Schottky barrier during the sintering process were investigated by quenching ZnO varistor ceramics
at different sintering stages. It was found that morphology of the samples changed little when the
temperature was below 800 ◦C. Remarkable enhancement of the Schottky barrier height and electrical
properties took place in the temperature range between 600 ◦C and 800 ◦C. The Bi-rich intergranular
layer changed from β phase to α phase. The interfacial relaxation at depletion/intergranular layers
became detectable in the samples. Meanwhile, a distinct relaxation loss peak from electron trapping
of interface states was observed instead of two dispersed ones. It indicated that the differences among
the Schottky barriers in ZnO varistor ceramics became smaller with the process of sintering, which
was also supported by the admittance spectra. In addition, oxygen vacancy was found more sensitive
to the sintering process than zinc interstitial. The results could provide guidance for fine manipulating
the Schottky barrier and its underlying defect structures by optimizing sintering process.

Keywords: zinc oxide; varistor; Schottky barrier; defects; quenching

1. Introduction

Electronic ceramics with variable resistance on voltages are of importance in protecting
electrical and electronic devices from overvoltage [1–5]. Among various kinds of varistor
ceramics, ZnO based varistor ceramics are the most widely employed ones, due to their
extremely high nonlinear coefficient and excellent energy absorption capability [6,7]. It has
been acknowledged that the unique nonlinear current-voltage characteristics of ZnO based
varistor ceramics originate from the double Schottky barriers (DSBs) at grain boundaries
(GBs) [5,8], which further root in the underlying defect structures including the negatively
charged interface sates and the positively charged intrinsic point defects in depletion
layers [9]. Either electrical nonlinearity or stability is determined by the electron trapping
behaviors of those defects and their interactions [8,10,11].

Generally, the sintering process, especially the cooling process, is acknowledged to
play important roles in the formation of DSBs at GBs [9,12–14]. Electrical properties of ZnO
based varistor ceramics are largely dependent on the sintering temperature, atmosphere
and cooling rates, which are further correlated with grain size distribution and height of
DSBs at GBS. Therefore, a number of studies about the sintering process mainly focused
on the microstructural evolution, grain growth kinetics and phase formation of ZnO based
ceramics [15–19]. Leite et al. [18] found that the densifying process in ZnO-Bi2O3 based
ceramics was controlled by the formation and decomposition of the Zn2Bi3Sb3O14 pyrochlore
phase. Arefin et al. [20] investigated the phase formation during the liquid sintering of the
basic ZnO-Bi2O3-Sb2O3 system. Development of interfacial microstructure during cooling of
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ZnO varistor ceramics were investigated by Olsson et al. [16]. They characterized the phase
transition of Bi-rich intergranular layers in the samples quenched at different temperatures.
The Bi-rich intergranular phase acts as a pass way for oxygen transport. DSBs were formed
during the cooling process when sufficient oxygen was absorbed at GBs [16,21,22]. Currently,
the microstructural evolution of ZnO varistor ceramics during the sintering process is
relatively clear.

However, evolution of the DSB that is a bridge connecting the microstructure and
the electrical nonlinear properties of ZnO based varistor ceramics was seldom reported.
The functional DSBs are attached to the morphology of ZnO varistor ceramics, whose
electrical responses rely on the electron transport across DSBs. It is commonly accepted
that interface states, which originated from absorbed oxygen, zinc vacancy, etc., are formed
during the cooling process [8,23]. As a result, depletion layers are formed because free
electrons nearby the surface of grains are exhausted by those negatively charged interface
states, leaving only positively charged immoveable cations. Intrinsic point defects like zinc
interstitials and oxygen vacancies are the major ions in the depletion layers [24,25]. Either
the short-term electrical properties or long-term degradation is inevitably modulated by
electron trapping behaviors of interface states and intrinsic point defects in ZnO varistor
ceramics [10,23,26–28]. Generally, a high barrier height is related with a high donor density
in depletion layers. A low density of zinc interstitials is beneficial for the anti-degradation
properties of ZnO varistor ceramics. Unfortunately, evolution of the defect structures,
especially those of extrinsic defects, of ZnO varistor ceramics during the sintering process
is still not clear.

In this paper, ZnO varistor ceramic samples were quickly quenched at different sinter-
ing stages. In addition to the evolution of microstructures and overall electrical properties,
dielectric relaxations originated from electron trapping behaviors of point defects at GBs
were characterized to demonstrate the evolution of defect structures of DSBs. Relationships
among microstructures, defects, DSBs and electrical properties were further discussed.

2. Materials and Methods

ZnO-Bi2O3 based varistor ceramics with a commercial formula were prepared by the
traditional solid-state reaction method in this paper. The raw materials were mixed and
ball milled in a polyamides bottle for 12 h with a speed of 300 r/min. Then, the mixture
was dried, sieved and calcined at 600 ◦C for 3 h. The calcined powders were mixed with
1 wt% polyvinyl alcohol (PVA) solution as a binder and pressed into discs of 12 mm in
diameter and 2 mm in thickness. Subsequently, they were slowly heated to 450 ◦C for 4 h
with a heating rate of 50 ◦C/h to remove the PVA and residual moisture. Finally, the green
discs were sintered in air.

For those as-prepared samples, they were sintered at 1200 ◦C for 2 h with a heating
rate of 150 ◦C/h and a cooling rate of 100 ◦C/h. For those quenched samples, the sintering
process, which was identical to that of the as-prepared samples, was interrupted by quickly
placing them on a stainless block in air. Samples were quenched from 1200 (including
two kinds of samples sintered for 1 h and 2 h, respectively), 1000, 800, 600 and 400 ◦C
to room temperature in 3 min (labeled as Q-1200-1h, Q-1200-2h, Q-1000, Q-800, Q-600,
Q-400), respectively.

A scanning electron microscope (SEM, VE-9800, Keyence, Japan) was used to charac-
terize the surface morphologies of the samples and X-ray diffraction (XRD, D8 Advances,
Bruker, German) was employed to measure the phase compositions. Gold electrodes were
prepared on both sides of the samples by using a sputter coater (KYKY SBC-128, Shanghai,
China) for electrical measurements. Current-voltage (J−E) characteristics were measured by
using a DC power source (WJ10001D, Chengdu, China) and a multi-function digital meter
(HP34401A, Palo Alto, Cal., USA) at room temperature. Dielectric properties were mea-
sured by a broadband dielectric measurement system (Novocontrol, Concept 80, Frankfurt,
Germany) in the temperature range from −140 to 220 ◦C and the frequency range from
10−1 to 107 Hz.
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3. Results and Discussions
3.1. Surface Morphology and Phase Composition

XRD patterns of the samples are presented in Figure 1, which clearly demonstrates
that ZnO phase (JCPDS card no. 79-0206) is the main phase. In addition, some impurities
of Bi-rich phases and spinel phases (JCPDS card no. 82-1101) are detectable, as well. In
accordance with other previous reports [16,22], the Bi-rich phases are different in samples
quenched at different temperatures. In the samples with elevated quenching temperatures,
i.e., samples Q-1200-2h and Q-1000, the Bi-rich phase is mainly observed as δ−Bi2O3 cubic
phase (JCPDS card no. 42-0185). In the samples Q-800 and Q-600, it is found to be β−Bi2O3
tetragonal phase (JCPDS card no. 74-1374). When the quenching temperature is further
lowered below 600 ◦C, α−Bi2O3 phase (JCPDS card no. 71-2274) is observed in both Q-400
and as-prepared samples.

Figure 1. XRD patterns of ZnO ceramic samples quenched at different temperatures.

In order to investigate the evolution of grain size distribution, polished surface mor-
phologies of samples are exhibited in Figure 2. Uniform grains are formed in all the studied
samples. In addition, some intergranular phases and spinel phases mainly distribute at
junctions of grains, which is similar to other reports [29]. Grain size distribution is further
statistically measured [30]. More than 200 grains were measured for each sample. The
grains were distinguished after image binarization by the software ImageJ [31]. Subse-
quently, areas of grains were calculated and the equivalent grain sizes were obtained.
Taking the as-prepared ZnO varistor ceramics as an example, grain size distribution is
plotted in Figure 3a, which fits well with the log-normal distribution [29,30,32]:

g(x) =
1√

2πxσ
× exp

(
−(ln x− µ)2

2σ2

)
(1)

where g(x) is the log-normal probability density function, x is the grain size, µ is the
logarithmic mean and σ is the logarithmic standard deviation. Therefore, it can be further
calculated that

E(X) = eµ+σ2/2 (2)

D(X) =
√

eσ2 − 1
(

eµ+σ2/2
)

(3)

ε =
D(X)

E(X)
=
√

eσ2 − 1 (4)

where E(X) is the mean value of the lognormal distribution, which represents the aver-
age grain size, D(X) is the standard deviation of the lognormal distribution and ε is the
coefficient of nonuniformity.
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Figure 2. SEM pictures of ZnO ceramic samples of Q-1200-2h (a), Q-1000 (b), Q-800 (c), Q-600
(d), Q-400 (e) and as-prepared samples (f).

Figure 3. Statistic results of grain size distribution of the as-prepared ZnO ceramic sample (a) and
fitting curves of grain size distribution of all the samples based on long-normal distributions (b).

Grain size distributions of all the samples are further plotted in Figure 3b and the
corresponding parameters are listed in Table 1. With a decrease in quenching temperature,
the curves in Figure 3b slightly move towards larger grain size. As a result, the average
grain size E(X) gradually increases from 13.23 µm for sample Q-1200-2h to 14.81 µm for the
as-prepared sample. Meanwhile, the coefficient of nonuniformity ε decreases firstly, rises,
and finally reaches to a constant. It indicates that grains trend to be more uniform in the
temperature range from 1200 to 1000 ◦C, in which small grains disappear. Subsequently,
slight increases in the sizes of those large grains leads to a slight increase in the coefficient
of nonuniformity ε in the temperature range from 1000 to 800 ◦C. The fitting curves in
Figure 3b are almost coincided with each other, when the quenching temperature is blow
800 ◦C. It indicates the grains of the ZnO varistor ceramics would grow little as long as the
temperature was below 800 ◦C.
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Table 1. Average grain sizes for the quenched and as-prepared samples.

Samples Q-1200-2h Q-1000 Q-800 Q-600 Q-400 As-Prepared

µ 2.52 2.60 2.63 2.65 2.65 2.64
σ 0.34 0.30 0.34 0.33 0.33 0.32

E(X) (µm) 13.23 14.06 14.73 14.96 14.99 14.81
D(X) (µm) 4.71 4.30 5.12 5.11 5.15 4.86

ε (%) 35.60 30.58 34.77 34.16 34.36 32.84

3.2. Nonlinear Current-Voltage Characteristics

Figure 4a demonstrates the nonlinear current-voltage characteristics of the samples at
room temperature. Electrical parameters in detail are listed in Table 2, including electric
fields at 1 mA/cm2 and 1 µA/cm2 (E1mA and E1µA), and nonlinear coefficient α. Noticeably,
remarkable discrepancies in current-voltage characteristics are observed with 600–800 ◦C
as a critical temperature range. A remarkable increase in nonlinear coefficient α from ∼20
to ∼40 is observed in Figure 4b, when the quenching temperature decreases from 800 to
600 ◦C. Similarly, an abrupt increase in E1µA, as shown in Figure 4c, is observed in this
temperature range. As a comparison, the E1mA varies little on the quenching temperature,
which is a characteristic of the formation of DSB in ZnO varistor ceramics [8,33]. It is thus
reasonable to deduce that well developed DSBs are mainly formed in this temperature
range between 600 and 800 ◦C.

Figure 4. The J-E curves of ZnO ceramic samples quenched at different temperatures (a). Dependence
of nonlinear coefficient α and activation energy of conductivity Eσλ (b) and electric fields at 1 mA/cm2

and 1 µA/cm2, i.e., E1mA and E1µA, (c) on the quenching temperature.

Table 2. Electrical parameters of the quenched and as-prepared ZnO ceramic samples.

Samples Q-1200-1h Q-1200-2h Q-1000 Q-800 Q-600 Q-400 As-Prepared

α 28.0 27.5 21.3 17.1 40.6 38.3 36.4
E1mA (V·cm−1) 240.7 226.8 221.1 226.1 255.6 197.6 198.9
E1µA (V·cm−1) 112.9 84.2 90.7 73.1 218.4 161.6 171.4

3.3. Evolution of Intrinsic Point Defects in Depletion Layers

Electron trapping of point defects of DSBs could be presented as dielectric relaxations,
so that ε” spectra of samples are plotted in Figure 5a. The ε” is the imaginary part of
complex permittivity and dielectric relaxation could be presented as loss peaks in the
frequency-domain ε” spectroscopy [24]. There are two relaxations A and B at −100 ◦C,
which correspond to intrinsic point defects in depletion layers of DSBs [24,34]. The de-
pendences of those relaxation processes on temperature, taking the Q-600 samples as an
example, is further demonstrated in Figure 5b. Both of them are found to shift towards a
higher frequency range with the increase in temperature. The peak frequencies as a function
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of the measuring temperature fit well with the Arrhenius equation, which is presented in
Figure 5c. The corresponding activation energies of relaxations A and B are listed in Table 3,
which are constant to 0.23 and 0.33 eV, respectively. They are equal to the trap depth of
intrinsic point defects Zni¨ and VO˙, respectively [24]. In consequence, the evolution of
them could be possibly characterized via fitting the ε” spectra by using the Cole–Cole
equation [23,24,35,36]:

ε′′ (ω) = k0ωα0 +
n

∑
i=1

ki
(
ωτi)

1−αi cos(παi/2
)

1 + 2(ωτi)1−αi sin(ωτi/2) + (ωτi)
2(1−αi)

(5)

where k0 represents the magnitude of DC conductivity while ki (i = 1, 2, 3 ...) is the
magnitude of permittivity contributed by the ith relaxation (∆ε0). τi is the relaxation time
and αi is the depression angle.

Figure 5. ε”-spectra ZnO samples at low temperatures. (a) ε”-spectra of the ZnO samples at −100 ◦C.
(b) Effects of temperature on ε”-spectra of Q-600 samples. (c) Arrhenius plots of peak frequencies of
relaxations A and B on the measuring temperatures. (d) Time delay of magnitudes of relaxations A
and B with the solid gray circles as the cooling temperatures.

Table 3. Activation energies of dielectric relaxations and DC conduction of samples.

Samples EA/eV EB/eV EC/eV ED/eV EE/eV
Eσσ /eV

Eσ l Eσh

Q-1200-2h 0.22 0.32 – 1.12 1.52 0.74 0.93
Q-1000 0.23 0.33 – 0.89 1.01 0.70 0.92
Q-800 0.23 0.33 – 0.89 1.08 0.67 0.86
Q-600 0.22 0.33 0.60 1.44 – 0.90 1.32
Q-400 0.23 0.32 0.62 1.05 – 0.84 1.00

As-prepared 0.23 0.32 0.63 1.08 – 0.86

The fitted magnitudes of relaxations A and B, which equate with the densities of
intrinsic point defects [37], are shown in Figure 5d. With the ongoing cooling process, a
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decline after a first increase in the densities of both Zni¨ and VO˙ is observed. It should
be mentioned that VO˙·is more sensitive to the sintering process than Zni¨ because the
density of Zni¨ varies after that of VO˙. Maximum densities of Zni¨ and VO˙·appear at about
1100 ◦C and 850 ◦C, respectively. Oxygen is lost from the lattice at sintering temperatures,
so that oxygen vacancies are accumulated and zinc atoms are consequently dragged into
interstitial sites. With the decrease in temperature, absorption of oxygen at GBs becomes
dominant, leading to a reduction in both densities of Zni¨ and VO˙. Their densities finally
tend to be constant when the temperature is below 500 ◦C. It is generally acknowledged
that zinc interstitials are crucial for the stability of ZnO based varistor ceramics [10,26,38].
The findings in this paper that oxygen vacancies are more sensitive might provide guidance
to manipulate intrinsic point defects.

3.4. Evolution of Extrinsic Interfacial Defects

In addition to intrinsic point defects, extrinsic defects are also important for modulat-
ing carrier transport in ZnO based varistor ceramics. Unfortunately, their relaxation times
are commonly so long that the corresponding dielectric relaxations can only be detected
in low-frequency ranges. Component of DC conduction is usually intense in this region
and might cover the relaxation component in those commonly used dielectric spectra,
such as modulus, impedance and admittance spectra. Investigations on those electron
trapping behaviors of interfacial defects are therefore hard to carry out [24,39]. In this
paper, the (∂ε′/∂lnω)/ε′ spectroscopy, which is free of DC conduction, is employed to
release dielectric relaxations from the covering of DC conduction [24,28,40–43], leaving
only relaxation related loss peaks.

Figure 6 shows (∂ε′/∂lnω)/ε′ spectra at elevated temperatures of the samples, in which
three loss peaks (labeled as C, D and E with the increase in relaxation time) are observed.
All the peaks follow the Arrhenius relation so that their relaxation activation energies can be
calculated, which are listed in Table 3. Relaxations C and D were reported previously [24],
while relaxation E is firstly found in this work.

Relaxation C is reported to be an interfacial polarization between the depletion layers
of DSBs and intergranular phases [9,24,42,44], whose relaxation activation energy is similar
to the activation energy of intergranular layer resistance. Therefore, relaxation C can be
regarded as an indicator for the intergranular phase in ZnO based varistor ceramics. As
observed in Figure 6, relaxation C is detectable unless the quenching temperature is equal
to or less than 800 ◦C. It is only slightly observed in sample Q-800, while relatively distinct
loss peaks of relaxation C could be detected in Q-600, Q-400 and as-prepared samples. In
other words, relaxation C becomes detectable in the quenching temperature range from
800 to 600 ◦C. At about 600 ◦C, the intergranular phase also changes from β-phase into
α-phase, as shown in Figure 1. Significantly enhanced electrical nonlinearity of the samples
shown in Figure 4 also appears at this period, which is exhibited as improved α and reduced
E1µA. The results further support that 600–800 ◦C is a crucial temperature range for the
barrier formation of ZnO based varistor ceramics.

Similar to the relaxation C, relaxations D and E also vary greatly in this temperature
range. As presented in Figure 6, relaxation E disappeared when the quenching temperature
is below 600 ◦C. In the meantime, distinct loss peaks of relaxation D are observed instead
of dispersed ones. It is notable that activation energies of relaxations D and E reach up to
0.9~1.5 eV, as listed in Table 3. The energies are even higher than the height of DSB, which
is similar to the activation energy of DC conduction. It is much higher than the energy for
electron trapping of intrinsic point defects and even ion migration of zinc interstitial [10].
The most possible origination for them could only be electron trapping of interface states [8].
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Figure 6. Dielectric spectra (∂ε′/∂lnω)/ε′ at elevated temperatures of Q-1200-2h (a), Q-1000 (b),
Q-800 (c), Q-600 (d), Q-400 (e) and as-prepared samples (f).

Relaxation D was reported to correlate with the electronic relaxation of interface states
at GBs, whose activation energy is the corresponding trap depth [8,23,24]. The appearance
of the relaxation E indicates the formation of two kinds of Schottky barriers during the
cooling process. Therefore, admittance spectra of the ZnO varistor ceramic samples are
also plotted in Figure 7. There are two activation energies (labeled as Eσl and Eσh) of
DC conductivity, which supports the existence of two kinds of DSBs at grain boundaries.
Dependence of Eσl on quenching temperature is also plotted in Figure 4b as an example,
which is consistent with the variation of the nonlinear coefficient. Generally, the height
of DSB is pinned by interface states [8,23]. Similar to relaxation D, relaxation E might
correlate with interface states. When the temperature continuously decreases during the
cooling process, the difference between two kinds of DSBs gradually becomes smaller and
smaller. On the one hand, relaxation E disappeared and only relaxation D is detected in the
as-prepared samples. On the other hand, the Eσh gradually trends to Eσl. Finally, only one
activation energy of DC conductivity is detected in the as-prepared samples, indicating
identical DSBs.
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Figure 7. Admittance spectra of the Q-1200-2h (a), Q-1000 (b), Q-800 (c), Q-600 (d), Q-400 (e) and
as-prepared samples (f). Insets are activation energies calculated by the Arrhenius relation between
DC conductivities and the measuring temperatures.

4. Conclusions

In conclusion, ZnO varistor ceramic samples were quenched at different sintering
stages to study the evolution of microstructures, electrical properties as well as Schottky
barrier and its relating intrinsic and extrinsic point defects. The quenching temperature
range between 600 and 800 ◦C was found to be crucial to ZnO varistor ceramics. When
the samples were cooled to this temperature range, phase transition of Bi-rich phase (from
β to α) took place. Differences among the DSBs in a sample, which were related with the
interface sates, gradually disappeared with the ongoing cooling process. Finally, uniform
barriers were formed in the as-prepared samples, which was exhibited as greatly enhanced
nonlinear current-voltage characteristics. In addition, oxygen vacancies were found to be
more sensitive to the sintering process than zinc interstitials because zinc interstitials varied
after oxygen vacancies. The findings will be of assistance to manipulation of the defects
and Schottky barriers at grain boundaries of ZnO varistor ceramics. A high barrier height
required sufficient donor point defects in depletion layers, while the anti-degradation perfor-
mance was negatively correlated with the densities of zinc interstitials. A fine manipulation
on point defects was vital to the synergic optimization of both short-term and long-term
properties of ZnO varistor ceramics.
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