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Abstract: An Al-Cu alloy ingot was produced with the application of ultrasonic melt treatment. The
effects of ultrasonication on the grain structure, eutectic phase, solution, and tensile properties of the
alloy were analyzed. The volume and distribution of the eutectic phase were quantitatively evaluated
based on stereological theory. The results are as follows: The grain-refinement efficiency at the center,
1/2 radius and edge of the ingot is 33.99%, 45.2% and 41.68%, respectively, under the action of an
ultrasonic field. Ultrasonics improves the solid solubility of the Al-Cu alloy element, in which the
solid solubility of Cu increases from 0.85% to 1.42%. The ultrasonic field improves the dispersion
degree of the eutectic phase and reduces the volume fraction and eutectic phase number per unit
volume. The mechanical properties of the Al-Cu alloy were improved by an ultrasonic field.

Keywords: ultrasonic; aluminum alloy; simulation; eutectic phase; quantitative characterization

1. Introduction

Aluminum alloys have been widely used in the aerospace, automotive and other
fields due to their light weight, high strength, and other features [1,2]. Among them,
aerospace ring/cylindrical structural parts are generally obtained by deformation process-
ing of aluminum-copper alloy ingots. Therefore, the quality of the ingots is critical to the
formation of ring/cylindrical parts. However, the quality of aluminum alloy structural
parts is seriously restricted by defects, such as coarse microstructure, severe segregation,
porosity inclusion, and even cracking in large aluminum alloy ingots [3,4]. In particular, the
most important reason for the unstable mechanical properties of the final ring/cylindrical
member is the enrichment of residual eutectic phases in the component. When the residual
eutectic phase is formed in large quantities at the grain boundary, the stress concentration
is caused by the difference in the material properties between the residual eutectic phase
and the matrix, which leads to the initiation of microcracks at the grain boundary [5]. The
agglomerated eutectic phases are most likely to become crack nucleation sites during the
service of the components in the later stage and lead to crack propagation [6]. At the same
time, the ductility of the aluminum alloy is greatly reduced by the coarse and hard eutectic
phases [7]. Therefore, it is very important to quantitatively detect and evaluate the eutectic
phase of an ingot. However, at present, the quality-inspection system of aluminum alloy is
not excellent because it only includes grain size, alloy composition, porosity, pores, coarse
inclusions, and other indicators, and no eutectic phases are mentioned.

The solidification process of aluminum alloys includes a series of behaviors, such
as heat and mass transfer, melt nucleation, and crystal growth [8]. Ultrasonic vibration
treatment of alloy melts is a physical treatment technique that has gained widespread
support from the scientific community in recent years [9,10]. When an ultrasonic field is
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applied to the aluminum alloy melt, the environment, as well as the physical and chemical
conditions, of the solidification process of the aluminum alloy melt will be changed, and
the structure and properties of the ingot will be altered accordingly [11]. Some research
on the ultrasonic treatment of metal melts has been published, mainly by Eskin [12] and
Eskin et al. [13]. They found that ultrasound can significantly improve the morphology of
the structure, refine the grains, and degas aluminum alloy ingots due to its special effects,
such as cavitation and acoustic streaming.

In casting studies, ultrasonically stirred samples have finer microstructures [14]. Ultra-
sonic treatment can effectively control the morphology and size of aluminum grains [15].
Ultrasonic vibration has been proven to be effective in controlling the columnar dendritic
structure, reducing the size of equiaxed grains, and, under certain conditions, producing
spherical, nondendritic grains [16]. Li et al. [17–19] investigated the mechanisms of the
ultrasonic field on Al alloy during the direct-chill (DC) casting process and proposed the
mechanism of ultrasonic heterogeneous activation and the crystal resonance effect. In
previous studies of large industrial ingots, an ultrasonic generator was employed with fre-
quencies, powers, and peak-to-peak amplitudes of 20 ± 1 kHz, 0.5–1 kW, and 20 ± 1.0 µm,
respectively. [20,21] Due to the small ingot size in this study, the power of ultrasound was
200 W.

In addition, high-quality 7XXX and 2XXX aluminum round/flat ingots with different
sizes were manufactured, and successful application promoted the development of the
manufacturing field of high-performance, light-alloy, large, and complex structural compo-
nents for aerospace applications. Previous studies found that the coarse crystalline phase
seriously reduced the plasticity of the material [22,23].

The characterization of the crystalline phase in the ingot is therefore very important.
However, no accurate quantitative analysis study of the eutectic phase has been reported
thus far.

In the present study, ultrasound-assisted solidification tests of small Al-Cu alloy ingots
were carried out under laboratory conditions, and the effects of an ultrasonic field on the
grain structure, eutectic phase, and intragranular solid solution of alloy elements were
studied systematically. To quantitatively measure the content of the eutectic phase, this
paper proposes a quantitative measurement method of the eutectic phase based on the
image-processing function of MATLAB 9.0 software, the backscattering diagram of the
crystal phase, and the stereology formula. Meanwhile, the volume of the eutectic phase in
the Al-Cu conventional ingot and ultrasonic ingot were compared to illustrate the effect
mechanisms of ultrasound on the microstructure transformation during solidification.

2. Materials and Methods
2.1. Experimental Equipment

The experimental equipment used in this study is as follows: (1) ultrasonic system,
which is used to output vibration, including ultrasonic power supply (200 W for output
power and 20 kHz for output frequency), PZT piezoelectric ceramic transducer, #45 steel
horn, and titanium alloy radiation rod; (2) temperature control and detection system, includ-
ing resistance furnace, which is used to heat raw material, and thermocouple temperature
sensor, which is used to detect temperature; (3) auxiliary equipment, including a graphite
clay crucible (external dimension: diameter is 206 mm × 220 mm, and thickness is 19 mm),
displacement control platform, timer, tray balance, and online hydrogen detector, which is
used during casting. The whole experimental casting device of the crucible is shown in
Figure 1.
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Figure 1. Schematic diagram of the Al-Cu alloy experimental device for ultrasonic-assisted casting.
1: ultrasonic transducer; 2: positioning support flange; 3: displacement control device; 4: ultrasonic
horn; 5: thermocouple; 6: resistance-wire heating furnace.

2.2. Melting and Ultrasonic Treatment Process

The prepared Al-Cu alloys taken from industrial ingots were put into a graphite
crucible for smelting at 750 ◦C, followed by slagging off. The radiation rod was preheated
before the experiment to avoid shock chilling. Ultrasonic treatment was carried out when
the melt temperature reached 700 ◦C. The ultrasonic rod was located in the center of the
ingot, with an insertion depth of 35 mm, and the displacement system was used to fix
the ultrasonic position. After application of ultrasound for 15 min, the ultrasonic rod was
pulled out slowly and stably, and the aluminum melt was poured into a crucible to be
cooled in water. Meanwhile, a conventional ingot cast under the same conditions without
ultrasonic treatment was used for comparison. The main chemical compositions of the
Al-Cu alloy ingot are shown in Table 1.

Table 1. The chemical composition percentage of the Al-Cu alloy for the experiment (wt.%).

Composition Si Fe Cu Mn Mg Zn Ti Ni Al

Content 0.93 0.10 4.37 0.78 0.63 <0.001 0.026 <0.001 Bal.

2.3. Sample Preparation and Testing

Samples were cut from the two ingots with the method shown in Figure 2. Testing
samples were sectioned 30 mm away from the end surface of the radiation rod. Three
cube samples with a size of 15 mm were cut from the center, 1/2 radius, and edge along
the radius of the ingot. Subsequently, the metallographic samples were mechanically
ground and polished, followed by etching with Keller’s solution (1% HF, 1.5% HCl, and
2.5 vol.% HNO3). The eutectic phase of the samples was observed by scanning electron
microscopy (TESCAN® MIRA3, Brno, Czech Republic). The relative solid solubility of
elements in a grain was measured by an energy-dispersive spectrometer (Inca® Energy
X-Max20, London, UK). The grain-structure characteristics were observed by a Leica®

metallographic microscope (56XC, Vizsla, Germany) after standard metallographic sample
preparation. Tensile tests were conducted on an Instron® 3369 mechanical testing machine
with a tensile speed of 2 mm/min.
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Figure 2. Schematic diagram of test-sample preparation.

2.4. The Method of Quantitative Detection for Eutectic Phase

Quantitative analysis of the eutectic phase is important for detecting the quality of
ingots. Eutectic-morphology detection results are essential for performing quantitative anal-
ysis. The morphology and distribution of the eutectic phase can be observed by scanning
electron microscopy (SEM), and the quantitative relationship between the eutectic phase
and ingot quality can be established. However, quantitative analysis of the eutectic phase
usually requires mathematical methods and analysis by measuring various characteristic
parameters of the eutectic phase in the backscatter diagram.

In this work, the volume and distribution of the eutectic phase in two ingots are
quantitatively characterized by three parameters, including VV, which is the symbol of
an integral number of eutectic phases; PV, which is the symbol of the number of eutectic
phases per unit volume; and λ, which is the mean distance between eutectic-phase particles.
λ is used to quantitatively evaluate the dispersion degree of the eutectic phase in the ingot.
The mean free path is defined as the average distance of a particle in an object traveling
when it collides with other particles. That is, the more eutectic phases there are per unit
volume, the more crowded and frequent the collisions and the smaller the free path will be.
In contrast, the larger the free path, the greater the dispersion degree of the eutectic phase.
In this work, the backscattering images of alloy ingots were processed and counted by the
image-processing tool of MATLAB software based on stereology principles [24,25].

First, the backscattering SEM image was read by MATLAB software and then prepro-
cessed by an image-processing tool kit (image gray processing, enhancement processing,
and filtering processing). The image was morphologically processed, including expansion
operation, corrosion operation, open operation, and closed operation. Then, the eutectic
phase characteristics of the image were extracted after edge detection and area statistics.
The eutectic phase can be conveniently and efficiently quantitatively analyzed by the
stereological formula [26,27].

It can be seen from the backscatter image of the sample that the distribution of the
eutectic phase in the ingot was dispersed on the whole sample surface. Therefore, the
statistics of eutectic phases that relied only on a single measuring line had a large error. As
shown in Figure 3, multiple horizontal lines and vertical lines were selected as measuring
lines to measure the backscatter image at a magnification of 500 times. That is, eight
measuring lines were prepared in five areas of the sample (600 × 600 µm2), including four
horizontal lines and four vertical lines. The number of points where the unit-length test line
intersects the eutectic phase in the backscatter diagram was recorded as PL. Similarly, the
backscatter image was taken in five random areas of each sample, as shown in Figure 3a,
and each backscatter image was divided by the linear intercept method, as shown in
Figure 3b. PL, which is the average value of PL of the five backscatter sketches, was taken to
represent the number of intersections of the unit length of measuring lines and the eutectic
phase. After the PL of the sample was determined, it was necessary to count PA, which
represents the number of eutectic phases per unit area tested in the whole backscatter
image. In the same way, the average value, PA, of PA of the five backscatter sketches was



Materials 2022, 15, 1067 5 of 14

taken, and then the stereological equation, PV = 2PAPL, was used to obtain PV, which is
the number of intersections of eutectic phases in the unit test volume of the sample.
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Figure 3. Measurement of the eutectic phase by the cross-section method and the linear intercept
method. (a) Schematic diagram of selected areas; (b) schematic diagram of division of the linear
intercept method of backscatter image.

3. Results
3.1. Grain Structure

Figure 4 shows the grain structures. The grains of conventional ingots are mostly
coarse dendrites, with developed dendrites and many defects appearing in the center, as
shown in the red circle area in Figure 4a. However, the grains of the ultrasonic ingot are
fine, and many grains are equiaxed, as shown in Figure 4d,e. The grain structure of the
ingot is obviously refined by ultrasonication, and defects, such as pores and porosity in
the ingot structure, are reduced by ultrasonication. The cavitation and acoustic-streaming
effect of ultrasonication can improve the compactness of the ingot structure by refining the
grain structure of the ingot and reducing the defects [11,28,29].
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(b) 1/2 radius of conventional ingot; (c) center of conventional ingot; (d) edge of ultrasonic ingot;
(e) 1/2 radius of ultrasonic ingot; (f) center of ultrasonic ingot.
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The grain size at different positions of the ingot was measured. The average grain
size at the center, 1/2 radius, and edge of the conventional ingot was 253 µm, 300 µm,
and 280 µm, respectively. However, the average grain sizes of the three locations of the
ultrasonic ingot were 167 µm, 164 µm, and 163 µm. The grain size of the whole cross section
of the ultrasonic ingot was refined and more uniform.

To more intuitively describe the effect of ultrasonication on grain refinement, the
refinement efficiency of the grains was calculated by the following formula:

ηi =
Di − di

Di
(1)

where ηi is the grain refinement rate; Di is the average grain size at a certain position of the
conventional ingot; and di is the average grain size of the ultrasonic ingot.

According to Formula (1), the refinement ratios of ultrasonication at the center, 1/2 ra-
dius, and edge of the crucible ingot were 33.99%, 45.2%, and 41.68%, respectively. The
grains across the whole ingot were refined by ultrasound to different degrees.

3.2. Eutectic Morphology and Quantitative Analysis

Figure 5 shows the eutectic structure of the two ingots. White with grid-like eutectic
structures can be seen on the grain boundaries. The same variation tendency in eutectic
distribution can be found along the radical direction of the two ingots. At the edge of the
ingot, the eutectic structure is intermittent and strips. At the 1/2 radius of the ingot, the
eutectic phase was connected into a grid and became continuous, while at the center of the
ingot, the eutectic phase turned into agglomerated chunks with high continuity. However,
at the three representative positions, the cluster degree of the eutectic phase was obviously
reduced under ultrasound.
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Figure 5. The eutectic phase distribution of the ultrasonic ingot and conventional ingot. (a) Edge of
conventional ingot; (b) 1/2 radius of conventional ingot; (c) center of conventional ingot; (d) edge of
ultrasonic ingot; (e) 1/2 radius of ultrasonic ingot; (f) center of ultrasonic ingot.

As shown in Figure 6, MATLAB was used to address the contrast of the backscattering
of SEM. The volume fraction of the eutectic phase, the number of eutectic phases per unit
volume, and the average distance between eutectic phases can be calculated by image
processing and stereology theory. Table 2 shows the comparison results of the conventional
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ingot and ultrasonic ingot, where a and b indicate the conventional ingot and ultrasonic
ingot, respectively, and samples 1, 2, and 3 represent the center, 1/2 radius, and edge of
the ingot, respectively. Compared with conventional ingots, the volume fraction of the
eutectic phase and the number of eutectic phases per unit volume of ultrasonic ingots at the
three locations were significantly lower, and the average spacing between eutectic phases
increased in ultrasonic ingots.
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Figure 6. Diagram of inspection. (a) Original backscattering SEM image; (b) Image after image-
marginalization processing; (c) image segmentation.

Table 2. Parameters of the eutectic phase calculated by the MATLAB program.

Sample a-1 a-2 a-3 b-1 b-2 b-3

VV 8.62% 8.92% 5.89% 4.34% 4.64% 4.76%
PV(×104/mm3) 3.57 3.27 2.72 1.57 1.83 1.64

λ(µm) 75 62 108 91 93 118

It can be seen from the results that the coarsening and agglomeration of the eutectic
phase were more substantial at the center and 1/2 radius. The average distance between
eutectic-phase particles in the center and 1/2 radius of the conventional ingot was 75 µm
and 62 µm, respectively, but it was increased to 91 µm and 93 µm, respectively, after
ultrasonic addition, an increase of 32% and 40%, respectively. However, due to the direct
effect of cooling water at the edge of the ingot, solidification was faster. Thus, the eutectic
phase was relatively dispersed, and the improvement effect of ultrasonication was smaller,
only increasing by 14%.

3.3. Relative Intragranular Cu Content

Differences were also found in the intragranular solid solubility of solute elements
in Al-Cu alloy after ultrasonic treatment. More alloying elements, which dissolve in the
aluminium alloy matrix, play a role in solution strengthening for ingot materials. The
mechanical properties of the ingot structure can be improved with increasing intragranular
solid solubility of alloying elements in the aluminum matrix. The mass fraction of solute
elements in the Al-Cu alloy was detected in the two groups of ingots. The contents of solute
elements in the grains of the conventional ingot and ultrasonic ingot were scanned by an
EDS spectrum analyser.

The mass fraction of the main solute elements, Cu, Mn, Mg, and Si, in the Al-Cu alloy
was obtained by scanning the selected region. The average mass fraction of solute elements
in this region was taken as the solid solubility of the elements in grain. The test results are
shown in Table 3.

Table 3 shows that the solid solubility of each solute element in the ultrasonic ingot
was improved compared with that of the conventional ingot. The solid solubility of Cu
increased from 0.85% to 1.42%, which increased by 67.05% with ultrasonic treatment; the
solid solubility of Mn increased from 0.36% to 0.78%, with an increase rate of 116.67%;
the solid solubility of Mg increased from 1.03% to 1.18%, which was increased by 14.56%;
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and the solid solubility of Si increased from 0.07% to 0.28%, with an increase rate of 300%.
The contents of the four alloying elements, Cu, Mg, Mn, and Si, in the Al matrix generally
increased after ultrasonic treatment.

Table 3. Mass fraction of solute elements in crystal.

Element Conventional Ingot (wt%) Ultrasonic Ingot (wt%) Increase Rate

Cu 0.85 1.42 67.05%
Mn 0.36 0.78 116.67%
Mg 0.52 0.60 14.56%
Si 0.07 0.28 300%

3.4. Mechanical Properties of Ultrasonic Ingots and Conventional Ingots

When the Al-Cu alloy material is stretched, fracture opening occurs in the weakest
part of the sample, and in these parts, the grain structure is often inhomogeneous, and
there will be porosity defects in the crack-forming channel, so the tensile property of the
sample with fine and uniform grains and fewer porosity defects is better; otherwise, it is
worse. Therefore, the mechanical tensile properties of the ultrasonic ingot and conventional
ingot were tested to explore the influence of the ultrasonic field on the grain structure and
porosity defects of the ingot, and the fracture of tensile samples was analyzed by SEM. The
tensile test results are shown in Table 4.

Table 4. Test results of tensile strength of tensile samples.

Number
Ultimate Tensile

Strength of Ultrasonic
Ingot (MPa)

Elongation of
Ultrasonic Ingot (%)

Ultimate Tensile Strength
of Conventional

Ingot (MPa)

Elongation of
Conventional Ingot (%)

Sample 1 165.26 1.72% 153.35 1.53%
Sample 2 170.94 2.09% 165.63 1.76%
Sample 3 192.39 3.80% 167.74 2.24%

Average value 176.20 2.54% 162.24 1.84%

The tensile strength of all three samples was improved. The average ultimate tensile
strength of the ultrasonic ingot was 176.20 MPa, an increase of 8.61% after the ultrasonic
field was added.

The tensile fracture surfaces of the two kinds of ingots are shown in Figure 7. Dimples
can be observed on the surface of the two kinds of fracture surfaces, and defects, such as
impurities, pores, casting shrinkage, and oxide film, were also distributed [24]. However,
the difference between the ultrasonic and conventional tensile samples was that there was
more casting shrinkage on the fracture surface of the conventional tensile samples, and the
size of the shrinkage was also different. The shrinkage cavity of the conventional sample is
shown in the yellow circle area in Figure 7a; the size of the shrinkage cavity was large, with
a maximum of 150~200 µm. Compared with conventional samples, the size of the shrinkage
cavity of the ultrasonic sample was smaller, and the size of the shrinkage cavity was only
approximately 40 µm, as shown by the yellow circle in Figure 7b. The deterioration of the
mechanical properties of the tensile samples was caused by the greater casting shrinkage
cavity because the effective area of the external load was reduced by the increase in the
shrinkage cavity, thereby increasing the possibility of sample fracture.

The dimple morphology of the ingot is shown in Figure 7c,d. Compared with that
of the conventional ingot, as shown in Figure 7c, the number of dimples was larger, the
size of dimples was smaller, and the depth was deeper, indicating that the plasticity of
the ultrasonic ingot sample was better. Compared with the elongation rate in Table 3,
the elongation rate of the ultrasonic ingot sample was generally higher, with an average
value of 2.3%, compared with 1.84% of the conventional sample. When ultrasonication was
added to the casting, the two-phase particles of the material could be dispersed uniformly
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by acoustic streaming and cavitation. Therefore, the dimple strips of ultrasonic samples
were more uniform, and the plasticity of the material could be improved effectively [4,24].
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Figure 8 shows the relationship between the Cu content, volume fraction, and elonga-
tion of the common ingot and ultrasonic ingot. The higher Cu content and lower volume
fraction of the intergranular eutectic structure in the ultrasonic ingot indicate that a more
solid solution of Cu elements into the matrix reduces the formation of a coarse eutectic
structure between grains and enhances the strengthening of the solid solution. Therefore,
the mechanical properties show that the strength and elongation of the ultrasonic ingot
are improved.
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4. Discussion
Effect of Ultrasound on Microstructural Evolution and Solute Distribution

To intuitively illustrate the effect of ultrasound on the evolution of microstructure
and solute distribution, a simulation of ultrasonic solidification was also carried out [30].
According to the steady-state analysis of ultrasonic casting, the treatment of the temperature
boundary has the following conditions:

(1) Entrance: the entrance is set at 973 K.
(2) Free surface: the temperature is 298 K, which contacts air, and the heat transfer

coefficient is set as 50 W/m2·K.
(3) Wall: the inner surface of the crucible in contact with the Al melt is set as the contact

surface, the outer surface of the crucible is in contact with air, the heat transfer coefficient is
set to 50 W/m2·K, the velocity component perpendicular to the wall is 0, and the regional
wall-boundary conditions are set to no-slip wall-boundary conditions.

Figure 9 shows a simulation diagram of the ultrasonic sound-pressure distribution in
the aluminum melt. It can be seen from the diagram that the sound-pressure intensity is the
largest below the end face of the ultrasonic radiation rod, up to 5.78 MPa, then decreasing
down the axis of the radiation rod first, finally increasing alternately.
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Figure 9. Ultrasonic sound-pressure field distribution.

The distribution of the flow field in the melt state is shown in Figure 10. Comparing
the results of the flow-field distribution, it can be seen that the ingot, which was not
ultrasonically applied, had almost no flow. However, after applying ultrasonication, the
flow velocity in the molten pool is obviously increased. Figure 10 shows that the liquid
flow impacts the solidification front, and the dendrites can be broken by the huge acoustic
flow, which makes the broken dendrite flow [31]. In this way, the effective nucleate sites
are greatly increased, and the grains are therefore refined. In addition, the solidification
front was continuously scoured by ultrasonic flow, which led to the redistribution of the
solute. As a result, the enrichment of solute between dendrites is reduced, and more solute
is dissolved into the Al matrix.

Figure 11 compares the temperature distribution in the crucible between no ultrasoni-
cation and ultrasonication for a period of time. It can be seen from the figure that under the
same cooling conditions in the casting secondary cooling zone, when ultrasonication was
not applied, the ingot center still maintained a high temperature, and the high-temperature
area was large, which indicates a low cooling rate in the molten pool [32]. After introducing
ultrasound, the high-temperature area in the ingot center is mainly concentrated in the
first cooling zone and the upper end of the secondary cooling zone, which indicates that a
large amount of heat in the Al melt is taken away from the ingot surface through the first
cooling zone, and cooling water sprays on the ingot surface. The movement of the solute
in the liquid and slurry regions is accelerated by the ultrasonic flow, which promotes the
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heat transfer of the solution at the front of solidification, makes the heat in the core transfer
more quickly, and increases the cooling rate. It can be seen from the figure that the area
of the high-temperature liquid phase (red part) is obviously reduced by ultrasonication,
which greatly increases the nucleation area and promotes the nucleation rate. The tem-
perature gradient in the liquid cavity is reduced by the turbulent effect of ultrasonication,
which improves the temperature distribution in the center of the ingot and promotes the
simultaneous nucleation of the crystal grains. Moreover, the growth rate of crystal grains is
almost the same in all directions because of the uniform temperature, thus reducing the
generation of dendritic crystals.
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Figure 10. Flow patterns and velocity of the melts under (a) no ultrasonication and (b) ultrasonication.
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Figure 11. Comparison of temperature distribution between (a) no ultrasonication and (b) ultrasonication.

Figure 12 shows ultrasonic vibration in water and mechanism diagram of ultrasonic
acting on the solidification process. High temperature and high pressure generated by
ultrasonic cavitation can clean the second-phase particles, reduce the wetting angle of the
solid–liquid interface of the second-phase particles, promote heterogeneous nucleation,
increase the nucleation rate, and refine the ingot grains. At the same time, the acoustic-
streaming effect interrupted the dendrite arm, broke the dendrites, made the ingot change
from dendrite to fine equiaxed crystal, and reduced the gap between grains and the chain-
like second phase between grains. The eutectic phase was divided into branches and
distributed intermittently. Therefore, the agglomeration of the eutectic phase was inhibited
by the acoustic-streaming effect.
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Based on the Hall–Petch theory, the relationship between grain size and yield strength
can be expressed as follows [33,34]:

σYS= σ0+Kd−1/2 (2)

where σYS is the yield strength, σ0 and K are constants, and d is the average grain size [35].
It can be found from the above formula that there is an opposite relationship between

the average particle size and yield strength. However, the mechanical properties are not
only controlled by the size of grain but also the characteristics of eutectic phases and
precipitates, as well as solid solubility of the Cu element. With increasing solid solubility,
more Cu atoms were dissolved into Al matrix, definitely obstructing the movement of
dislocations [36]. Coarse eutectic particles are easily subjected to stress concentration and
act as preferred nucleation sites for cracks [37]. The reduction in the brittle, coarsening
eutectic phase can improve the ductility of the large-scale ingot, reducing the chance for
the formation of cracks during the deformation process [21].

5. Conclusions

In this paper, the influence of an ultrasonic field on the solidification process of Al-Cu
alloys was systematically studied. Through experiments, the grain structure, eutectic
morphology, and mechanical properties of the ingot were compared in the casting process
with ultrasonic fields and conventional fields, and the eutectic phase was quantitatively
analyzed. The following conclusions are drawn:

(1). An ultrasonic field is beneficial to refine the ingot grain. The grain-refinement
efficiencies at the center, 1/2 radius, and edge of the ingot are 33.99%, 45.2%, and 41.68%,
respectively, under the action of an ultrasonic field.

(2) Ultrasonics can refine the eutectic phase, especially the eutectic phase in the center
of the ingot. The eutectic phase is a discontinuous dendrite without agglomeration.

(3) Ultrasonics can improve the solid solubility of alloying elements in ingots. Com-
pared with conventional ingots, the solid solubility of Cu, Mn, Mg, and Si in ultrasonic
ingots is improved, especially the solid solubility of Cu, which is increased by 67.05%.

(4) Ultrasonics can improve the dispersion degree of the eutectic phase in the ingot
and then improve the mechanical properties of the material.
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