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Abstract: Nowadays, the development of new eco-friendly and biocompatible materials using 
‘green’ technologies represents a significant challenge for the biomedical and pharmaceutical fields 
to reduce the destructive actions of scientific research on the human body and the environment. 
Thus, bacterial cellulose (BC) has a central place among these novel tailored biomaterials. BC is a 
non-pathogenic bacteria-produced polysaccharide with a 3D nanofibrous structure, chemically 
identical to plant cellulose, but exhibiting greater purity and crystallinity. Bacterial cellulose 
possesses excellent physicochemical and mechanical properties, adequate capacity to absorb a large 
quantity of water, non-toxicity, chemical inertness, biocompatibility, biodegradability, proper 
capacity to form films and to stabilize emulsions, high porosity, and a large surface area. Due to its 
suitable characteristics, this ecological material can combine with multiple polymers and diverse 
bioactive agents to develop new materials and composites. Bacterial cellulose alone, and with its 
mixtures, exhibits numerous applications, including in the food and electronic industries and in the 
biotechnological and biomedical areas (such as in wound dressing, tissue engineering, dental 
implants, drug delivery systems, and cell culture). This review presents an overview of the main 
properties and uses of bacterial cellulose and the latest promising future applications, such as in 
biological diagnosis, biosensors, personalized regenerative medicine, and nerve and ocular tissue 
engineering. 
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1. Introduction 
Over the last decades, due to the advancement of technology (artificial intelligence 

or robotics) [1], wide novel, multifunctional, and biomimetic biomaterials (natural, 
modified natural, or synthetic) have been developed [2] with enhanced properties and 
applications [3] suitable for use in areas from the food industry to regenerative medicine 
and bioprinting [4]. These biomaterials can be successfully substitute for the traditional 
materials [5]. The term ‘biomaterial’ refers to an eco-friendly material, which is based on 
sustainable resources (agricultural raw materials, fossil, and electronic reserves) [6]. The 
extensive development of novel chemical and physical methods furnishes new 
opportunities for the scientific community to study and research particular elements to 
design effective and safer materials to ensure the regeneration of impaired skin [7]. The 
researchers have a tremendous interest in the entire groups of biomolecules (monomers, 
oligomers, and macromolecules), such as carbohydrates, amino acids, proteins, 
nucleotides, nucleic acids, and lipids [8,9]. The common classification of biomaterials 
consists of four distinct classes: polymers, composites, ceramics, and metals [7]. For the 
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biomedical and pharmaceutical fields (tissue engineering, wound dressings, bioimaging, 
drug delivery systems, implants, biosensors, biomedical diagnoses, and treatment of 
various conditions) [10–12], the new projected materials should display similar biological 
and structural characteristics, such as the indigenous extracellular matrix [13]. The novel 
biomaterials should have the capacity to sustain their structural stability to assure cellular 
proliferation and the development of new skin tissues [14]. Fundamentally, these 
biomaterials show biocompatibility, biodegradability, non-immunogenicity, non-
cytotoxicity, biological inertness, histoconductivity, histoinductivity [15], bioactivity, 
optimum physicochemical, and mechanical properties in order to be used in the 
biomedical area. Their main purpose is to restore or to replace the skin tissue functions to 
increase the patient’s quality of life [16]. An essential feature of these newly designed 
biomaterials consists in their biosynthesis using harmless and safe technologies for the 
environment, known as ‘green’ methods, that considerably reduce the negative 
consequences of pollution on the climate and the human body [17]. 

Among these newly tailored biomaterials, a central place is occupied by bacterial 
cellulose (BC), an ecological polysaccharide broadly studied for multiple applications due 
to its excellent physicochemical and biological properties [18]. Bacterial cellulose is 
derived from cellulose, a natural polymer ubiquitously found in our surroundings, 
known as ‘the most plentiful biopolymer’ on Earth [19]. It is synthesized by all classes of 
plants, ranging from fungi, algae, and bacteria to cotton, wood, and hemp. Due to its 
abundant, renewable, degradable, and recyclable character, cellulose has gained attention 
as a sustainable material [20]. Cellulose is a hydrophilic polysaccharide consisting of 
linear macromolecular chains of 1–4 linked β-D-glucopyranosyl units forming linear 
chains in the cell wall [21]. Its high strength, stiffness, crystallinity, and durability are due 
to saccharide chains held together by Van der Waals forces and hydrogen bonds. Its 
overall reactivity is results from the presence of hydroxyl groups and their distribution 
[22–24]. Since the structural and chemical particularities of cellulose are covered in many 
papers, it will not be detailed in the current article. 

Among the characteristics of bacterial cellulose are high biocompatibility, 
biodegradability, non-toxicity, viscoelasticity, flexibility, chemical stability [25], adequate 
hydrogel traits [26], unidirectional polarity, and fluctuating density [27]. In comparison 
with the cellulose produced by plants, bacterial cellulose has a higher crystallinity [28], 
purity, tensile strength [29], value of degree of polymerization, and Young’s modulus [30]. 
It has a hydrophilic porous structure that allows it to retain a large quantity of water 
(>90%). BC has a large applicability in fields ranging from electronics, paper, and food 
[31,32] to applications in the biomedical industry (tissue engineering, bone and cartilage 
reconstruction, implants, wound dressings, cornea restoration, artificial blood vessels, 
orthodontic treatment, drug delivery devices, antibacterial products, biosensors, 
biological diagnoses, regenerative medicine), the pharmaceutical field, veterinary 
medicine, the leather industry, and pollution control [33–35]. 

In this review, we will further present the main aspects concerning bacterial cellulose 
biosynthesis and its properties and applications with emphasis on its biomedical uses, 
such as in dressing materials and artificial scaffolds [36]. We will discuss various 
combinations of BC and different biopolymers (natural and synthetic) with several 
bioactive agents (metals, inorganic substances, plants extract, or drugs) to develop new 
materials and composites with a large applicability in the biomedical and biotechnological 
domains [37]. 

2. Bacterial Cellulose—Pioneer for Continuously Developing Macromolecules 
2.1. State of the Art 

Bacterial cellulose (BC), also known as bacterial nanocellulose (BNC) due to its 
nanostructured network [38], represents a particular biopolymer [39] produced by certain 
bacterial strains through fermentation processes; it is lignin and hemicellulose free [40]. It 
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is also called microbial cellulose [41]. First reported by Brown in 1988, this natural polymer 
resembles plant and wood-derived cellulose, exhibiting the highest purity compared to 
the latter. Structurally, bacterial cellulose mainly consists of nanofibrillar polysaccharides, 
which have a diameter between 20 and 100 nm. Thus, bacterial nanocellulose is much 
thinner than the cellulose extracted from plants [38]. Bacteria produce extracellular 
cellulose fibers, in static or even dynamic conditions, with different yields, depending on 
the species and also on the culture media substrate. Komagataeibacter xylinus (also known 
as Gluconacetobacter xylinus or Acetobacter xylinum) [39], a strictly aerobic Gram-negative 
bacterium, is known as the strongest cellulose producer, along with other species: 
Komagataeibacter medellinensis, Komagataeibacter hanseii, Komagataeibacter oboediens, 
Komagataeibacter rhaeticus, and Komagataeibacter pomaceti, classified as safe bacteria 
(GRAS). Other bacteria known to produce BC, Azotobacter, Escherichia, Pseudomonas, 
Rhizobium, Salmonella, Agrobacterium, Klebsiella, and Sarcina ventriculi, are reported, along 
with recently discovered Lactobacillus hilgardii [42–44]. 

2.2. Biosynthesis 
Bacterial cellulose is synthesized by oxidative fermentation in a synthetic and non-

synthetic medium. The earlier-presented non-photosynthetic microorganism 
Komagataeibacter xylinus is fermented at pH = 3–7 at a temperature of 25–30 °C using a 
saccharide as a carbon source and producing a large quantity of cellulose microfibrils [45–
47]. 

Bacterial cellulose originates in the bacterial cytoplasm and is carried out in the 
membrane of the microorganisms. With glucose as the substrate, the cytoplasm becomes 
the host of a reaction cycle: phosphorylation–glucokinase, isomerization–
phosphoglucomutase, and uridine diphosphate UDP–glucose (UDPG) are produced [48]. 
The bacterial cellulose cytoplasm synthesis stage at a cellular (microscopic) level is 
illustrated in Figure 1. 

 
Figure 1. The microscopic cytoplasm synthesis of bacterial cellulose. 

The next stage occurs in the membrane where cellulose synthase operates. This 
enzyme is the main determinant of the cellulose type, along with the starting substrate. 
Thus, the nucleotide-activated glucose chains are extruded through pores, resulting in D-
glucose units interconnected through β-1,4-glycosidic bonds. More bonds are formed 
between these after leaving the ‘mother-organism,’ resulting in longer chains which are 
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inter- and intra-linked by hydrogen bonds measuring approximately 25 nm in width and 
up to 9 µm in length. Further, the linkage between these structures determines the 
formation of ribbon-shaped fibrillar formations (<100 nm in width). During culture, 
bacterial cellulose morphology transforms from the ‘floccus’ to the ‘pellicle’ phase, 
translated in a 3D-network to resemble a pellicle at the surface of the culture media [49–
52]. 

After fermentation occurs in the culture media and bacterial cellulose is obtained, a 
purification process is mandatory since the product is not of high purity and may contain 
culture media residues (for example, lignin and hemicellulose), unwanted cells, or side 
products [53,54]. A standard, but expensive, purification procedure requires the following 
steps: harvesting the bacterial cellulose pellicles from the culture vessel, washing them in 
distilled water to remove any residual medium, treating them with NaOH/KOH/Na2CO3 
at 100 °C for 15–20 min to kill the microorganisms, filtering them using an aspirator, and 
finally neutralizing the filtrate using distilled water. A drying method is further applied 
before obtaining the final product [55,56]. Another method of purification also uses an 
alkaline medium, NaOH or K2CO3 at 80 °C for 60 min; the procedure is performed twice 
to eliminate all the bacteria [57]. The purification of bacterial cellulose is of crucial 
importance when its cultivation targets are the fabrication of wound-healing materials, 
especially cartilage implants [58]. Researchers point out that supercritical CO2 processing 
and treatment with carbonic acid under high pressure are sufficient purification 
procedures for microbial cellulose that will be used in biomedical applications. Recent 
experiments indicate that treatment in biphasic systems is more effective in terms of 
maintaining the main structure of the cellulose network [59]. 

One of the aforementioned factors impacting bacterial cellulose synthesis is the 
culture media. In other words, the carbon and nitrogen sources are the most important. 
The culture substrates involved is the main reason why obtaining bacterial cellulose is an 
expensive process. Following eco-friendly fabrication protocols, wastewater from 
distilleries was reported as an efficient culture media for bacterial cellulose. The method 
is advantageous because it produces quality bacterial cellulose and diminishes waste 
disposal by transforming the wastewater into a cheap fermentation promoter [60]. Other 
parameters such as pH, culture type (static/dynamic, surfaced/submerged), shear forces, 
and oxygenating rates of the support also influence the synthesis process. 

In terms of bacterial cellulose networks, the literature data include different patterns, 
depending on the type of culture conditions. For example, solid-state cultures of 
Gluconacetobacter xylinus have been reported to produce bacterial cellulose with a 
honeycomb geometry, following a polyurethane support pattern. Also, the use of support 
enhances biomass recovery [61]. Other honeycomb-like matrices were obtained from 
bacterial cellulose and gelatin, exhibiting large surface areas and uniform pore 
arrangement. Ampicillin was added, resulting in a retarded release sponge with potential 
antibacterial applications [62]. 

2.3. Properties 
As expected, the properties of microbial cellulose reside in its structure. It consists of 

bundles of cellulose nano-fibrils (2–4 nm), which become ribbon-like structures of around 
100 µm in diameter and 100 µm in length [63–66]. Due to this particular nanostructure, 
bacterial cellulose has the capacity to retain its dry weight inside water; this fact gives this 
biopolymer superior elasticity, flexibility, and resistance in humid conditions; therefore, 
bacterial nanocellulose represents an excellent natural resource for designing new 
bandages for the accelerated healing of lesions [38]. It exhibits an ultrafine web structure 
which is very difficult to disperse in water [67]. The crystallographic structure is similar 
to that of cellulose type Iα [43,68]. Compared to other biopolymers, bacterial cellulose 
exhibits a combination of unique properties due to its fibrillar structure and its light 
weight, its purity, and its macromolecular properties, including its polymerization degree 
of up to 8000 [69]; its other characteristics such as its hydrophilicity, crystallinity (up to 
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90%) [70], moldability, non-toxicity, and biodegradability also set it apart [71]. The pure 
cellulose nanofibers confer intrinsic high purity and strength without the need of further 
refining treatments [42,63,71,72]. Chemical modifications are also permitted due to vacant 
hydroxyl groups that are not engaged in hydrogen bonds [49]. Its unique optical, 
electrical, and mechanical properties with numerous improvement possibilities have 
attracted the attention of scientists in many fields [73]. Bacterial cellulose morphology can 
be changed as needed. The literature data report these biogenesis interventions: growing 
cellulose in a chitosan-modified culture media or a methylcellulose-
carboxymethylcellulose-poly(vinyl alcohol)-modified media for its application in wound 
dressings or other medical applications [74,75]. The main advantages of bacterial cellulose 
are summarized in Figure 2. 

 
Figure 2. The advantages of bacterial cellulose. 

2.4. Applications 
Individually, bacterial cellulose has been an excellent starter for many applications 

due to its particular physicochemical and biological properties. The direction of its 
applicability points primarily towards the biomedical field [76]. These are a few examples 
of how bacterial cellulose can be included in innovative biomedical applications. 

First of all, microbial cellulose is a suitable material for 3D-bioprinting. The literature 
data describe bacterial cellulose as a medical material used in bioprinting costal, auricle, 
and nasal cartilage, due to its special 3D-structured network and unique properties [77]. 
By increasing its cellulose content by 17%, modified bacterial cellulose showed similarities 
to human auricular cartilage one week after its implantation. High compatibility was also 
demonstrated, along with non-absorbable properties, as the implant was accepted by the 
surrounding soft tissues [78]. 

Other challenging therapies where BC may play a vital role involve oral implants 
and newly guided bone regeneration techniques. BC has proven to exhibit suitable 
characteristics in the role of a barrier membrane, a component of capital importance in 
implantology. BC enhances tissue and bone regeneration by separating them from other 
surrounding tissues [79]. Moreover, BC is an important candidate to replace collagen 
(cytotoxic) as a shielding membrane, since its rate of biodegradation can be reduced [80]. 
It also exhibits a promising potential as a root canal treatment material, with perspectives 
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in replacing commercially available disposable paper points [81]. Experimental studies 
showed that potato starch added to a BC culture media produces an increased viscosity 
and fills many networks’ vacant spaces. Moreover, scaffolds are obtained after culturing 
muscle cells onto the surface. This pattern complies with the specifications of hollow 
organ reconstruction material [82]. 

BC also represents a feasible material for tissue engineering [83], a field that is 
currently focused on discovering materials and techniques to artificially mimic a suitable 
environment for stem cell culture [84]. It is well known that stem cells stand out because 
of their self-renewal characteristics emphasized by their ability to further differentiate into 
numerous cell types, depending on the specificity of the organism in question, with a high 
potential for multiple applications [85,86]. A research team demonstrated how bacterial 
cellulose can be exploited in this direction: a nanofibrous bacterial cellulose membrane is 
reported to have the ability to inhibit the differentiation of mouse embryonic stem cells. 
At the same time, the mouse embryonic fibroblast cultivation was improved, in 
comparison to the conventional culture media. The pluripotency of the cells was 
confirmed, along with their ability for quick manipulation, significantly enabling other 
handling maneuvers [87]. BC also has properties which make it adequate to serve as a 
scaffold for tissue engineering at the level of the cartilage. Chondrocyte proliferation 
studies developed using BC supports have been carried out. Bacterial cellulose loaded 
with bone marrow mesenchymal stem cells also represents an innovative resource for 
developing scaffolds and quality testing techniques for bone reconstruction materials. A 
study using horse stem cells proved BC’s cell adhesive and life supporting platform 
properties [88]. Due to it being non-cytotoxic, BC may function as a durable scaffold in the 
slow-healing processes [89]. Outstanding studies were carried out to improve and 
discover new methods for diagnosing neurodegenerative diseases. Results showed that 
neuroblastoma cells (SH-SY5Y) attached and proliferated on a bacterial nanocellulosic 3D-
scaffold, resulting in mature neurons. This special model was designed for the 
investigation of neurodegenerative disease mechanisms, paving the way for discovering 
new treatments for neurological conditions [90]. 

Another branch of the biomedical field where BC occupies a central place is in the 
development of wounds dressings for the treatment of lesions of different etiologies 
(burns, chronic skin ulcers, surgical incisions, and traumatic wounds) [91]. BC exhibits a 
high capacity to maintain an optimal moisture at the lesion site, to absorb wound 
exudates, to allow a good exchange of gases, to provide thermal isolation, and to prevent 
a strong adhesion to the skin tissue. BC-based wound dressings supply an excellent 
protection against contamination and infection, reducing the occurrence of local pain and 
inflammation. Therefore, all these advantages lead to an increase in skin restoration and 
re-epithelialization, accelerating the wound healing process [92]. 

Along with the biomedical applications of BC presented above, BC can also be a 
promising material for controlled drug delivery [93]. Thus, BC can be loaded with various 
drugs, such as benzalkonium chloride, tetracycline, ibuprofen, diclofenac, paracetamol, 
propranolol, lidocaine hydrochloride, caffeine, silver sulfadiazine, and amoxicillin [92,94]. 

The second direction of applicability for bacterial cellulose is in the pharmaceutical 
domain. The use of intelligent technology in the pharmaceutical industry represents the 
future in terms of delivering active moieties to specific sites of absorption and action. 
Among these, Pickering emulsions have gained interest in recent years due to their 
versatility and possible application in the pharmaceutical and cosmetic industry. Recent 
approaches to these disperse systems include liquid marbles as precursors [95] and 
cellulose nanofibers/nanocrystals as stabilizers. Investigations in this direction include the 
study of oil droplets trapped by cellulose nanocrystals. Further studies revealed that the 
Pickering emulsions can be stabilized using TEMPO-oxidized (2,2,6,6-tetramethyl 
piperidine oxide) bacterial cellulose nanofibers. The assessment of the quality parameters 
of these emulsions indicates stability and viscoelasticity, and therefore, great potential for 
its use in new drug delivery systems [96]. 
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The third direction of applicability of bacterial cellulose is in the biotechnological 
industry [97]. The petrochemical-based industry flourished for many decades, but 
nowadays a migration towards a bio-based ‘green’ economy is unfolding. This implies 
that avoiding natural material exploitation comes first when developing quality 
bioproducts to be obtained according to modern world requirements. In recent decades, 
the researchers’ interest was focused on BC as a promising ecological biomaterial due to 
its eco-friendly production process. Furthermore, BC possesses adequate 
mechanoelectrical and electromechanical transduction characteristics [98]. Following this 
direction, biofibers are currently important candidates as reinforcements for numerous 
applications of polymer composites [99]. Due to its suitable electrical properties and its 
renewable capacity, BC has a high potential for use in the expansion of new biosensors, 
wearable electronics, biomedical and energy storage devices, electrodes, and 
supercapacitors [100]. Biosensors have a large applicability in tissue engineering and 
regenerative medicine. Among them are enzymes, receptors, and antibodies. These 
devices are broadly used in bioanalysis because they can verify the biological signals in 
real time, informing health care providers about the current health status of the patient, 
helping the medical team to discover the disease in time and to initiate the treatment [101]. 

3. Bacterial Cellulose Composites—Important Emerging Materials for Biomedical 
Design and Other Impacting Applications 

It is well known that ‘composites’ represent an umbrella term, defining a class of 
compounds obtained by placing two or more types of materials together: one plays the 
role of the matrix and the other is the reinforcement. The final product meets high-quality 
standards when compared to the raw materials it is made of [102]. 

Taking into account the aforementioned aspects and the fact that bacterial cellulose 
is a 3D-structured network, BC may function as a matrix to ‘trap’ other potential 
compounds [103]. Thus, microbial cellulose composites came to life, aiming to improve 
and eliminate some of the components’ disadvantages or to adapt a range of properties, 
depending on the desired final product [104]. The direct addition of various materials 
applied to BC results in a ‘combination product’ called BC composite, as illustrated in 
Figure 3. 

 
Figure 3. A schematic illustration of a bacterial cellulose composite. 

Bacterial cellulose presents a high capacity to act as a host for some oxide 
nanoparticles (metals, carbon derivates, minerals). The many possibilities for using BC as 
a mesh for obtaining composites are becoming popular, and most of them involve other 
known polymers [105]. 

3.1. Biopolymers for Tailoring Bacterial Cellulose-Based Composites 
The term ‘polymer’ is ubiquitous and defines a widespread class of materials used in 

many industrial areas. As many would say, we live in a so-called ‘polymer age,’ which is 
exhibited by several changes that a polymer can suffer, such as physical, chemical, 
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thermal, or photochemical modifications [106]. The expanding role of these 
macromolecules in our lives is the reason why, during the last decades, scientists became 
interested in developing value-added products based on polymers. Currently, the main 
concern is obtaining biocompatible polymers via ecological and economical techniques. 
These biopolymers are environmentally friendly with low toxicity, making them suitable 
for multiple applications [107]. The waste disposal problem arising from industrial 
expansion is one of the main reasons why self-biodegradable materials became a 
necessity. Thus, in the 1980s, biodegradable plastics were created, originating from 
natural and synthetic polymers [108,109]. The newly designed materials exhibited the 
characteristic of self-biodegradation in the presence of living microorganisms which act 
in collaboration with chemical factors or enzymes [110]. 

Currently, worldwide efforts concern preference of biodegradable materials over 
non-biodegradable ones. The scope is to diminish pollution and uncontrolled waste. 
Polymers were once considered pollutant agents and most of them still maintain their 
‘bad reputation’ [111]. As it is well known, a polymer is composed of repetitive 
similar/non-similar entities, called monomers, which connect through non-covalent 
bonds, generating the polymolecular entities [112]. A brief classification of the most 
widespread polymers includes cellulose, collagen, chitosan, and hyaluronic acid as 
natural polymers [113]; cellulose derivatives (sodium carboxymethylcellulose (NaCMC), 
hydroxyethylcellulose (HEC), hydroxypropylcellulose (HPC), 
hydroxypropylmethylcellulose (HPMC), methylcellulose (MC), and ethylcellulose (EC)) 
as modified natural polymers obtained by modifying the pure cellulose through the 
etherification reaction with alkyl groups [114]; and poly(vinyl alcohol) (PVA), 
polyvinylpyrrolidone (PVP), and Carbopol® as synthetic polymers [115]. 

All biopolymers stand out because of their remarkable previously discovered 
applications, but also distinguish themselves by perspectives of these properties, which 
should be brought to light. Among them, this paper points out a few innovative 
applications. The focus will be placed on emerging materials in the biomedical field (tissue 
engineering, wound dressings, drug delivery systems, regenerative medicine) where 
biopolymers act as precursors [116]. Thus, these biomaterials present biological functions 
which allow the healing of any impaired organ or tissue of the human body [117]. 

Due to the excellent physicochemical and biological properties of all types of 
biopolymers (natural, modified natural polymers, and synthetic), they can combine with 
bacterial cellulose to develop new composites with results that surmount their drawbacks 
and extend their applications [102]. BC-based composites have a large applicability in the 
wound healing process as wound dressings, as well as in tissue engineering, implants 
(bone, cartilage, cornea, teeth), 3D-bioprinting, the treatment of cardiovascular and 
neurological diseases, drug delivery, biosensors, electronics, and biofuels [102,118], as will 
be described below. 

Cellulose, one of the main natural polymers, may experience different structural 
changes through specific processes to attain better quality (to improve its water solubility) 
and to extend its applicability in multiple domains [119]. Among the methods applied, 
lyophilization was mentioned in the literature data as a method to increase the porosity 
of a cellulose matrix for favorable bone regeneration [120]. Mello et al. obtained 
lyophilized cellulose and assessed it as a wrapper for peripheral nerve injuries (sectioned 
sciatic nerves) in animal studies. It was demonstrated that lyophilized cellulose caused a 
moderate fibrous reaction when implanted in peripheral nerve lesions with loss of 
substance. It proved to be effective as protection in those lesions in the presence of an 
inserted neural graft. Axons regrowth was reported, along with motor response after a 
period of recovery [121]. 

Other applications that indicate the use of cellulose-based materials pertain to the 
restorative medicine field [122]. One such material is oxidized regenerated cellulose 
(ORC), a natural biopolymer with carboxyl groups, which results through the chemical 
oxidation of pure cellulose. This material possesses several optimal characteristics (non-
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toxicity, biodegradability, antibacterial activity, and biocompatibility); thus, ORC has 
multiple medical uses, but it is principally a hemostatic agent [123]. A retrospective study 
on patients that underwent skin graft reconstruction treatments used ORC and a collagen-
based composite loaded with silver. Results indicated a reduction in pain medication 
usage during healing, along with a decreased necessity for dressing replacement [124]. 

Collagen is a natural polymer known as the major constitutional protein found in 
human tissues. It makes up the extracellular matrix of connective tissues. Due to its high 
biocompatibility, it has been used in various biological applications, including as a wound 
dressing material, part of drug delivery systems, and materials-based scaffolds for tissue 
engineering [125]. Due to its suitable properties, collagen can be combined with other 
polymers, for example, with dextran in a spongious matrix loaded with flufenamic acid. 
Release profiles were obtained from animal testing: gradual delivery of the anti-
inflammatory moiety accelerated the wound healing process and also enhanced re-
epithelialization. The aim of designing these matrices was to reduce burn lesion 
progression, pain, and inflammation. The exact mechanism involved in tissue restoration 
through these particular systems will require further investigations [126]. 

Along with the above association (collagen and dextran), collagen can be also 
combined with BC for possible applications in the biomedical field. Different forms of 
collagen (hydrolyzed, solution, gel) embedded onto BC sheets increased their quality in 
terms of thermal stability and improved mechanical properties over plain lyophilized BC 
[127]. New research is constantly being carried out to guide collagen and other natural 
polymers towards inclusion in high-quality wound dressings. Rheological parameters in 
correlation with biological behavior and structure were studied for a spongious collagen-
dextran-zinc oxide (50%) composite. Important perspectives for skin regeneration and 
antibacterial properties were indicated [128]. 

Moreover, collagen, the main component of bone tissue, is included in numerous 
composites (with BC), which are proposed as regeneration processes enhancers [77,129]. 
BC-collagen scaffolds impregnated with human umbilical cord blood-derived 
mesenchymal stem cells successfully functioned in osteogenic differentiation. 
Subcutaneous transplantation of these scaffolds enabled prolific neovascularization in 
early bone regeneration [130]. Vascular endothelial growth factor was added to BC 
scaffolds in studies carried out on femoral fractures in mice and rabbits, proving promotor 
properties in vascularization, ossification, and maturation of newly developed bones 
[130,131]. Playing a role similar that of plain BC acting as a separator between tissues in 
oral implants recovery, BC-collagen is applied as a carrier material for the osteogenic 
growth peptide with the goal of conserving bone defect space during the healing process, 
as well as enabling hyperplasia [132]. Moraes et al. developed a hydrogel dressing based 
on BC and collagen and compared it with a commercial product regarding their effect on 
the healing of rat dorsum. In vivo studies showed better skin healing using the newly 
designed hydrogel on day 7 after surgery [133]. 

Apart from physical contact therapies in wound healing and scaffolds, research 
groups also studied drug absorption and release mechanisms through porous 
microspheres based on collagen and bacterial cellulose. Absorption equilibriums analysis 
indicates promising applications for this system in future active moiety delivery systems 
for wounds [134]. 

Along with the natural polymers mentioned above, chitosan is also widespread in 
nature, second only to cellulose. Its origin is in the natural chitin. Chitosan exhibits many 
excellent properties, such as biocompatibility, non-toxicity, biodegradability, particular 
solubility, along with antimicrobial [135,136], antioxidant [137], antiviral, and antifungal 
effects [138]. Chitosan is well known as an excipient for drop-type ophthalmic products 
[139], and also for complex entities like liposomes [140], microemulsions [141], hydrogels 
[142], and implants [143]. Due to its excellent characteristics, chitosan can be used as a 
scaffold alone or in association with other polymers to develop new materials with 
promising biomedical uses. For example, chitosan in a gel form made was included as 
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part of a drug delivery system destined for periodontal diseases treatment through intra-
pocket drug release. As such, one proposed approach included chitosan-based 
formulations containing a chemotherapeutic agent (metronidazole benzoate) and an 
antibiotic (tetracycline hydrochloride). The optimum chitosan concentration was 
established through kinetic profile analysis. Thus, the gel with 3% w/w chitosan represents 
an excellent local treatment for periodontitis [144]. 

Moreover, ophthalmic pharmaceutical forms represent a challenge in terms of 
formulation and organ specificity. Apart from the active ingredients, auxiliary 
components are the ones entitled to encompass these boundaries. Chitosan won an 
important position in this direction due to its biodegradability, bioavailability, and 
permeation enhancement ability. Moreover, its antibacterial and antifungal properties, 
along with its intrinsically adhesive nature, promote chitosan’s inclusion in modern 
ophthalmic drug delivery systems. Since most in situ ophthalmic chitosan gels commonly 
deliver only one active substance, future investigations will try to incorporate more active 
ingredients, paving the way to attaining a local synergistic action [145–147]. 

In the meantime, chitosan can also be combined with BC. Thus, it was included in 
BC-based composites with various applications. The literature data included a BC-
chitosan film that was compared to plain BC and other hydrocolloid films (Tegaderm®). 
It was demonstrated that BC did not dehydrate wounds but maintained a suitable moist 
healing environment with good permeability. The BC-chitosan film enabled skin 
regeneration and provided a better wound-healing effect [148]. Bacterial cellulose and 
chitosan, along with ciprofloxacin, were successfully integrated into a patch with dual 
antibacterial properties [149]. The mixture of BC, chitosan, and carboxymethylcellulose 
led to an antimicrobial film with a higher tensile strength and water vapor transmission 
rate [150]. 

In the category of the modified natural polymers, a central place is occupied by the 
cellulose derivatives (CMC, HPMC, MC, HEC, HPC, EC) that are of great interest, mainly 
in the food industry [151]. Nowadays, every industry is trying hard to maintain a standard 
of low waste, suitable economy, and high quality. The food industry concentrated its 
efforts on the development of cellulose derivatives as proper materials for food packaging 
and freshness maintenance due to their antimicrobial effect [152]. In this direction, many 
tests were performed, such as the scanning electron microscopy (SEM) analysis on gluten 
networks, showing that CMC is suitable to be used as a flour dough rheology regulator 
[153], whereas HPMC functions as a texture enhancer for whipped cream [154]. Following 
the idea of improving food preserving methods, methylcellulose-coated eggs exhibited 
promising shelf-life freshness when compared to eggs with uncoated shells [155]. Another 
functional food interface was developed targeting antioxidant activity using 
methylcellulose plasticized films, showing efficacy in preserving tocopherol content in 
walnut oil [156]. 

CMC also qualifies as an important polymer for use in the biomedical field due to its 
biocompatibility with human skin, its biodegradability, and its non-toxicity. Its 
advantages also include its high-water uptake, which is very important in ensuring a 
favorable environment for re-epithelialization [157]. NaCMC has a great ability to 
combine with other polymers to generate new composites showing suitable applicability 
in the biomedical field. For example, to meet all of the qualitative requirements of wound 
healing materials, spongious matrices comprised of collagen-NaCMC-mefenamic acid 
were developed and tested. Ninety-five percent of the anti-inflammatory agent was 
released. Along with favorable degradation and swelling ability, these hybrid matrices 
were proposed for further in vivo and in vitro testing [125]. Moreover, this combination 
of collagen and NaCMC and the same anti-inflammatory drug, mefenamic acid, was 
comparatively tested on rats in terms of its burn healing efficacy. Results indicated 
valuable effects in the hemostasis and inflammation stages, accelerating wound healing 
through the reduction of pain and minimal scar formation [158]. Local treatment for burns 
and soft-tissue injuries also included a multiparticulate system based on a collagen-
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dextran matrix embedded with flufenamic acid. Apart from the polymeric matrix, it 
consists of microcapsules based on gelatin-NaCMC-alginate with an embedded anti-
inflammatory drug. This model was proposed as a promising design for future similar 
applications [159]. CMC can also be blended with BC. Thus, Pavaloiu et al. designed a 
new composite hydrogel loaded with ibuprofen sodium to study its drug release and 
swelling characteristics. It was found that the mechanism of swelling is controlled by 
pseudo-Fickian diffusion [160]. Juncu et al. formulated composite films based on NaCMC, 
BC, and ibuprofen sodium. The swelling behavior was studied using non-linear diffusion. 
The main results showed that the drug delivery depends on the content of BC; thus, the 
increase in the concentration of BC led to a decrease in the ibuprofen release rate [161]. 

Of special interest is the association between sodium alginate and BC. Cartilage 
restructuring properties were discovered in the BC-alginates double-layered composites 
inoculated with human nasal septal chondrocytes. In vitro culture revealed the stents’ 
potential as a model in treating severe auricle defects, as new healthy cartilage was formed 
through the porous layer of the biocomposite [162]. Porous sponges were obtained by 
combining BC and sodium alginate and cross-linking this with CaCl2 solutions. The 
sponge is conceived as a tear resistant, daily removed dressing for covering oral cavity 
surgical wounds [163]. The BC-alginate-chitosan-copper composites were confirmed to be 
suitable for use as biocompatible wound dressings due to their antibacterial activity 
against Escherichia coli and Methicillin-resistant Staphylococcus aureus [164]. Alginates were 
included, along with bacterial cellulose, in composite films loaded with silver 
sulfadiazine, proving cytotoxicity and an extended antimicrobial spectrum (Escherichia 
coli, Staphylococcus aureus, and Candida albicans) [165]. Kim et al. designed a BC and 
alginate-based nanocomposite, with normal spherical shapes and size, that showed high 
biocompatibility, biodegradability, optimal capacity to absorb water, higher crystallinity, 
and greater surface area. All these suitable properties enhanced the field of use for this 
nanocomposite, with promising applications in the biomedical, pharmaceutical, and 
biocatalytic industries [166]. 

Included in the category of synthetic polymers are poly(vinyl alcohol) (PVA), 
polyvinylpyrrolidone (polyvidone) (PVP), polyacrylic acid (Carbopol®), poly(ethylene 
glycol) (PEG), polyacrylamide, and polyurethanes, which are hydrophilic substances with 
swelling properties in the presence of biological fluids, thus generating hydrogels 
[113,115]. Two of them, PVA and PVP, are widely used in ophthalmic formulations 
(contact lenses and artificial cornea) [167,168] due to their optimal biocompatibility, 
biodegradability, capacity to form films, transparency, proper viscosity, excellent ocular 
mucosa penetration, and eye contact [169–171]. Moreover, PVA exhibits an appropriate 
capacity to blend with other polymers such as collagen to develop a novel matrix for tissue 
regeneration. The matrix was embedded with indomethacin as an anti-inflammatory 
molecule, resulting in a stable biohybrid. Kinetic parameters indicated an initial burst 
release of indomethacin, followed by slow drug delivery. Thus, the proposed spongious 
delivery systems presented promising results for replacing classical formulations used for 
tissue recovery purposes [172]. Moreover, PVA can also be combined with BC, creating a 
new composite that controls drug-delivery rates for anti-inflammatory substances. The 
system included poly(vinyl alcohol), chitosan, and bacterial cellulose; experimental 
results proved their possible use as biocarriers [173]. A new nanocomposite was obtained 
by blending BC with PVA and magnetite nanoparticles, which exhibited proper 
characteristics for use in the development of smart electronic devices [174]. 

The major applications of bacterial cellulose-based composites are highlighted in 
Figure 4. 
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Figure 4. The major applications of bacterial cellulose-based composites. 

3.2. Applications of Bacterial Cellulose-Based Composites 
Bacterial cellulose is considered an efficient substance carrier. Due to its architecture, 

which resembles a porous network, it acts as an intermediary between the wound and an 
antimicrobial agent embedded in its structure. It is also a physical barrier against 
infectious agents. Many composites were created starting with these structural 
advantages. One example is the BC-NBG (nano-bioactive glass) composite which proved 
the synergistic antibacterial action of the two components. Laboratory tests showed 
antibacterial properties against Escherichia coli, Salmonella typhymurium, Pseudomonas 
aeruginosa, Klebsiella pneumonia, Bacillus subtillis [175]. It is also important to emphasize 
that the field of biomedicine has much to gain from attributes of bacterial cellulose, 
including high compatibility with the human organism and cost-effectiveness. 
Antibacterial composites include, among others: MH-BC (from mulberry leaves 
fermented in an acid hydrolysate fermentation medium) with proven perspectives in 
regenerative medicine [176]. 

Experimental data also showed that thymol-enriched bacterial cellulose has in vitro 
antibacterial activity against infectious bacteria, with prevalent potential for use in burned 
skin therapies. Cell viability and fibroblast proliferation were analyzed and the results 
showed an increase in the protection and coverage of damaged and recovering tissues. In 
vivo results indicated that wound closure and re-epithelization were not only enabled, 
but also accelerated [177]. Other research data revealed that biocomposites containing BC 
and Bacillus subtilis were reported as efficient and promising wound dressings, enabling 
full-thickness wound healing [178]. 

Bacterial cellulose and its composites also have effective applications in 
reconstructive medicine. The literature data indicated that accelerative wound healing 
processes and urinary reconstruction using angiogenesis promoters were achieved by 
using a combination of bacterial cellulose and urine-derived stem cells [179]. The potential 
of this association is noteworthy because of its telomerase activity, revealing the markers 
that are found on the surface of mesenchymal stem cells. Advantages compared to 
traditional wound dressings include an absence of secondary damage to the tissue and 
the absence of exudate accumulation. Bacterial infections are prevented due to bacterial 
cellulose being a skin substitute with high water-retaining capability [180]. 

Bacterial cellulose-based biomaterials used for wound healing are of major 
importance, particularly for the treatment of open injuries, severe burns, basal carcinoma, 
dermal abrasions, and chronic ulcers. Extensive tissue destruction or even severe 
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infections may be triggered if wounds are not treated properly. Numerous studies 
introduced bacterial cellulose as an excellent dressing material. Many such products are 
already on the market: Biofill®, XCell®, Bioprocess®, Nanoderm® [181], and also Cellumed® 
(veterinary use) [182]. The literature data include reports of patients with second-degree 
wounds who exhibit faster healing when using BC-derived dressings compared to 
conventional products [183]. Wound dressing moisture balance is maintained, whilst skin 
is allowed to breathe and pain is reduced. Moreover, recent studies carried out on animals 
proved that wound dressing materials containing BC reduced the inflammatory response 
and improved wound healing and regeneration [184]. Other investigations revealed that 
the BC wound dressing materials exhibited superior covering properties for all facial 
contours and increased the cohesion levels on the mouth and nose regions, compared to 
other dressings; they also promoted a high moisture level in the wound, pain reduction, 
re-epithelialization acceleration, and a reduction in the appearance of scars [184–186]. 
Moreover, histopathological experiments proved that thick-BC wound dressings induced 
superior capillary formation, tissue regeneration, and cell proliferation compared to thin 
ones [187]. Clinical applications of BC-based wound dressing materials have the potential 
to replace classical gauze materials, as shown by experiments carried out on rat models 
[188]. 

As presented previously, a wound, and especially a burn infection, is an important 
aspect to consider during therapy because of its many triggered limitations. Pathogenic 
microorganism adhesion and further proliferation in the wound should be reduced as 
much as possible. BC-based dressings comply with these demands, the only difference 
being that no antibacterial protection is offered unless special treatments using organic 
(Ag, CuO, ZnO) or inorganic (lysine) agents are applied to the microbial cellulose fibers 
[188]. Bacteria are killed by impairing their main metabolic processes (respiration, 
nutrition) or by changing their cell wall structure and its normal function [189–191]. 

BC composites have been proven to make important contributions in the wound 
healing process, with previously demonstrated beneficial effects on hemostasis, 
inflammation, proliferation and remodeling phases of injury recovering. Even so, 
controversial aspects remain to be clarified, as many tissue healing mechanisms, 
especially scar formation and full recovery, are discordant [192,193]. 

Along with reconstructive medicine where wound healing processes benefit from 
bacterial cellulose composites, tissue engineering represents another field in which BC 
gains terrain compared to other materials due to its structured and porous 3D-network, 
biocompatibility, biodegradability, mechanical properties, and high power to retain large 
amounts of biological fluids [194]. Tissue engineering represents a new and demanding 
field of scientific exploration; it is an extensive multidisciplinary domain because it 
requires information from biology, chemistry, medicine, physics, and especially from 
engineering. The main purpose of tissue engineering is to expand several biological 
substitutes that can contribute to the anatomical and functional restoration, 
reconstruction, and increase in any human body tissue [195]. A biomaterial offers support 
and proper growth conditions in collaboration with other specific factors, promoting 
regeneration itself. Thus, the scaffold’s performance depends on its biocompatibility in 
terms of cellular adhesion and surface development, making the biopolymer responsible 
for cellular behavior (adherence, proliferation, migration) [196]. 

The ideal material destined for bone tissue engineering should exhibit certain 
properties: mechanical characteristics analogous to bone tissues, the ability to support the 
proliferation and differentiation of cells, the tendency to establish the deposition of the 
extracellular matrix [197], biocompatibility to support cellular interactions and tissue 
growth, biodegradability, absorbability, and last but not least, innocuity. Cumulative 
properties such as crystallinity and purity, in comparison to commonly used materials, 
promote bacterial cellulose as a superior qualitative medical material [198]. BC represents 
an ideal biopolymer that has a high capacity to simulate natural collagen due to its 
excellent properties mentioned above. Therefore, it is a remarkable candidate for use in 



Materials 2022, 15, 1054 13 of 29 
 

 

bone restoration. Such an example is the mixture between BC and hydroxyapatite, a 
natural polymer that participates in the process of bone ossification. A new 
biomineralized BC scaffold has been designed with CMC as an activator of the BC surface; 
this novel formulation is a promising bone scaffolding material that requires further 
investigation [199]. 

Studies reported numerous BC-hydroxyapatite composites obtained through 
different technological processes as having various stoichiometric values, depending on 
the location and tissue for which they are intended. Bacterial cellulose was included, along 
with Fe3O4 and hydroxyapatite, in the scaffolds. Properties of the composite resemble 
human trabecular and cancellous bones. Further, in vivo investigations regarding this 
material’s osteogenic properties are needed for the scaffold to gain terrain against other 
classical prosthetic materials frequently used in dentistry [200]. 

Classical polymeric scaffolds do not retain high strength stability over time. To 
overcome this disadvantage, many techniques are still developing, mostly to obtain 
quality scaffolds for bone- and cartilage-recovering therapies. Polysaccharide scaffolds 
are mentioned in the literature as being compliant with physiological conditions, showing 
superior osteoblast adhesion and progressive bone mineralization compared to other 
control scaffolds (poly(lactic acid-glycolic acid)) [201]. Studies on nanocellulose scaffolds 
with collagen showed a greater adhesion and phenotype maintenance of cultured human 
osteoblasts, reflected by increased levels of alkaline phosphatase and mineral deposition 
compared to the control polyester micro-nano structured scaffolds of identical pore 
properties. These scaffolds are competitors for other polyester-based scaffolds used in 
bone restoration [202]. 

As per the case of bone tissue grafting, cartilage surgical repair also consists of similar 
procedures: the autografting of chondrocytes or osteochondral plugs. BC and its 
composites have been tested as cartilage replacement materials. One example includes the 
BC-poly(vinyl alcohol) composite, which exhibits the potential for use in the 
orthopaedical field as cartilage or intervertebral disc-replacement material [193]. 

Nowadays, materials with extreme wetting properties gain scientists’ attention 
because these materials present multiple ascending applications. Following the trend of 
developing biomimetic materials with special surface properties (for example 
superhydrophobic materials structurally resembling the lotus leaf [203,204]), bacterial 
cellulose became of interest to scientists working on hybrid materials. Thus, 
biocomposites with improved interfacial wettability were created by chemical cross-
linking with oligopeptides, promoting tissue repair, which is of high importance in 
regenerative medicine [205]. Recent investigations pointed out the advantages of using 
bacterial cellulose in tympanic grafts, which enhances the surgical procedure by 
improving the healing ability after the graft is accepted by the organism. 

One of the most studied and yet not fully understood systems, the cardiovascular 
domain, also benefits from the emerging application of bacterial cellulose. Hypertension 
and other heart-related pathologies are mainly caused by clogged or pathologically 
destroyed blood vessels. Scientists have developed polyester or polytetrafluoroethylene 
artificial grafts. Their inconvenience includes thrombi formation and appropriate 
capillarity, which is hard to obtain [45]. Thanks to its biocompatibility, high porosity, 
incredible mechanical properties, strength, and elasticity, BC became very popular as a 
vascular graft component. BC embedded with graphene oxide nanosheets is another 
composite developed to replace even small-diameter vessels [206]. Bypass implants 
registered a notable quality improvement when the product BActerial SYnthesized 
Cellulose (BASYC) was developed. Among its advantages, there are a few that stand out: 
mechanical strength in a moist state, smoothness of the interior lumen, and increased 
moisture preservation. Animal testing proved its success in the replacement of blood 
vessels using this material [45,207]. Other experiments regarding hemodynamics and 
physiological phenomena at the implantation site were carried out and these underlined 
the efficacy of the BC biosynthetic blood vessel precursors [186,208]. 
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Even though BC and its composites proved to possess superior qualitative properties 
compared to conventional materials when referring to biomedical applications, scientists 
are still searching for new strategies to develop better composites. Recently, Gengiflex® 
(based on BC) and Gore-Tex® (based on polytetrafluoroethylene) membranes were tested 
for applicability in the dental field. Both membranes stimulated the bone expansion. After 
three months, the efficacy of the two products was compared. Thus, Gore-Tex® showed 
higher efficacy than Gengiflex,® and it is a promising candidate for healing osseous 
deficiencies [186]. 

As was previously stated, industrial fields gravitate towards quality materials and 
rely on obtaining them by combining well-known and studied materials. Following this 
flow, new composites were designed using bacterial cellulose. These products allow 
quality improvement in terms of mechanical, optical, and water absorption properties 
over plain bacterial cellulose [209,210]. 

Along with the applications of many of the newly designed composites highlighted 
above, a structured presentation of other bacterial cellulose composites, combinations of 
bacterial cellulose and various bioactive agents, and their biomedical applications are 
illustrated in Table 1. The proposed classification of these biomaterials and their 
prospective uses in the medical field were designed depending on tissue type and organ 
class. The table includes composites ranging from simple to complex structures, along 
with a wider range in terms of applications. 
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Table 1. Biomedical applications of bacterial cellulose. 

Anatomical Part Tissue Type Application Composition Qualitative Properties References 

Skin 

Epithelial tissue (soft 
tissue) 

Wound restorative therapy 

BC-modified topography 
Wound healing enhancement: collagen migration enabled at the wound site along 

with fibroblast infiltration 
[211] 

BC-CuO membrane 
Proper antimicrobial activity against Escherichia coli and Staphylococcus aureus. It may 

function as a prototype for other similar products exhibiting photocatalyst and 
antimicrobial characteristics 

[212] 

TEMPO-oxidized BC-AgNPs Antimicrobial activity with 12% Ag release rates (37 °C). [213] 

BC-TiO2 Antibacterial activity against Staphylococcus aureus and Escherichia coli proven on 
mice 

[214] 

BC-AgNPs nanocomposite Antibacterial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas 
aeruginosa due to the release of Ag; inflammation reduction  

[215–217] 

BC-ZnO nanocomposite 
Antibacterial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas 

aeruginosa, Citrobacter freundii [213] 

BC-propolis extract 
Anti-inflammatory, antibacterial activity, and antioxidant functions on diabetic 

wounds [209,218] 

BC-phenolic acids membranes Suitable anti-inflammatory and antioxidant effects; non-cytotoxicity [219] 
Periodate oxidized BC-chloramphenicol Antibacterial spectrum, biodegradable, and biocompatible [220] 

BC-vaccarin De novo formation, neovascularization of tissues made of collagen, and fibrous 
connective tissue 

[221] 

BC-diethyldithiocarbamate OH-slow releasing systems: parasitic-caused lesion size reduction, SOD inhibition [222] 
BC-ε-poly-L-lysine nanocomposite Extended antimicrobial spectrum [223] 

BC-acrylic acid hydrogel 
Promoter of complete healing of wounds: water absorption and retention with good 

mechanical properties. 
[210,224] 

BC-poly-methyl methacrylate Biodegradable bandages, which support wound healing [225] 
BC-Octenidine-Poloxamer 

BC-CMC-Methotrexate 
Ready to use topical drug delivery systems: controlled release of active substances, 

effective for infected wounds [226,227] 

BC-acrylic acid-human keratocytes and 
dermal fibroblasts hydrogel 

Same wound healing properties as plain BC and a prolific cell carrier [224] 

Enzymatic degradative 
biomaterials for surgical sutures 

BC nanocrystals-regenerated chitin fibers 
Wound healing enhancer with adaptable degradation rate (chitin concentration), 

biodegradable, strong suture material 
[228] 

Tissue restoration 

BC-tuned porosity Muscle cell growth enhanced due to pore diameter, but slight strength reduction [82] 

BC membrane 
Appropriate nanomorphological properties, optimal control of infection, capacity to 

retain moisture; adequate drug delivery system 
[229] 

BC-PHEMA hydrogel matrices Mesenchymal stem cells proliferation proven in rats [230] 

Connective tissue 
(transdermal level) 

Active ingredients for 
transdermal release 

BC-chloro-aluminum phthalocyanine 
membrane 

Skin cancer: delivery system for photodynamic therapy with adequate properties for 
topical administration [231] 

BC-lidocaine/ibuprofen membrane 
Possibility of drug bioavailability modulation-dermal administration of lidocaine 

and ibuprofen 
[232,233] 

Dressing materials 

Modified BC-chitosan 
Abdominal hernia treatment-reduced chance of infections caused by the mesh, no 

irritation, no hypersensitivity at implant site 
[234] 

BC-sericin-PHMB film 
Healing acceleration: low inflammatory response, high degree of collagen 

formation, scar shrinkage 
[192] 

BC-alginate-gelatin film 
Optimal ductility, biocompatibility, increased flexibility, and capacity to absorb 

water. 
[235] 

Blood vessels Connective tissue Restoration replacement BC-Fe3O4NPs magnetic pellicle Small capillarity blood vessels [230] 
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Biosynthetic blood vessels 
BC-polyglycolic acid and expanded 

polytetrafluorethylene 
Biocompatibility (absence of leukocyte activation), apoptotic cell absence, 

vascularized granulation tissue, and multiple proliferating cells [208] 

Engineered vessels with 
anticoagulant property BC-heparin nanofibrous scaffold Anticoagulant properties-sulphate groups-enriched BC-heparin hybrid [236] 

Blood cloth control BC from nata de coco-kaolin 
Topographical properties and malleability of the biomaterial exceed the attraction 

forces between clotted blood proteins 
[237] 

Vascular embolization: 
interventional therapies 

BC-poly-N-isopropyl acrylamide-co-butyl 
methacrylate nanogel 

Thermosensitive injectable biomaterials: expanded to condensed gel state [238] 

Aortic heart valve Connective tissue Prospective replacement therapy BC-PVA hydrogel Biomimicry: non-linear mechanical properties  [239] 

Cartilages Connective tissue 
Replacement, reconstruction 

BC-poly(dimethyl acrylamide) double 
network gel 

Meets properties of artificial cartilage; no in vivo tests confirmation [240] 

BC-PVA composite Proven elasticity and similar properties to native cartilages [193] 

Osteochondral defect treatment 
Bilayer BC-hydroxyapatite and BC-

glycosaminoglycan indice 
Accelerated recovery of articular cartilage and subchondral bone in model rats with 

osteochondral defects [241] 

Bone Skeletal tissue 
Advanced regeneration BC-bone mesenchymal protein-2 scaffolds Osteogenesis in rat ectopic models [242] 

Regeneration, reconstruction BC-Fisetin scaffold indice Bone matrix induced biosynthesis [243] 

Gums and  
Teeth 

Connective tissue 

Early stages of regeneration BC-hydroxyapatite-osteogenic growth 
peptide nanocomposite 

Osteoblast differentiation [244] 

Tooth extraction or 
transplantation of oral mucosa 

Native and oxidized BC-doxycycline Dental dressings with potential of biodegradability, antimicrobial activity against 
pathogenic oral bacteria, and suitable drug delivery system 

[245] 

Periodontal tissue recovery after 
dental implants 

Inner membrane of BC and external alkali-
cellulose (Gengiflex®) 

Osseo-deficiency treatment: inflammatory response diminished, reduced number of 
surgical steps, restoration of mouth functions, and aesthetic role [246] 

Eye 
Corneal epithelial tissue Artificial corneal biomaterial BC/PVA hydrogel  

Suitable water content, high visible light transmittance, UV absorbance, proper 
strength, and thermal properties [247] 

Retinal pigment 
epithelium (RPE) Transplant Acetylated BC-urinary bladder matrix Appropriate features as cell carriers in potential RPE transplantation [248] 

Gastro-intestinal 
level 

Connective and epithelial 
tissues  

(Simulated gastric and 
intestinal fluid) 

Drug delivery system BC-polyacrylic acid-bovine albumin 
(various concentration) hydrogel 

Optimization of drug release rate: pH dependent (similar to plain BC membranes) [249] 

Abbreviations: AgNPs—Silver (Ag) nanoparticles, CuO—Copper oxide, Fe3O4NPs—Iron oxide nanoparticles, PHEMA—Poly(2-hydroxyethyl 
methacrylate), PHMB—Polyhexamethylene biguanide, PVA—Poly(vinyl alcohol), SOD—Superoxide dismutase, TEMPO-oxidized (2,2,6,6-
tetramethyl piperidine oxide), TiO2—Titanium Dioxide, ZnO—Zinc oxide. 
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Along with all the aforementioned applications of BC, this biopolymer is also a 
promising biomaterial for biological diagnosis. To this end, Qin et al. developed a ‘living 
membrane’ system, which comprises BC and Escherichia coli bacterial strains, whose main 
purpose was to identify biologically triggered molecules [250]. Moreover, BC has a great 
potential for applicability in personalized regenerative medicine. A double network, 
biphasic Janus BC-conducting polymer composite hydrogel showed a biocompatible and 
electroactive behavior allowing the growth, spread, and migration of normal fibroblasts 
[250]. In recent years, the attention of the researchers has been focused on the development 
of BC-based biosensors used as monitoring devices. Marques et al. designed a BC-Ag 
nanocomposite-based biosensor intended to analyze 1-phenylalanine, 1-glutamine, and 1-
histidine using Surface-enhanced Raman Scattering lamellas and 2 analytes (thiosalicylic 
acid and 2,2-dithiodipyridine) [251]. An enzymatic biosensor used for the amperometric 
determination of glucose has been developed using BC nanofibers and gold nanoparticles 
[247,252]. For the amperometric determination of the glucose oxidase reactions, Eisele et 
al. have created an external lamella in glucose biosensor with an extended range based on 
the use of BC and polyamide [253]. 

4. Conclusions and Future Perspectives 
This present review has focused on the exposure of the synthesis, fundamental 

properties of bacterial cellulose, and its multiple applications in diverse domains, from 
food packaging to biotechnological, biomedical, and pharmaceutical industries. Bacterial 
cellulose is a valuable polysaccharide synthesized by a wide range of non-pathogenic 
bacteria under special culture conditions. This fascinating biopolymer possesses 
particular physicochemical, mechanical, and biological properties, such as eco-
friendliness, biocompatibility, biodegradability, non-toxicity, a 3D-porous structure, 
optimal viscoelasticity, and tensile strength, an adequate ability to retain a large amount 
of water, moldability, along with higher crystallinity and purity than pure cellulose. It has 
been shown that bacterial cellulose can manifest a therapeutic effect on different 
anatomical parts of the human body, alone or in combination with several biopolymers 
and bioactive agents. Consequently, bacterial cellulose can act as an excellent medical 
material for the development of new skin lesion and dental dressings, drug delivery 
devices, oral implants, bone restoration or replacement products, local chemotherapy 
treatments, and cardiovascular interventional therapies. Presently, the attention of the 
researchers is centered on other captivating biomedical applications of bacterial cellulose, 
such as the development of biosensors, biological diagnoses, contact lenses, and nerve and 
ophthalmic tissue engineering. Besides all of the engaging uses illustrated above, bacterial 
cellulose is a promising material with high relevance for future use in the food, paper, and 
textile industries; acoustic membranes, supercapacitors, optical, stimuli-responsive, and 
catalytic materials; energy storage, oil refining, pollution control; and aerogels (reusable 
polymer networks that trap and dispense metal nanoparticles (Cu, Ni) used as catalysts 
in the electronic fields, due to their optimized properties). 
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