
����������
�������

Citation: Wang, Z.; Zhang, G.; Kang,

Y.; Liu, Y.; Ren, X. The Effect of Y on

the Microstructure, Mechanical and

Wear Properties of ZCuSn10Pb10

Alloy. Materials 2022, 15, 1047.

https://doi.org/10.3390/

ma15031047

Academic Editor: Amir Mostafaei

Received: 10 January 2022

Accepted: 26 January 2022

Published: 29 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

The Effect of Y on the Microstructure, Mechanical and Wear
Properties of ZCuSn10Pb10 Alloy
Zhaojie Wang 1, Guowei Zhang 1,*, Yuanyuan Kang 1, Yijun Liu 1 and Xiaoyan Ren 2

1 School of Materials Science and Engineering, North University of China, Taiyuan 030051, China;
wzj1997vip@163.com (Z.W.); kangyy469627632@163.com (Y.K.); lyj15536626409@163.com (Y.L.)

2 Department of Mechanical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China;
renxiaoyan03@126.com

* Correspondence: 20030358@nuc.edu.cn

Abstract: We studied the effects of adding Y on the microstructure, mechanical properties and wear
properties of ZCuSn10Pb10, and clarified the underlying mechanism by microstructure characteriza-
tion through SEM, EDS and XRD. No new phase was detected after the addition of Y up to 0.2 wt.%,
but an enrichment of Y in the Pb phase was found. The Pb particles were refined significantly after
the addition of Y, which resulted from the compositional undercooling for the Cu dendrite where the
Pb particles solidified, and the highest refinement efficiency was reached when the content of Y was
0.15 wt.%. The hardness of the alloy was improved due to the refinement of the microstructure. The
fine Pb particles between the dendrite branches acted as solid lubricant, which was smeared on the
entire surface during a friction and wear experiment, thus increasing wear resistance and reducing
the coefficient of friction.

Keywords: ZCuSn10Pb10; Y; lead particles; frictional wear; mechanical property; microstructure

1. Introduction

Bronze is a copper-based alloy, with tin (Sn), lead (Pb) and zinc (Zn) as alloying
elements [1]. Bronzes with Pb and Sn are widely used in industry. These alloys are
used in shock loading applications such as piston pin bushings, rocker bushings, wear
plates and thrust washers [2]. At the same time, lead-tin bronze has good wear resistance,
high strength and elongation [3–6]. The wear resistance of the alloys is closely related
to the inherent properties, such as strength, hardness, load, speed and lubrication [7,8].
Temperature will also affect the friction and wear properties through its effects on the
thickness and composition of the deformed layer beneath the wear track or the contact
surface properties [9].

Wear resistance and low coefficient of friction are some of the most important char-
acteristics required for sliding bearings because one of the main mechanisms of wear is
abrasive wear associated with sliding friction on the contact surface between the neck and
the bushing. Without a lubrication film, direct contact between components can cause dry
friction, which can lead to the wear and tear of bearings [10,11].

In lead-tin bronze, the microstructure consists of α-Cu solid solution, α-δ eutec-
toid [3,12] and lead phase in the copper substrate. When the Sn content is approximately
10%, lead-tin bronze usually has a typical dendritic structure, with large grains of α, and
inter-dendritic α and δ eutectoid structure [13,14]. The soft Pb coating plays a good role in
lubrication [15–17]. The distribution and morphology of lead particles show great effect on
the friction performance of the alloy. Small and uniform lead particles are beneficial for
the formation of a stable lubrication film on the friction interface to prevent dry friction
between the two contact surfaces, thereby reducing wear rate [18,19].

The addition of rare-earth elements can purify Cu melts and improve microstructure,
thereby improving the mechanical and other physical and chemical properties of Cu [20].
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Adding trace rare-earth metals to cast lead-tin bronze can effectively prevent oxidation
during the casting of lead-tin bronze, refine microstructure and improve wear resistance.
However, studies of the friction and wear properties of the rare-earth-containing lead-tin
bronze under service conditions are lacking [21]. Therefore, this paper explores the effects
of the addition of Y on the microstructure, mechanical properties and friction and wear
properties of lead-tin bronze. The evolution of mechanical properties and friction and wear
properties are clarified.

2. Materials and Methods
2.1. Alloy Preparation

Pure copper, pure zinc, pure lead, pure tin, pure nickel and copper-yttrium master
alloy were used to prepare the Cu-10Sn-10Pb-1.75Zn-2Ni-xY (x = 0–0.2) (all compositions
are in weight percentages). The pure copper and pure nickel were melted in a resistance
furnace at 1150 ◦C, then the copper-yttrium alloy was added to the crucible, which was
followed by pure zinc, pure lead and pure tin. The melt was then stirred with a graphite
stick for composition homogenization. The melt with the temperature of 1150 ◦C was cast
into a metal mold preheated to 250 ◦C, as shown in Figure 1a. The composition of the alloys
was measured by atomic absorption spectroscopy.
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Figure 1. Schematic illustration of the (a) mold for casting, (b) cast specimen showing position for
microstructure analysis, (c) tensile test specimen and (d) the contact mode of the friction pair.

2.2. Mechanical Property Test

Tensile test specimens with the dimensions shown in Figure 1a were prepared from the
cast specimens, and tensile tests were carried out on a WDW-20/30 universal mechanical
test machine. (SUNS, Shenzhen, China) The hardness of the specimen was measured using
a HB-300B Brinell hardness machine (Huayin, Laizhou, China) with a load of 250 N and a
dwell time of 12 s. Each sample was measured at least four times. A micro-hardness test
was carried out with a load of 25 g and a dwell time of 10 s.
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2.3. Microstructure Characterization

The specimen for metallographic characterization was cut from the cast piece, as shown
in Figure 1b, ground by silicon carbide sandpaper up to 2000 grit, polished and etched with
corrosion agent (hydrogen peroxide, ammonia, water, 1:1:3). The microstructure was char-
acterized by a ZEISS optical microscope (ZEISS, Oberkochen, German) and a HITACHI SU
5000 field-emission scanning electron microscope (HITACHI, Tokyo, Japan) with the accel-
erating voltage of 20 kV under both secondary electron and back-scattered electron modes,
and the element distribution was measured with a Bruker energy-dispersive spectrometer
(EDS) (Bruker, Karlsruhe, German).

2.4. XRD Characterization

Samples for the phase composition analysis with the dimensions of
15 mm × 10 mm × 10 mm were cut from the same place as those for microstructure anal-
ysis, as shown in Figure 1b. They were ground by silicon carbide paper to 2000 grit and
measured by X-ray diffraction with Cu Kα radiation under 40 kV and 40 mA in the Bragg–
Brentano θ:2θ configuration on a Rigaku X-ray diffraction instrument (Rigaku, Yamanashi,
Japan). The 2θ angle range was 10◦ to 90◦ with scanning speed of 4◦/min.

2.5. Friction Wear Experiment

The friction test was carried out on an MRH-3A type high-speed ring block wear test
machine (Yihua, Jinan, China); a schematic diagram of the friction and wear test mode
is shown in Figure 1b. The loading force was applied to make the sample contact with
the ring block, and lubricating oil was added to carry out high-speed friction movement.
The material of the ring was 45# steel, and the frictional wear test was carried out at room
temperature. The test method was low oil lubrication, and the lubricant used was 15W-40#.
The speed of low oil lubrication was 1500 r/min with a test force load of 250 N and test time
of 120 min. Before the test, all specimens were treated with the same procedure to ensure
identical surface condition for all specimens: they were ground by silicon carbide paper,
polished and cleaned in the ultrasonic cleaner for 5 min. The friction and wear results
were the average of three tests. The sample and steel ring were cleaned with acetone using
an ultrasonic cleaner after the test, then the specimens were weighed with an electronic
analytical balance. The weight was measured five times and the wear rate was calculated
as follows:

Φ =
m1 − m2

ρFvt
(1)

where: Φ, wear rate; m1, weight before wear experiment (g); m2, weight after wear experi-
ment (g); ρ, density (g/cm3); F, test force (N); v, rotation speed (m/s); t, test time (s).

2.6. Density Measurement

The densities of the as-cast ZCuSn10Pb10 alloys were measured using the Archimedes
method by immersing the samples in double-distilled water. The density of each alloy was
the average of at least five measurements.

3. Results and Discussion

Figure 2a shows the evolution of the hardness of the ZCuSn10Pb10 alloy with the
increase of Y content. There was a non-monotonic relationship between the content of Y and
hardness of the alloys. With the increase of Y content, hardness first increased then peaked
at a Y content of 0.15% with a hardness of 100.1 HBW, then decreased. The hardness of the
0.15Y-containing alloy was 13.5% higher than that of the ZCuSn10Pb10 alloy without Y.

There was no apparent change in the tensile strength of the ZCuSn10Pb10 alloy with
increasing Y addition when the standard deviation of the experimental results were taken
into account; as shown in Figure 2b, the tensile strength was around 293.2 MPa. The
elongation of the alloy also varied little after adding Y.
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Figure 2. Evolution of (a) hardness and (b) tensile strength and elongation with increasing content of Y.

Figure 3 shows the evolution of the coefficient of friction and wear rate before and
after the addition of Y, with the test force of 250 N, speed of 1500 r/min and the test time of
120 min. The coefficient of friction was approximately 0.045 without Y. After adding Y, the
coefficient of friction decreased and then increased, and reached the minimum value when
the Y content was 0.15%, with the minimum average coefficient of friction being 0.023. The
wear rate is shown in Figure 3b. The evolution of wear rate exhibited a similar trend to
that of the coefficient of friction with increasing Y content whereby the minimum value
corresponded to the Y content of 0.15%, and the maximum value was reached after adding
0.2% Y.
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To investigate the origin of the evolution of the mechanical properties and friction
and wear properties of the alloy with increasing Y content, the microstructure of the alloys
was studied. Figure 4 shows that the as-cast alloys exhibited dendritic microstructures.
The dendritic morphology was increasingly developed with increasing content of Y. The
microstructure was also refined after the addition of Y due to the compositional undercool-
ing developed in front of the solidifying Cu dendrite, and allowed the formation of more
nucleate in the melt, which slowed the growth rate of the dendrite and led to finer, but
developed, dendritic microstructure [20].

Figure 5 shows the lead particles. After adding Y, the lead particles of ZCuSn10Pb10
were refined, as can be seen from Figure 5a,d; it is obvious that when the content of Y
was 0.15%, Y showed the highest efficiency of lead particle refinement, but when the Y
content reached 0.2%, the refinement effect of lead particles was reduced. Figure 6 shows
quantitatively that the number of lead particles in the range of 0–50 µm2 and 51–150 µm2

first increased and then decreased as the Y content increased. The refinement effect of the
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lead particles can be rationalized by the refinement of the dendrite. The finer structure
divided the lead-containing liquid into smaller compartments, which refined the lead
particles. However, when the Y content reached 0.2%, the lead particles coarsened. This
may have resulted from the more developed Cu dendritic structure; the long dendritic
branches may have contacted with each other earlier during cooling and formed larger
compartments for the Pb-containing liquid phase that solidified into larger Pb particles.
With excessive addition of Y, the temperature for the solidification of the Pb particles
might also change and result in coarser Pb particles [20]. However, the exact mechanism
underlying this phenomenon requires further study. The fine dendritic structure and lead
particles play an important role in improving the mechanical properties of the alloy.
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Figure 5. Optical microstructure showing the lead particles of (a) ZCuSn10Pb10, (b) ZCuSn10Pb10
+ 0.05% Y, (c) ZCuSn10Pb10 + 0.1% Y, (d) ZCuSn10Pb10 + 0.15% Y and (e) ZCuSn10Pb10 + 0.2% Y.
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Figure 6. Changes in the number and size of lead particles with increasing Y content.

The SEM results in Figure 7 show that there were three phases in the alloy. A lead-rich
phase with the lightest contrast, a copper-rich phase with dark grey contrast, and discrete
areas rich in copper and tin with light-grey contrast [3]. An enrichment of Y around Pb
can be detected in Figure 7, which can also be seen in the EDS results of Table 1 where the
content of the Y element in the Pb-containing phase was much higher than that around
the α-Cu. This is because the solubility of Y in copper is very low, and the Y element
segregates to the inter-dendritic region during solidification, where part of the Y element
will be solidified with Pb.

Table 1. EDS results of the point in Figure 7c (wt.%).

Point Y Pb Sn Ni Cu Zn

A 2.33 79.82 2.37 0.93 14.05 0.50
B 0.25 0.81 6.85 2.49 87.97 1.62

To study the phase composition of the alloys with different Y content and identify the
Y-containing Pb-rich phase, the XRD analysis was carried out and the results are shown in
Figure 8. The diffraction peaks corresponding to the Cu, Pb and δ phases were detected
for the alloys without Y [1] or with addition of Y, and no other phase was detected for the
Y-containing alloys. Therefore, no new phase formed after the addition of Y. Y formed a
solid solution in the Pb and Cu phase. To determine the effect of Y on the properties of
Cu, Pb and δ phases, a micro-hardness test was carried out. The micro-hardness increased
from 140 ± 7 HV to 176 ± 3 HV for Cu, decreased from 90 ± 4 HV to 53 ± 6 HV for Pb and
remained relatively stable at around 137 HV for the δ phase after the addition of 0.15% Y.
The increased hardness of the Cu matrix and the decreased hardness of the soft lubricant
Pb contributed to the reduced coefficient of friction and decreased wear rate [22].
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Figure 7. SEM micrograph (BSE mode) and EDS mapping of (a) ZCuSn10Pb10 + 0.05% Y,
(b) ZCuSn10Pb10 + 0.1% Y, (c) ZCuSn10Pb10 + 0.15% Y and (d) ZCuSn10Pb10 + 0.2% Y.

Figure 9 shows the surface of the wear-tested specimen with a load of 250 N and a
speed of 1500 r/min. A very rough surface with a long and deep plow ditch and some
sticky pits can be seen in Figure 9a. This likely resulted from friction surface contacts in
the form of micro-convex structures, resulting in scratches and ploughs. Pb cannot be
observed in the backscatter electron image, indicating that the original layer of Pb film on
the surface was worn off. When Y was added, the depth of the plow ditch gradually became
shallower, and the wear surface was more uniform; discontinuous Pb blocks and strips
could still be observed on the surface after the friction and wear test, as shown in Figure 10,
which enhanced the wear resistance of the material and reduced the coefficient of friction.
Microstructure played an important role in the formation of the antifriction flat debris [17].
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The decreased hardness of the Pb phase with the solution of Y element led to lower shear
strength of Pb in the sliding direction, which was combined with a more homogeneous
distribution of finer Pb particles. These are beneficial for the smearing of a homogeneous
layer of Pb film on the mating interface. The increase in the micro-hardness of the Cu
phase brought about higher resistance to plastic deformation of the matrix and prevented
the formation of cracks, which is conducive to maintaining the Pb film on the interface
and providing a good lubrication effect. [5]. However, when excessive Y was added, a
large number of deep, long plow ditches and sticking pits appeared on the surface of the
material as shown in Figure 9e, which indicates that with excessive Y addition, the large
lead particles were very easily worn off during friction and wear tests. Pb soft lubrication
film on the surface was also damaged and friction stability was lost, so the coefficient of
friction and wear rate increased sharply.
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Figure 10. (a) BSE image and the EDS mapping results of (b) Cu, (c) Y, (d) Pb, and (e) Sn for the alloy
containing 0.15% Y after the friction and wear test.

The results above show that the effect of Y on the friction and wear properties depends
on the microstructure evolution of the alloy with increasing Y addition. Both the hard
matrix and the soft second phases evolved after adding Y. The refinement of the dendritic
Cu structure and solution of Y strengthened the Cu matrix, leading to better load-bearing
capacity. The addition of Y not only led to fine and homogeneously distributed Pb particles,
but also reduced its strength, facilitating the formation of lead film during the friction and
wear tests. All these changes in the microstructure help to preserve a good lubrication
film on the interface. Since the refinement efficiency on both Cu dendrite and Pb particles
peaked at a Y content of 0.15%, the ZCuSn10Pb10 alloy with 0.15% Y displayed the best
friction and wear properties.

4. Conclusions

The effects of adding Y on the microstructure, mechanical properties and friction and
wear properties of the ZCuSn10Pb10 alloy were studied, and the influencing mechanism of
the Y on the alloy was clarified. The following conclusions are drawn:

Both the hardness and strength of the alloy first increased and then decreased with the
increasing content Y, and the highest hardness and strength was reached when the content
of Y was 0.15%.

Y refined both the dendritic structure and lead particles of the alloy, and the addition
of 0.15% Y showed the highest refinement efficiency of lead particles.

No new phase formed after the addition of Y up to 0.2%. Y dissolved inside Pb, which
increased the resistance of Pb to be worn off during the friction and wear test, and improved
the friction and wear properties of the alloy.
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