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Abstract: Deep-red persistent luminescence (PersL) materials have promising applications in fluo-
rescence labeling and tracking. PersL spectral range and PersL duration are considered to be the
key factors driving the development of high-performance deep-red PersL materials. To address
these two key issues, the performance of PersL materials was continually optimized by doping with
cations (Si4+ and Al3+ ions), relying on the material of Li2ZnGe3O8:Cr3+ from the previous work of
our group, and a 4.8-fold increase in PersL radiation spectrum intensity and more than twice the
PersL duration was achieved (PersL duration up to 47 h). Ultimately, the obtained PersL materials are
used to demonstrate their potential use in multi-level anti-counterfeiting, tracking and localization,
respectively. This study provides a unique and novel entry point for achieving high-performance
PersL materials by optimizing the PersL material host to modulate the electronic structure.

Keywords: phosphor; persistent luminescence; trap regulation; tunneling channel

1. Introduction

PersL materials have recently attracted great enthusiasm among researchers due to
their low background interference and high spatial resolution and are increasingly being
used in many applications, such as anti-counterfeiting and bio-penetration [1–10]. Cur-
rently, a whole host of fluorescence is increasingly used for in vivo imaging and provides
remarkable results. However, this technique has several limitations, especially due to
tissue autofluorescence under external illumination and weak tissue penetration with
low-wavelength excitation light. However, for PersL as a unique property, self-sustained
radiation can persist for seconds to hours, even after external excitation is stopped, so
longer-wavelength PersL materials are gradually demonstrating their advantages for bioflu-
orescence imaging [11–17]. In recent years, although a large number of PersL materials have
been developed that can be effectively charged by UV-red light, they are difficult to satisfy
at longer wavelengths and tend to be just short in duration, for example, CaAl2O4:Eu2+,
Nd3+ (blue) [18], SrAl2O4:Eu2+, Dy3+ (green) [19] and Y2O2S: Eu3+, Mg2+, Ti4+ (red) [20],
Ca0.2Zn0.9Mg0.9Si2O6:Eu2+, Dy3+, Mn2+ (NIR) [16], hence, excellent PersL materials are still
a meaningful and challenging work.

In addition, the research on the emission mechanism of PersL is still imperfect, which
limits the development of PersL materials. In fact, the basic principle of PersL materials
is related to two kinds of active centers: emission center and trap center. The former
allows the material to emit light in the wavelength range of interest and the latter helps to
prolong the continuous luminescence time of PersL materials. Aiming at the problem of
insufficient properties of PersL materials, how to slow down the attenuation rate of PersL
has become one of the problems to be solved immediately. For the goal of optimizing the
PersL properties of materials, researchers have adopted different methods: (1) adjusting
the PersL duration by introducing metal cations to optimize the lattice occupation [21–24];
(2) extending the PersL emission time by using a PersL emission mechanism (such as
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using general bandgap engineering) [25]; (3) introducing new trap energy levels by co-
doping cations or rare-earth ions with different valence states to delay the decay rate of
PersL [26–30]; (4) abandoning the traditional X-ray or ultraviolet (UV) excitation and using
visible light to excite a few suitable materials to achieve the ideal state [31].

In our previous work, by adjusting the doping concentration of Cr3+ ions, LZG exhib-
ited a bright-red PersL emission with a peak of 698 nm for 20 h. The analysis of PersL decay
curves and TL spectra of a series of samples reveals that the PersL luminescence mechanism
of LZG:Cr involves two channel models (conduction band (CB) channel and tunneling
(TN) channel) through which carriers pass [32]. The PersL emission generated by the
carrier of the CB channel is very bright but short, while the PersL generated by the carrier
dominated by the TN channel is slow but relatively dark. The greater the concentration of
shallow traps, the more carriers there are in the CB channel in the material. Conversely, the
larger the concentration of deep traps, the more carriers in the TN channel in the material.
Therefore, the relationship between the ratio of deep and shallow traps in the material has
a great influence on the performance of PersL emission [33].

Here, Li2ZnGe3O8:Cr3+ modulated by cations (Si4+ ions and Al3+ ions) with efficient
UV charging ability PersL material was studied by us. The ratio of deep and shallow
traps was optimized by adjusting the host composition with Si4+ ions and Al3+ ions, thus,
changing the number of carriers in the CB and TN channels and finally improving the
emission performance of PersL with a 4.8-fold increase in the intensity of PersL spectrum
and a PersL duration of 47 h. By means of X-ray diffraction spectroscopy, TL spectroscopy
and transient fluorescence spectroscopy, the detailed PersL emission mechanism and
material defect distribution were explored, which not only confirmed the correctness of
the strategy proposed in this work, but also provided an entry point for obtaining new
excellent PersL materials. In the end, its wide potential applications are revealed through
its application in the fields of secret labeling and dynamic anti-counterfeiting.

2. Materials and Methods

Li2ZnGe3O8 : Cr3+ (LZG: Cr3+), Li2ZnGe3-ySiyO8 : Cr3+ (LZGS: Cr3+) and
Li2Zn1-zGe3-zAl2zO8: Cr3+ (LZGA: Cr3+) were synthesized via the high-temperature solid-
state method. The stoichiometric amount of Li2CO3 (A.R.), ZnO (A.R.), SiO2 (99.99%),
GeO2 (99.99%), Al2O3 (99.99%) and Cr2O3 (99.99%) was mixed in an agate mortar for
30 min. Then, the mixed powder was transformed into an alumina crucible and kept in
a high-temperature furnace at 975 ◦C for 3 h. Then, the sample was naturally cooled and
after reaching room temperature, the sample was again ground to obtain a finely powdered
sample.

The phase formation of samples was examined by X-ray powder diffraction (XRD)
performed on a Bruker D8 X-ray diffractometer (Bruker, München, Germany) with Ni-
filtered Cu Kα radiation (λ = 0.15405 nm), operating at 40 mA, 40 kV with step length
and diffraction range was 0.05◦ and 10◦ to 80◦, respectively. Crystal structure refinements
employing the Rietveld method were implemented using the General Structure Analysis
System (GSAS) software (version 1251). Room-temperature photoluminescence spectra
of samples were recorded with a Hitachi F-4600 fluorescence spectrophotometer using a
450 W Xe lamp as the excitation source, with a scanning wavelength from 200 to 900 nm,
scanning at 240 nm/min. The reflect spectra were measured by HITACHI U4100 (HITACHI,
Tokyo, Japan) in a range of 200 to 700 nm. The TL curves were recorded by an FJ-427A1
TL dosimeter with a fixed heating rate of 1 ◦C/s within a range of 300–600 K. At room
temperature, Horiba FL3 was used to measure the life decay curve and PersL decay curve of
the phosphor powder. The width of the entrance and exit slit of the test life decay curve was
0.5 nm, and the width of the PersL curve of the test sample was 29 nm. The microstructure
and morphology of powder crystals were measured by field-emission scanning electron
microscopy (SEM, Nova Nano 450). The elemental composition and distribution were
determined using an energy dispersive X-ray spectroscope attached to SEM.
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3. Results and Discussion

3.1. Optimization of PersL Decay Rate by Doping Si4+ Ions

3.1.1. Phase Information of Li2ZnGe3-ySiyO8: 0.8%Cr3+

LZG is known to have a spinel structure, which is cubic with the space group
P4332. In this case, Li1/Zn1 occupies the tetrahedral sites while the other Li2/Zn2 and
all of the Ge occupy the octahedral sites (Figure 1a), and Cr3+ ions can only enter the
6-coordinated sites (ZnO6 and GeO6). The XRD patterns of LZGS:Cr are shown in Figure S1
(see Supplementary Materials). All of the diffraction peaks match well with PDF #24-0673.
Figure S2 and Table S1 (see Supplementary Materials) depict the Rietveld refinement XRD
pattern of LZG and LZGS: Cr. The low R factors indicated that the structural refinement is
reliable (Rwp = 10.57%, Rp = 8.63%, χ2 = 1.450). After matrix regulation, there are three suit-
able positions (ZnO6, GeO6 and SiO6) for Cr3+ ions to enter (Figure 1b). Because the radius
of Cr3+ ions (r = 0.615 Å, CN = 6) is smaller than that of Zn2+ ions (r = 0.74 Å, CN = 6),
the volume of ZnO6 cells decreases (process 1). Similarly, when Cr3+ ions occupy Ge4+

ions (r = 0.53 Å, CN = 6), the volume of GeO6 cells increases (process 2). In addition, it
is worth noting that when Cr3+ ions occupy Si4+ ions (r = 0.40 Å, CN = 6), two processes
(process 3) affecting the cell volume are involved: 1) Si4+ ions successfully enter the GeO6
position of LZG and the cell volume decreases. 2) Cr3+ ions successfully occupy SiO6 sites
and the cell volume increases. The detailed crystal lattice occupancy can be explained by
the refined plot. When the matrix is regulated by Si4+ ions, the cell volume at the ZnO6
site decreases (Figure 1c), indicating that Cr3+ ions occupying this site increase. The cell
volume of the GeO6 site first increases and then decreases (Figure 1d), with the low Si4+

ion concentration; the possibility of process 2 is greater than that of process 3. With the
increasing concentration of Si4+ ions, the number of SiO6 and the effect of lattice distor-
tion gradually increase, resulting in the possibility of process 3 being greater than that of
process 2. Most of the oxygen atoms in ZnO4 are shared with GeO6, hence, the change
in GeO6 volume will inevitably pull or squeeze ZnO4, as shown in Figure 1e (the change
in ZnO4 volume is inversely proportional to GeO6). To sum up, with the increase in Si4+

ion concentration, Cr3+ ions occupy more ZnO6 and SiO6 and less GeO6. The average
particle size of the synthesized LZGS: Cr microcrystal particles was 50 µm according to the
morphological observation (Figure 1f). Energy dispersive spectroscopy elemental mapping
analysis showed nearly homogeneous elemental distributions (Figure 1g–l). These results
also demonstrate excellent crystallinity in the material.

3.1.2. PersL Properties of Li2ZnGe3-ySiyO8: 0.8%Cr3+

The prepared samples can also exhibit a good red PersL after being exposed to UV
irradiation. Figure 2a demonstrates that LZGS:0.8%Cr3+ contains a shallow trap (peak 1
and peak 3) and a deep trap (peak 2). With the continuous doping of Si4+ ions, the deep trap
continues to increase, the shallow trap first decreases and then increases and the position of
the shallow trap moves from “deep” to “shallow”. According to the trap depth equation:

E =
Tm

500
(1)

the trap depth can be calculated as 0.904 eV (peak 2).
When Zn2+ ions are replaced by Cr3+ ions, due to the unequal substitution of charges,

defects will be generated to balance the internal charges:

2Cr3++2Zn2+ → 2Cr .
Zn+O′′i (2)
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Figure 1. (a) Schematic of the crystal structure of LZG; (b) simulation diagram of variation trend of
each cell volume with the increase in y value in Li2ZnGe3-ySiyO8: 0.8%Cr3+; the volume of (c) ZnO6
(d) GeO6 and (e) ZnO4 unit cell in Li2ZnGe3-ySiyO8: 0.8%Cr3+ with increasing y, respectively;
(f) SEM and (g–l) elemental mapping analysis of Li2ZnGe3-ySiyO8: 0.8%Cr3+.
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Figure 2. (a) The TL spectra of Li2ZnGe3-ySiyO8: 0.8%Cr3+ (y = 0–15%); inset: the proportional
relationship between the intensity of TL spectra of shallow trap (peak 1 or 3) and deep trap (peak 2);
(b) mechanism of PersL emission on CB channel and TN channel; (c) analytical plot of the effect of
TL spectral trap distribution on the PersL emission performance (emission intensity and attenuation
time) of Li2ZnGe3-ySiyO8: 0.8%Cr3+; (d) long PersL spectra of L Li2ZnGe3-ySiyO8: 0.8%Cr3+; (e) PersL
decay curve of Li2ZnGe3-ySiyO8: 0.8%Cr3+; inset: trend of decay rate of PersL at different y values;
(f) the PersL attenuation curve of Li2ZnGe3-ySiyO8: 0.8%Cr3+ (y = 6%).
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Similarly, when Ge4+ and Si4+ ions are replaced by Cr3+, defects will also occur:

2Cr3++2Ge4+ → 2Cr ′Ge+V ..
O

(3)

2Cr3++2Si4+ → 2Cr ′Si+V ..
O

(4)

When the doping concentration of Si4+ ions reaches a certain value, the internal charge
has been balanced and there will be no new defects:

4Cr3+ → 2Zn2++Ge4++Si4+ (5)

The deep trap is the electronic defect of Cr .
Zn and the shallow trap is electronic defect

of V..
O

[32]. When the incorporation of Si4+ ions is increased, the intensity of the shallow
trap first decreases and then increases, while the trap position gradually moves from peak
1 to peak 3, which may be caused by internal structural changes. When 0% < y < 2%,
crystallographic lattice of Cr3+ occupying the ZnO6 crystallographic lattice leads to the
continuous increase in peak 2 (process (1)), the content of Si4+ ions in the material is reduced
and the number of electrons eliminated in process (4) is gsreater than that of electrons
increased in process (2); hence, peak 1 continues to decline until it disappears. When the
concentration of Si4+ ions increases to 2% < y < 12%, the possibility of the crystallographic
site of SiO6 being occupied by the crystallographic site of Cr3+ increased, which leads to the
appearance of peak 3 and a continuous increase in the intensity of TL spectra (process (3)).

The concentration of deep traps is promoted by modulation with Si4+ and the TN
channel has more carriers, and there is an ultra-long but dark PersL emission (Figure 2b).
The band gap value of 5.04 eV was found by diffuse reflectance spectra (DRs) (Figure S3).
The proportion of deep and shallow traps may be expressed by the following formula, as
shown in the inset in Figure 2c:

[peak 1 or 3]/[peak 2] (6)

among them, [peak 1 or 3] is a shallow trap and peak 2 is a deep trap. A larger ratio of [peak 1
or 3]/[peak 2] means that the intensity of PersL emission is very high and dominated by
the CB channel, while a smaller ratio means that the PersL attenuation time is dominated
for a very long time by the TN channel [34]. When combined with Figure 2d,e, it can be
inferred that, at y = 6%, the PersL attenuation duration of the material reaches the longest,
and at y = 0%, the PersL emission intensity of the material is the highest. The PersL spectra
(Figure 2d) and PersL attenuation curve (Figure 2e) of samples verify the correctness of the
conclusion. By doping Si4+ ions (LZGS: Cr3+), the trap ratio is successfully adjusted and
the attenuation rate of PersL is optimized, so that the emission time of PersL reaches 47 h
(Figure 2f), which is more than twice as long as before (LZG: Cr3+).

The trends in the PersL emission intensity (inset in Figure 2d) and decay rate (inset
in Figure 2e) remain consistent, but there are still slight differences (y = 2–6%), which can
be explained by Figure 2c. The PersL emission intensity is determined by the number
of carriers in the trap, that is, the intensity of TL. When the material contains multiple
traps, the sum of the TL intensities of different traps ((peak 1or 3) + (peak 2)) can be simply
regarded as the overall PersL emission intensity. The value of ((peak 1or 3) + (peak 2))
first decreased and then increased and reached the lowest at y = 2% (red line in Figure 2c),
which is in perfect agreement with the variation in PersL emission intensity in Figure 2d.
Since the decay rate of PersL is determined by the simultaneous processing of two channels
(CB and TN channel), what needs to be judged is which channel plays a relatively decisive
role. When the y value changes, the variation amplitude of the two traps ((Peak 1 or 3)
End-Initial and (Peak 2) End-Initial) affects which carrier channel plays an absolute role.
As can be seen from Figure 2c, when y = 0–6%, the blue line is above the green line, so the
dominant TN channel slows down the decay rate of the PersL, resulting in a longer PersL
emission time. When y = 8–15%, the green line is above the blue line, that is, the dominant
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CB channel will speed up the emission attenuation speed of the PersL. The above analysis
is consistent with the variation trend of the PersL attenuation speed (Figure 2e) and it fully
validates our conclusion.

3.2. Optimization of PersL Emission Intensity by Doping Al3+ Ions

3.2.1. Phase Information of Li2Zn1-zGe3-zAl2zO8: 0.4%Cr3+

As shown in Figure 3a, the XRD patterns of all samples present that no impurity peaks
were observed compared to the standard card of LZG (PDF#24-0673), indicating that the
synthesized samples were pure LZGA: Cr phase. Furthermore, to investigate the crystal
structure of LZGA: Cr, the Rietveld structure refinement of LZGA: Cr was studied using
GSAS software, as depicted in Figure 3b and Table S2. The reliability coefficients of the
refinement are Rwp = 10.38% and Rp = 7.98%, which indicate that the results are reliable.
After the host is regulated by Al3+ ions, there are four suitable positions for Cr3+ ions to
enter, as shown in Figure 3c, namely ZnO6, GeO6, AlO6[Ge] and AlO6[Zn]. Compared
with Zn2+, the valence state of Cr3+ ions is closer to that of Al3+ ions. Therefore, with the
increase in Al3+ ions, process 2 gradually becomes dominant. Under the combined action
of processes 1 and 2, the cell volume of ZnO6 first decreases and then increases (Figure 3d).
The cell volume of GeO6 (Figure 3e) is the joint action of process 3 and 4, which also proves
that Cr3+ ions are successfully incorporated into GeO6 and AlO6[Ge]. Since the radius
of Al3+ ion (r = 0.535 Å, CN = 6) is closer to that of Ge4+ ion (r = 0.53 Å, CN = 6), we
believe that the greater the z value, the greater the probability of process 4 [32]. Similarly,
the volume of ZnO4 (Figure 3f) is inversely proportional to that of GeO6, which is due to
the sharing of oxygen atoms. To sum up, with the increase in Al3+ ion concentration, the
possibility of occupation of ZnO6 and GeO6 by Cr3+ ions decreases, and the possibility of
occupying AlO6[Ge] is greater than AlO6[Zn]. In addition, the SEM revealed the regular
shape and smooth surface of the samples (Figure S4). The elemental mapping analysis
images demonstrated the uniform distribution of the constituent elements (Zn, Ge, Al, O
and Cr) within a single particle.
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Figure 3. (a) XRD patterns of all samples; (b) the Rietveld structure refinement of
Li2Zn1-zGe3-zAl2zO8: 0.4%Cr3+; (c) simulation diagram of variation trend of each cell volume with
the increase in z value in Li2Zn1-zGe3-zAl2zO8: 0.4%Cr3+; the volume of (d) ZnO6 (e) GeO6 and (f)
ZnO4 unit cell in Li2Zn1-zGe3-zAl2zO8: 0.4%Cr3+ with increasing z, respectively.

3.2.2. PersL Properties of Li2Zn1-zGe3-zAl2zO8: 0.4%Cr3+

From the TL spectra of LZGA:0.4%Cr3+ (Figure 4a), it can be seen that the trap position
of the material is the same as before, including a deep trap and a shallow trap. With the
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increase in Al3+ ions, the concentration of the shallow trap (peak 1) increases and the
concentration of the deep trap (peak 2) decreases. According to Equation (1), the trap depth
can be calculated as 0.706 eV (peak 1).
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Figure 4. Properties of LPL. (a) TL spectra of Li2Zn1-zGe3-zAl2zO8: 0.4%Cr3+ (z = 0–10%), inset: the
proportional relationship between the TL intensity of shallow trap (peak 1) and deep trap (peak 2); (b)
effect plot of CB channel and TN channel on PersL emission; (c) PersL spectra of Li2Zn1-zGe3-zAl2zO8:
0.4%Cr3+; (d) PersL decay curve of Li2Zn1-zGe3-zAl2zO8: 0.4%Cr3+, inset: trend of decay rate of PersL
at different z values.

When the ZnO6 site is replaced by Cr3+ ions, defects will be generated to balance the
internal charge due to unequal substitution. When the AlO6[Zn] site is replaced by the Cr3+

site, since Al3+ ions first replace Zn2+ ions, and then Cr3+ ions replace Al3+ ions occupying
this site, it is equivalent that Al3+ ions act as an "intermediary". The defect generation
processes of both are as in Equation (2). Similarly, when GeO6 and AlO6[Ge] are replaced
by Cr3+, the defect generation process is as in Equation (3). As Al3+ ions are doped, the
charge in the material reaches a certain balance value and the internal charge gradually
tends to balance:

4Cr3+ → Zn2++Ge4++2Al3+ (7)

It is determined that peak 1 is still V..
O

defect, peak2 is still Cr .
Zn defect [32,35–37]. As

the concentration of Al3+ ions increases, the occupation of ZnO6 and GeO6 by Cr3+ ions
decreases, but with the increased occupation of AlO6, the possibility of occupying AlO6[Ge]
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is greater than AlO6[Zn]. When Al3+ ion is doped with a low concentration (y = 0–8%),
Cr .

Zn defects in the material decrease (process (6)) and V..
O

defects increase (process (7)),
which led to the rise in peak 1 and the decline in peak 2 in this range. When the Al3+ ion
concentration continues to increase, peak 1 decreases slightly, which is due to the increase
in the process (8) offset effect.

By adding Al3+ ions into the matrix, the proportion of deep and shallow trap concen-
tration in the material changed significantly, which is analyzed by the following formula:

peak 1/peak 2 (8)

Among them, peak 1 represents a shallow trap and peak 2 represents a deep trap. A
larger ratio of peak 1/peak 2 means that there are more shallow traps, hence, the dominant
CB channel leads to bright PersL emission (Figure 4b). It can be seen from the inset in
Figure 4a that the ratio of peak 1/peak 2 first increases and then decreases slightly. It can
be inferred that when z = 8%, the PersL emission intensity of the sample is the highest,
while when z = 0%, the PersL attenuation speed of the material is the slowest. Figure 4c
depicts the PersL emission spectra of LZGA:0.4%Cr3+, and the intensity of PersL emission
reaches the maximum at z = 8%, which is 4.8-times higher than that of the previous (LZG:
Cr3+). The inset in Figure 4d shows the PersL decay rate of samples. It can be seen that, at
z = 0%, the PersL decay rate is indeed the slowest, and then with the increase in z value,
the PersL decay rate increases first and then slows down. When 0% < z < 2%, the intensity
of peak 1 is increased and peak 2 is decreased, and the dominant shallow trap leads to
a faster attenuation rate. When 2% < z < 10%, the intensity of peak 1 is also high at this
time; although the attenuation speed is faster, it still takes some time to fully attenuate
in a short time (600 s). It can also be explained that assuming 100 electrons, the original
attenuation rate is 10 and the attenuation time is 10. When the concentration increases to
500, the attenuation rate increases to 25, but the attenuation time is 20, which is longer than
the previous 10.

3.3. Applications

According to the unique characteristics of LZGS: Cr and LZGA: Cr phosphors, the
luminescence images were recorded for secret labeling and dynamic anti-counterfeiting,
as shown in Figure 5. Our camera used the following series of parameters: ISO:200,
Integral:1/200 s, EV: 0, AF-C, and WB-AWB, using the same settings when taking digital
photographs to ensure the authenticity and accuracy of the image data. Figure 5a displays
the PersL images of LZGS: Cr and LZGA: Cr at different times after UV irradiation for
15 min. It can be clearly seen that the PersL luminescence of LZGA: Cr at 3 s is brighter than
that of LZGS: Cr. However, the PersL of LZGA: Cr almost disappears after 2400 s, but the
brightness of LZGS: Cr can still be detected; hence, we use the material’s PersL as a secret
light source for tracking and localization (Figure 5b). We applied LZGS: Cr to the surface of
the model car, and after 5 min of 254 nm UV lamp excitation, the stripes glowed in the dark
due to the self-sustained dark-red PersL emission, and after 2400 s, the dark-red stripes
could still be clearly monitored by an ordinary camera. Thus, LZGS: Cr is a potentially
efficient coating additive that can be used for marking friendly or unfriendly devices.

In addition, some information is hidden by persistent luminescence used to design
the anti-counterfeit label. Figure 5c–e display the digital photographs of the three designed
images. It is found that the designed images show different hidden information at different
times after stopping UV irradiation. The letter ‘8888’ changes to ‘2022’ at 3 s and 3000 s
after stopping UV irradiation in Figure 5c. The sample of LZGA: Cr with fast decay rate
was filled with the flower and the sample of LZGS: Cr with slow decay rate was filled with
the position of leaf, and after 2400 s, the flower almost disappeared (as in Figure 5d).
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Finally, we designed anti-counterfeiting by using trap energy storage, as heating
the sample can excite the PersL emission. The warning label in Figure 5e decreases in
brightness from 3 s to 2400 s, and the sample after decaying through 2400 s placed on a
heating plate at a temperature of 423 K can appear as a bright warning label again. It is
shown that the advantage of trap heating can be used to release electrons again and design
dynamic anti-counterfeiting.

4. Conclusions

In summary, we optimized the proportion of deep and shallow traps by adjusting
the matrix composition by Si4+ ions and Al3+ ions, so as to change the carrier amount of
CB channel and TN channel, and finally improve the emission performance of PersL. The
decay time of PersL is more than 2-times (up to 47 h) and the emission intensity of PersL is
more than 4.8-fold. In the end, its wide range of potential applications is revealed through
its application in the field of secret label and dynamic anti-counterfeiting. This work
provides constructive ideas for rational optimization of material properties, preparation of
high-performance PersL materials and the development of new advanced applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma15249083/s1, Figure S1: The XRD of Li2ZnGe3-ySiyO8: 0.8%Cr3+

(x = 0–12%); Figure S2: The Rietveld refinement results of (a) LZGO and (b) LZGS6%O:0.8%Cr3+;
Figure S3: The DRs of LZGA: Cr, LZGS: Cr and LZGO: Cr. Inset: the bandgap width of LZGA: Cr,
LZGS: Cr and LZGO: Cr; Figure S4: Elemental mapping analysis and SEM of LZGAO:0.8%Cr3+;
Table S1: Refined crystallographic data of LZGS: Cr (y = 0–12%); Table S2: Refined crystallographic
data of LZGA: Cr (y = 0–12%).
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