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Abstract: Equipment in a long-term marine atmosphere environment is prone to corrosion failure.
Natural field exposure tests usually require a long time to obtain corrosion information. This study
worked out a laboratory-accelerated corrosion test method that has a strong correlation with the
natural environment test in Wanning, Hainan, and can be used as the basis for life assessment and
the prediction of two high-strength stainless-steel materials. The mathematical model of corrosion
weight loss of two high-strength stainless steels (3Cr13 and 00Cr12Ni10MoTi) was established by
a field exposure test and a laboratory-accelerated corrosion test. Then, the correlation between the
field exposure test and the laboratory-accelerated corrosion test was evaluated using qualitative and
quantitative methods, and the acceleration ratio was calculated using the accelerated switching factor
(ASF) method. The results show that: (1) The corrosion morphology of the two stainless steels after
15 days of laboratory-accelerated corrosion testing is similar to that obtained after two years of field
exposure. (2) The value of gray correlation between the laboratory-accelerated corrosion test and the
field exposure test is not less than 0.75. (3) The acceleration ratio of both stainless steels increases
with the corrosion test time in the laboratory. The corrosion prediction models for the two stainless
steels are T3Cr13 = 6.234 t1.634 and T00Cr12Ni10MoTi = 55.693 t1.322, respectively.

Keywords: high-strength stainless steel; field exposure test; laboratory-accelerated corrosion; correla-
tion; marine atmospheric environment

1. Introduction

The exploration, collection and transportation of marine resources rely on offshore
infrastructure and equipment. Due to the conditions of the marine environment, a large
number of steel structural components of marine facilities are highly susceptible to corro-
sion [1–3]. Therefore, the development of high-strength, corrosion-resistant, low-cost materials,
as well as reasonable structural design and material selection, has become one of the key
technologies in the development of the infrastructure and equipment of marine facilities.
High-load-bearing structural components require high-strength or even ultra-high-strength
stainless-steel materials. Among the many types of stainless steels, martensitic stainless steel
meets the requirements for high-strength structural components [4,5]. Currently, 13wt.%
Cr-type martensitic stainless steel is the most used [6], but martensitic stainless steel contains
a lot of carbides, so its corrosion resistance is not high [7–10]. Maraging stainless steel is
a new series developed on the basis of maraging steel from the late 1960s. In addition
to its high strength, high toughness, easy processing and forming, simple heat treatment
and good welding performance of maraging steel [11–13], it also has excellent corrosion
resistance [14,15].

It is essential to carry out research on the corrosion mechanism and regularity of
stainless steel in the marine atmospheric environment. The traditional research method
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is the field exposure test in a natural environment [16], but due to the long period of
the field exposure test, slow data recovery and the need for large manpower and mate-
rial resources, the development of new corrosion-resistant materials has been severely
limited [17]. Therefore, researchers expect to obtain atmospheric corrosion behavior and
laws of materials in a relatively short period of time and predict the corrosion process of
long-term outdoor exposure through short-term corrosion test results. At present, the most
widely used is the laboratory-accelerated method, including the salt spray test [18–20],
the wet–dry cycle immersion test [21–26], the cyclic corrosion test [27–29], etc. Whether
the laboratory-accelerated test method is suitable for the studied material needs to be
analyzed by correlating and establishing the connection between it and the external field
exposure test [20,30–32]. The cyclic corrosion test includes three factors: salt spray, damp
heat and dryness, which can better simulate the changes in the natural environment of the
ocean atmosphere.

In this paper, martensitic stainless steel 3Cr13 and maraging stainless steel 00Cr12Ni10MoTi
are the research objects. First, the corrosion weight-loss data of both stainless steels were
obtained through the field exposure test and the laboratory-accelerated corrosion test. The
laboratory-accelerated test parameters are based on the actual meteorological conditions in
Wanning, Hainan, and the conversion method of the equivalent corrosion rate, which is the
environmental load spectrum of Wanning, Hainan. The correlation between the laboratory-
accelerated corrosion test and the field exposure test was then evaluated by qualitative and
quantitative methods. Finally, the acceleration ratio of the laboratory-accelerated corrosion test
to the two stainless-steel materials was calculated, and a corrosion-life prediction model based
on the laboratory-accelerated corrosion test was established.

2. Materials and Methods
2.1. Materials

The experimental materials are martensitic stainless steel 3Cr13 (a commercial stainless
steel offered by Daye Special Steel Co., Ltd., Huangshi, China) and maraging stainless steel
00Cr12Ni10MoTi, and their chemical components are shown in Table 1. Maraging stainless
steel 00Cr12Ni10MoTi was prepared with low residual impurities in a 2-ton vacuum
induction melting furnace, followed by vacuum arc remelting (Consarc, Inductotherm
Group, Rancocas, NJ, USA). The heat treatment state and sample size of the two stainless
steels are shown in Table 2. Before the start of the test, all samples were washed with
absolute ethanol and dried with cold air, and the mass of the samples was weighed using
an electronic balance (Mettler Toledo XPE1203S, Greifensee, Switzerland).

Table 1. Chemical composition content of two high-strength stainless steels (wt.%).

Material C Cr Mo Ni Ti Mn Si P S Fe

3Cr13 0.25–0.34 12.0–14.0 / ≤0.6 / ≤0.6 ≤0.6 ≤0.030 ≤0.030 Bal.
00Cr12Ni10MoTi ≤0.03 11.0–13.0 0.5–2.0 9.5–12.0 0.8–2.0 / / ≤0.015 ≤0.015 Bal.

Table 2. Sample state and size.

Material Heat Treatment Sample Size

3Cr13 Quenching at 980 ◦C and tempering at 540 ◦C
100 mm × 50 mm × 3 mm00Cr12Ni10MoTi Solution at 980 ◦C and aging at 510 ◦C

The specimens were polished to 2000# step by step using metallographic sandpaper
and then polished with 1 µm grit diamond polish. 3Cr13 and 00Cr12Ni10MoTi were etched
with 10% FeCl3 solution and Ralph reagent (100 mL H2O + 200 mL CH3OH + 100 mL
HCl + 2 g CuCl2 + 7 g FeCl2 + 5 mL HNO3), respectively, and then metallographic pho-
tographs were taken using a metallographic microscope (Olympus Gx51, Tokyo, Japan).
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All chemical reagents used in the experiments were purchased from Sinopharm Chemical
Reagent Co., Ltd., Shanghai, China.

2.2. Field Exposure Test

The field exposure test was conducted in accordance with the “GB/T 14165-2008
experimental standard”. The test station is located in Wanning City, Hainan Province,
along the coast of Shangen Town, longitude 110◦05′ E, latitude 18◦58′ N, altitude 12.3 m.
The annual average temperature and relative humidity are 23.9 ◦C and 85%, respectively.
The annual sunshine duration is 2005 h, and the rainfall pH is 5.0. It is a typical high-
temperature and high-humidity marine atmospheric environment. There were four groups
of samples and corrosion times (0.5, 1, 1.5 and 2 years), with three samples in each group.

2.3. Laboratory-Accelerated Corrosion Test

The laboratory-accelerated corrosion test consists of three stages of salt spray, drying
and damp heat. The detailed parameters of each stage are shown in Table 3. The experimen-
tal equipment model was the JX-FH-90 salt spray chamber (Jiaxi Experimental Instrument
Co., Ltd., Shanghai, China). There were five groups of samples and corrosion times (3, 6, 9,
12 and 15 days), with three samples in each group.

Table 3. Laboratory-accelerated test conditions.

Step Duration Time (h) Temperature (◦C) Relative Humidity Solution (wt.%)

Salt spray 16 40 / 5% NaCl + 0.1% Na2SO4
pH = 4

Dry 1 60 <30% /
Wet 7 40 90% /

3. Results
3.1. Microstructure

Figure 1 shows the microstructures of two high-strength stainless steels. 3Cr13 marten-
sitic stainless steel belongs to medium-carbon steel. After quenching, a mixed structure of
lath (dislocation) martensite and flake (twin) martensite is obtained. During the tempering
process, alloy carbides such as (Cr, Fe)7C3 are precipitated from the martensite structure to
form a tempered troostite structure composed of an α phase and granular carbides that
retain the characteristics of the original martensite (Figure 1a). 00Cr12Ni10MoTi maraging
stainless steel is an ultra-low carbon stainless steel, and a lath martensite structure with
high dislocation density can be obtained by solution treatment. After the aging treatment,
the matrix structure still retains lath-like characteristics (Figure 1b). A small amount of
massive austenite structure is found at the grain boundary, and the aging precipitates are
small and cannot be identified in the metallographic structure.

Figure 2 shows the typical TEM microstructure and diffraction pattern of 00Cr12Ni10MoTi
martensitic stainless steel after aging treatment at 510 ◦C. It can be seen from the bright-field
image (Figure 2a) that a large number of needle-like precipitates are precipitated in the marten-
site matrix after aging treatment. The precipitation phase is a hexagonal crystal structure
intermetallic compound η-Ni3Ti. Figure 2b is the dark-field image, with the arrow pointing
to spot

(
2240

)
η

in Figure 2c. The transmitted dark-field image clearly shows that the rod-
shaped precipitates are dispersed in the lath martensite. The average diameter and length
of the precipitates were about 3 nm and 12 nm, respectively. Figure 2d shows the complete
diffraction pattern of the incident [011]α′ crystal band. The diffraction spots are indexed
and calibrated. It can be found that the

(
2240

)
diffraction spots of the precipitates and the(

220
)

diffraction spots of the matrix are in a straight line, which indicates that η-Ni3Ti has the
following orientation relationship with the martensite matrix:

(011)M//(0001)η , [222]M//(2240)η
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Figure 2. TEM photo of 00Cr12Ni10MoTi maraging stainless steel aged at 510 ◦C for 4 h: (a) bright-
field image, (b) dark-field image taken from the diffraction spot indicated by an arrow in (c) showing
precipitates, (c) selected area diffraction pattern with zone axis [011]α′ , (d) schematics of selected area
diffraction pattern with zone axis [011]α′ .

3.2. Corrosion Weight-Loss Kinetics

The corrosion weight-loss data of 3Cr13 and 00Cr12Ni10MoTi stainless steels in the
field-exposure corrosion test and laboratory-artificial accelerated test are shown in Tables 4
and 5, respectively. It can be seen that the corrosion weight loss of 00Cr12Ni10MoTi
stainless steel is much smaller than that of 3Cr13 stainless steel in both test environments.
As shown in Table 4, the corrosion weight loss of 3Cr13 martensitic stainless steel under
the same exposure time is two orders of magnitude higher than that of 00Cr12Ni10MoTi
maraging stainless steel, about 350 times.

Table 4. Corrosion weight-loss data of two stainless steels in natural environment.

Exposure Time (Years) Corrosion Weight Loss (g·m−2)
3Cr13 00Cr12Ni10MoTi

0.5 112.594 0.321
1.0 195.689 0.566
1.5 334.926 0.849
2.0 387.453 1.094
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Table 5. Corrosion weight-loss data of two stainless steels in laboratory artificially accelerated environment.

Accelerated Test Time (Days) Corrosion Weight Loss (g·m−2)
3Cr13 00Cr12Ni10MoTi

3 28.087 0.435
6 66.000 0.783
9 114.000 1.478
12 222.870 2.000
15 322.783 2.870

The power function relationship model was used to fit the corrosion weight loss of
the two materials in the natural environment test and the corrosion weight loss under
the artificial acceleration test with time. A large number of studies have proved that the
atmospheric corrosion kinetic equation of the power function model can reliably predict
long-term corrosion. The empirical equation of the power function is as follows [33–36]:

D = Atn (1)

where D is the corrosion weight loss (g/m2), t is the corrosion time (h), and A and n are
constants. The value of n can reflect the characteristics of corrosion kinetics, that is, n > 1
represents the corrosion acceleration process, n < 1 represents the corrosion deceleration
process and n = 1 represents the uniform corrosion process [35,37].

Figure 3 shows the corrosion weight loss of two stainless steels with time and their
fitting curves. D1 and D2 (Figure 3a) represent the fitting curves of the external field
exposure corrosion weight loss and laboratory-accelerated corrosion weight loss of 3Cr13
martensitic stainless steel, respectively. D3 and D4 (Figure 3b) represent the fitting curves
of the external field exposure corrosion weight loss and laboratory-accelerated corrosion
weight loss of 00Cr12Ni10MoTi maraging stainless steel, respectively. The corresponding
fitting equations are shown in Table 6. It can be seen that, under the field-exposed condition,
the corrosion rate of both stainless steels decreases with time because their n values are
less than 1. It should be noted that the 3Cr13 stainless steel is nearly uniformly corroded.
In laboratory-accelerated corrosion, since the n value is greater than one, the corrosion
rate of both stainless steels increased with time. It is shown that the laboratory accelera-
tion method has an obvious acceleration effect on the two materials, and the decelerated
corrosion process of external field exposure corrosion is transformed into an accelerated
corrosion process. The reason may be that the short-term salt spray dry–wet alternation
process during the accelerated corrosion process in the laboratory is not conducive to the
“dissolution–reprecipitation” process of the corrosion product, which reduces the density of
the corrosion product film, thereby reducing the corrosion product film’s protective effects.
It can be seen from both field exposure and laboratory acceleration that the corrosion resis-
tance of 00Cr12Ni10MoTi maraging stainless steel is better than that of 3Cr13 martensitic
stainless steel in the atmospheric corrosion environment of Wanning, Hainan.
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Table 6. Corrosion kinetic equations of two stainless steels.

Material Experimental
Conditions Functional Model Unit of t R2

3Cr13
Field exposure D1 = 210.470 t0.929 years 0.985

Laboratory acceleration D2 = 4.780 t1.518 days 0.984

00Cr12Ni10MoTi
Field exposure D3 = 0.586 t0.889 years 0.998

Laboratory acceleration D4 = 0.110 t1.177 days 0.984

3.3. Corrosion Morphology

Figure 4 shows the corrosion morphologies of two stainless steels, 3Cr13 and 00Cr12Ni10MoTi,
after being exposed to corrosion for 0.5 and 2 years. It can be seen that the surface of 3Cr13 was
completely covered by corrosion products after half a year of corrosion (Figure 4a), and there were
network cracks in the corrosion products. After two years of corrosion (Figure 4b), there was no ob-
vious cracking on the surface of the corrosion product. 00Cr12Ni10MoTi had only a small amount
of corrosion products of different sizes on the surface after being corroded for half a year (Figure 4c),
showing obvious pitting corrosion characteristics. After two years of corrosion (Figure 4d), pitting
pits could be observed on the surface of the sample, and there was a small amount of corrosion
products around the pits. Therefore, from the appearance of corrosion products, the corrosion
resistance of maraging stainless steel 00Cr12Ni10MoTi is better than that of martensitic stainless
steel 3Cr13.
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3.4. Corrosion Products

Figure 5 shows the XPS spectra of Fe 2p3/2 and Cr 2p3/2 of the corrosion products
of two stainless steels. Figure 5a,c show the peak fitting results of the XPS spectrum of Fe
2p3/2. The spectrum of Fe 2p3/2 can be divided into three peaks, which are Fe2+ oxides,
Fe3+ oxides and Fe3+ hydrated oxides. The corresponding corrosion products are FeO
(710.7 eV), Fe2O3 (712.3 eV) and FeOOH (713.6 eV) [38]. Compared with 3Cr13, the FeO
and Fe2O3 contents of 00Cr12Ni10MoTi are increased. The anodic reactions are as follows:

Fe → Fe2+ + 2e− (2)

Fe2+ + 2OH− → Fe(OH)2 (3)

Fe(OH)2 → FeO + H2O (4)

4Fe(OH)2 + O2 → 4FeOOH + 2H2O (5)

2FeOOH→ Fe2O3 + H2O (6)
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Figure 5b,d show the peak fitting results of the XPS spectrum of Cr 2p3/2. Cr2O3
(575.2 eV), Cr(OH)3 (577.0 eV) and CrO3 (578.6 eV) are the main forms of Cr in corro-
sion products [39–41]. Compared with 3Cr13, the contents of Cr2O3 and Cr(OH)3 in
00Cr12Ni10MoTi increased significantly. Chromium plays an important role in the corro-
sion resistance of stainless steel, and chromium oxides are the main components of the
passive film. The strength of Cr2O3 in 00Cr12Ni10MoTi is higher than that in 3Cr13, which
improves the corrosion resistance. The formation of Cr(OH)3 and Cr2O3 is as follows [41]:

Cr → Cr3+ + 3e− (7)
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Cr3+ + 3H2O → Cr(OH)3 + 3H+ (8)

Cr(OH)3 → Cr2O3 + 2H2O (9)

Pitting corrosion is the most common corrosion type in high-strength stainless steel,
and always occurs in the weak areas of passivation film, such as inclusions and car-
bide/intermetallic compound interfaces [42]. At the same time, the carbide precipitation
in martensitic stainless steel causes local chromium depletion, which easily leads to inter-
granular corrosion [43]. Therefore, the difference in the corrosion resistance of the two
stainless steels is related to their microstructure. During the tempering process of 3Cr13
martensitic stainless steel, alloy carbides such as (Cr, Fe)7C3 precipitate from the marten-
sitic structure, resulting in the existence of a Cr-depleted zone in the carbide boundary
region [44]. Martensitic stainless steels passivate spontaneously by forming an oxide layer
consisting mainly of Fe and Cr, so the precipitation of Cr-rich carbides reduces the pas-
sivation film and pitting resistance [6,7,10,45–47]. In the presence of aggressive anions
(especially chloride ions), the breakdown of the passivation film causes the exposed metal
to dissolve and thus form corrosion pits [6,7]. A corrosion cell is formed between the
corrosion pit (anode) and the passivation film (cathode) surrounding the pit. After the
aging treatment, the 00Cr12Ni10MoTi maraging stainless steel has a lath martensite struc-
ture with a small amount of reversed austenite. There are a large number of nano-scale
intermetallic compounds of η-Ni3Ti dispersed in the lath martensite, which will not form
chromium-rich carbides. The formation of reversed austenite reduces the consumption of
Cr around the carbide and the appearance of the Cr-depleted zone, which, in turn, enhances
the passive film stability and pitting resistance [48,49]. In addition, the high content of
Ni and Mo in the reversed austenite is beneficial to improve the pitting resistance in the
austenite zone [50]. It has been reported that Ni can positively shift the pitting potential
of stainless steel and contribute to the formation of Cr2O3 in the passivation film [51,52].
Therefore, 00Cr12Ni10MoTi martensitic stainless steel has better corrosion resistance in the
specified environment.

4. Correlation Analysis
4.1. Qualitative Analysis

Qualitative analysis was performed using the method of macroscopic morphological
comparison of corrosion specimens. The specimens exposed to corrosion in the external
field for 2 years and the specimens exposed to accelerated corrosion in the laboratory for
15 days were selected for appearance comparison. As shown in Figure 6, when comparing
the macroscopic corrosion morphology of the specimens under the two experimental en-
vironments, it can be seen that the surface of 3Cr13 martensitic stainless steel is covered
by corrosion products, while the surface of 00Cr12Ni10MoTi martensitic stainless steel
presents uniformly distributed pitting corrosion products. As the laboratory-accelerated
corrosion accelerated the corrosion process, and due to the high moisture in the test cham-
ber, a large number of liquefied solutions form the corrosion products and flow more
obviously. Therefore, from the perspective of corrosion, the macroscopic morphology
of laboratory-accelerated corrosion and external-exposure corrosion has a good consis-
tency. The macroscopic corrosion morphology also indicates that the corrosion resistance
of 00Cr12Ni10MoTi martensitic stainless steel is better than that of 3Cr13 martensitic
stainless steel.
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4.2. Quantitative Analysis

Gray correlation analysis is used to measure the degree of association between two
factors or two systems [32,53]. In this work, it was used to analyze the correlation between
the laboratory-accelerated and field exposure tests of two stainless steels.

The weight-loss data from the field exposure test were used as a reference series to
calculate the correlation between the laboratory-accelerated corrosion test and the field
exposure test [54]. The calculation formula is below:

ξi(k) =
min

i
min

k
|x0(k)− xi(k)| + ρ max

i
max

k
|x0(k)− xi(k)|

|x0(k)− xi(k)| + ρ max
i

max
k
|x0 (k)− xi(k)|

(10)

where ρ is the resolution factor, which is generally set to 0.5. The calculation is performed
using the homogenization method. The calculation results are shown in Table 7.

Table 7. Grey correlation between laboratory-accelerated and field exposure test.

Material
Raw Weight Loss (g·m−2) Homogenization Correlation

Degree ξi MeanField Exposure Laboratory-
Accelerated Field Exposure Laboratory-

Accelerated

3Cr13

112.594 28.087 0.437 0.261 0.94

0.82
195.689 66.000 0.759 0.613 1.00
334.962 114.000 1.300 1.058 0.82
387.453 222.870 1.504 2.069 0.51

00Cr12Ni10MoTi

0.321 0.435 0.454 0.152 1.00

0.75
0.566 0.783 0.800 0.273 0.76
0.849 1.478 1.200 0.515 0.66
1.094 2.000 1.546 0.697 0.57

In general, when the gray correlation is greater than 0.6, the sequence is considered to
be closely related to the reference sequence [32]. From Table 7, the gray correlation values
between the laboratory-accelerated experiments and the external exposure tests for 3Cr13
martensitic stainless steel and 00Cr12Ni10MoTi martensitic stainless steel are 0.82 and 0.75,
respectively, indicating a good correlation.

In summary, the study by qualitative and quantitative analysis showed a good correla-
tion between the accelerated-laboratory test and the external field exposure test.
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4.3. Acceleration Ratio Analysis

The accelerated conversion factor (ASF) method was used to calculate the acceleration
ratio. The corrosion weight-loss data obtained in the laboratory-accelerated corrosion
test were substituted into the kinetic equation of the field exposure test to calculate the
time required for the field exposure test. Thereby, the relationship between the laboratory-
accelerated corrosion time and the field exposure time was established. The calculation
results are shown in Table 8.

Table 8. Relationship between laboratory-accelerated corrosion time and field exposure time for two
stainless steels.

Material Accelerated Time (Days) Weight Loss (g·m−2) Functional Model Time of Field Exposure (Days)

3Cr13

3 28.087

D1 = 210.470t0.929

42
6 66.000 105
9 114.000 189

12 222.870 388
15 322.783 578

00Cr12Ni10MoTi

3 0.435

D3 = 0.586t0.890

261
6 0.783 505
9 1.478 1032

12 2.000 1450
15 2.86957 2175

The function between the accelerated corrosion time and the field exposure time for
the two stainless steels was obtained by regression analysis as:

T3Cr13 = 6.234 t1.634 R2 = 0.984 (11)

T00Cr12Ni10MoTi = 55.693 t1.322 R2 = 0.985 (12)

where t is the laboratory acceleration time (days) and T is the field exposure time corre-
sponding to t (days).

From this, the acceleration ratio of the two materials is deduced:

ASF3Cr13 = T3Cr13/t = 6.234 t0.634 (13)

ASF00Cr12Ni10MoTi = T00Cr12Ni10MoTi/t = 55.693 t0.322 (14)

Equations (2)–(5) are plotted in Figure 7. From Figure 7b, it can be seen that the accel-
eration ratios of both 00Cr12Ni10MoTi and 3Cr13 increase with the increase in accelerated
corrosion time. During this accelerated corrosion test, the acceleration ratio of 3Cr13 ranged
from 0 to 50, and that of 00Cr12Ni10MoTi ranged from 50 to 150.

Materials 2022, 15, x FOR PEER REVIEW 11 of 14 
 

 

00Cr12Ni10MoTi 

3 0.435 D3 = 0.586t .  

261 
6 0.783 505 
9 1.478 1032 

12 2.000 1450 
15 2.86957 2175 

The function between the accelerated corrosion time and the field exposure time for 
the two stainless steels was obtained by regression analysis as: T = 6.234 t .  R2 = 0.984 (11) T = 55.693 t .    R2 = 0.985 (12) 

where t is the laboratory acceleration time (days) and T is the field exposure time corre-
sponding to t (days). 

From this, the acceleration ratio of the two materials is deduced: ASF = T t⁄ = 6.234 t .  (13) ASF00Cr12Ni10MoTi = T t⁄ = 55.693 t .    (14) 

Equations (2)–(5) are plotted in Figure 7. From Figure 7b, it can be seen that the ac-
celeration ratios of both 00Cr12Ni10MoTi and 3Cr13 increase with the increase in acceler-
ated corrosion time. During this accelerated corrosion test, the acceleration ratio of 3Cr13 
ranged from 0 to 50, and that of 00Cr12Ni10MoTi ranged from 50 to 150. 

 
Figure 7. Acceleration ratio analysis: (a) relationship between laboratory-accelerated corrosion time 
and field exposure time, (b) acceleration ratio. 

5. Conclusions 
(1) The corrosion resistance of 00Cr12Ni10MoTi martensitic stainless steel is greatly im-

proved compared with that of 3Cr13 martensitic stainless steel, and the corrosion ki-
netics fitting curve is in accordance with the power function law. 

(2) Qualitative and quantitative analysis results show that the laboratory-accelerated cor-
rosion test and the external field exposure test have a good correlation where the gray 
correlation coefficient is greater than 0.75. Therefore, the artificially accelerated corro-
sion method used in this study can be used as the basis for life assessment and the 
prediction of stainless-steel materials. The corrosion prediction models for the two 
stainless steels are 𝑇 = 6.234 𝑡 .  and 𝑇 = 55.693 𝑡 . , respec-
tively. 

(3) The passivation film and corrosion product film formed on the surface of 
00Cr12Ni10MoTi martensitic aging stainless steel has a protective effect, while the 

Figure 7. Acceleration ratio analysis: (a) relationship between laboratory-accelerated corrosion time
and field exposure time, (b) acceleration ratio.



Materials 2022, 15, 9075 11 of 13

5. Conclusions

(1) The corrosion resistance of 00Cr12Ni10MoTi martensitic stainless steel is greatly
improved compared with that of 3Cr13 martensitic stainless steel, and the corrosion
kinetics fitting curve is in accordance with the power function law.

(2) Qualitative and quantitative analysis results show that the laboratory-accelerated
corrosion test and the external field exposure test have a good correlation where the
gray correlation coefficient is greater than 0.75. Therefore, the artificially accelerated
corrosion method used in this study can be used as the basis for life assessment
and the prediction of stainless-steel materials. The corrosion prediction models for
the two stainless steels are T3Cr13 = 6.234 t1.634 and T00Cr12Ni10MoTi = 55.693 t1.322,
respectively.

(3) The passivation film and corrosion product film formed on the surface of 00Cr12Ni10MoTi
martensitic aging stainless steel has a protective effect, while the passivation film and
corrosion product film on the surface of 3Cr13 martensitic stainless steel has a lower
protective effect.
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