
Citation: Zhu, L.; Wang, X.; Sun, L.;

Hu, Q.; Li, N. Optimisation of

Selective Laser Melted Ti6Al4V

Functionally Graded Lattice

Structures Accounting for Structural

Safety. Materials 2022, 15, 9072.

https://doi.org/10.3390/

ma15249072

Academic Editor: Theodore E.

Matikas

Received: 21 November 2022

Accepted: 16 December 2022

Published: 19 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Optimisation of Selective Laser Melted Ti6Al4V Functionally
Graded Lattice Structures Accounting for Structural Safety
Lei Zhu 1, Xiaoyang Wang 2, Liao Sun 2, Quandong Hu 3 and Nan Li 1,*

1 Dyson School of Design Engineering, Imperial College London, London SW7 2AZ, UK
2 The First Aircraft Institute of AVIC, Xi’an 710087, China
3 Manufacturing Technology Institute (MTI) of AVIC, Beijing 100024, China
* Correspondence: n.li09@imperial.ac.uk

Abstract: This paper presents a new framework for lightweight optimisation of functionally graded
lattice structures (FGLSs) with a particular focus on enhancing and guaranteeing structural safety
through three main contributions. Firstly, a design strategy of adding fillets to the joints of body-
centred cubic (BCC) type lattice cells was proposed to improve the effective yield stress of the
lattices. Secondly, effective properties of lattice metamaterials were experimentally characterised
by conducting quasi-static uniaxial compression tests on selective laser melted specimens of both
Ti6Al4V BCC and filleted BCC (BCC-F) lattices with different relative densities. Thirdly, a yield
stress constraint for optimising FGLSs was developed based on surrogate models quantifying the
relationships between the relative density and the effective properties of BCC and BCC-F lattices
developed using experimental results assisted by numerical homogenisation. This framework was
tested with two case studies. Results showed that structural safety with respect to avoiding yield
failure of the optimised FGLSs can be ensured and the introduction of fillets can effectively improve
the strength-to-weight ratio of the optimised FGLSs composed of BCC type lattices. The BCC-F FGLS
achieved 14.5% improvement in weight reduction compared with BCC FGLS for the Messerschmitt-
Bölkow-Blohm beam optimisation case study.

Keywords: functionally graded lattice structure; filleted lattice metamaterials; yield stress constraint;
structural optimisation; additive manufacturing

1. Introduction

Metamaterials are materials engineered to exhibit designed properties. Lattice meta-
materials are biomimetic lightweight materials that are usually constructed by repeating
networks of lattice cells [1]. The design of lattice metamaterials is often inspired by natu-
rally lightweight hierarchical structures including bamboo stems [2,3] and human proximal
femurs [4,5]. Recently, lattice metamaterials have attracted increasing attention in engi-
neering sectors (e.g., the turbine blades design presented by Alkebsi et al. [6]) and medical
applications (e.g., the hip implant structural designs presented by Gok [7]). This is owing to
the advanced properties of lattice metamaterials, such as the high stiffness-to-weight ratio,
high strength-to-weight ratio, excellent heat transfer capability, and outstanding energy
absorption capability [8,9]. Additive manufacturing (AM), also known as 3D printing,
employs a layer-wise fabrication method directly according to the data from CAD mod-
els. It provides the feasibility of fabricating structures with complex geometries, such as
lattice metamaterials, that are difficult to manufacture with conventional manufacturing
methods. With the rapid development recently, AM significantly increases the freedom
of lightweight design and has become an important enabler of the fabrication of lattice
metamaterials [10,11]. Typical AM methods for fabricating metallic lattice metamaterials
include selective laser melting (SLM) [12] and direct metal laser sintering (DMLS) [13].

Experimental investigations of deformation behaviour and effective mechanical prop-
erties (e.g., effective elastic moduli and effective yield stresses) of lattice metamaterials
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have been conducted in a number of studies. The investigations are usually carried out by
conducting quasi-static uniaxial compression tests on lattice metamaterials with various
cell topologies and different parent materials (i.e., the material that lattice metamaterials
are composed of) at a range of relative densities. For instance, Crupi et al. [14] investigated
the effects of lattice cell size and relative density on the failure modes of a body-centred
cubic (BCC) lattice made of Ti6Al4V manufactured using DMLS; Choy et al. [15] studied
the effective properties and compressive deformation behaviour of a Ti6Al4V primitive
cubic (PC) lattice fabricated with the SLM method; Alsalla et al. [16] adopted the micro-
computer tomography method to investigate the yield and fracture behaviour of a 316 L
gyroid lattice fabricated using SLM. Recently, experimental studies have been conducted
to investigate effective properties of advanced lattice metamaterials, such as lattices with
graded relative densities [17,18] and crystal-microstructure-inspired lattices with hybrid
lattice cell types [19,20]. Yield behaviours of lattice metamaterials have been tested in
these studies.

Meanwhile, lattice metamaterials have also drawn great interests from researchers
on computational mechanics to develop recent advances from the structural design and
optimisation perspective. This is mainly motivated by the potential of functionally graded
lattice structures (FGLSs) in achieving superior functional performances, by efficiently
tailoring the distributions of lattice configurations. Owing to the regular arrangement of
struts in a lattice cell, the geometry of a lattice cell can be described by a limited number
of geometric parameters, such as strut diameters. Thus, the effective material properties
(e.g., effective elasticity tensor) of lattice metamaterials can be engineered by controlling
the geometric parameters. Optimisation frameworks have been developed using such geo-
metric parameters as design variables to obtain the optimal design of FGLSs. For example,
Takezawa et al. [21] adopted the PC type lattice to design an FGLS for a liquid cooling
system; Simsek et al. [22] employed the gyroid type lattice to optimise the dynamic perfor-
mance of an FGLS for a desired bandgap; Wang et al. [23] proposed a two-step approach
of optimising lattice structures applied in aerospace components, such as a trapezoidal
rudder. Numerical homogenisation is a well-accepted and widely adopted method to
characterise the effective properties of lattice metamaterials to be used in optimisation
frameworks for the design of FGLSs. However, there can be a discrepancy between the
numerically characterised effective properties and the actual effective properties of AM
fabricated lattice metamaterials.

To bring the research on the design of FGLSs closer to applications, imposing failure
constraints, such as yield stress constraints, is crucial, in terms of ensuring the structural
safety. The von Mises yield criterion is widely adopted in formulating the yield stress
constraint in structural optimisation, such as topology optimisation [24–26], and has been
applied to the optimisation of FGLSs [27,28]. For instance, Zhang et al. [29] adopted the
numerical homogenisation method [30] to characterise the effective elastic moduli and
effective yield stresses of octet type lattices at a range of relative densities. They used
the homogenised effective yield stresses to develop aggregated yield stress constraints
based on the von Mises yield criterion. In their study, the design domain was divided
into multiple subdomains, and the aggregation function of yield stress constraints was
formulated using the averaged stresses inside each subdomain to locally control the stress
levels. Thillaithevan et al. [31] developed a global yield stress constraint based on the
von Mises yield criterion for optimising FGLSs. In their study, the global yield stress con-
straint controlled only the maximum homogenised effective von Mises stress of the lattice
metamaterial to significantly reduce computational cost. Because lattice metamaterials
are capable of exhibiting orthotropic material properties, the Hill’s yield criterion has also
been adopted in predicting the yield stress of orthotropic lattice metamaterials [32] and
in formulating stress constraints for the design of FGLSs with orthotropic lattice meta-
materials. The Hill’s yield criterion is a generalised von Mises criterion for orthotropic
materials [33]. Cheng et al. [34] employed the Hill’s yield criterion to develop a global yield
stress constraint for the optimisation of FGLSs with a PC type lattice. In their study, the
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effective values of normal yield stresses, shear yield stresses, and the hydrostatic yield stress
of the lattice metamaterials were characterised using a numerical homogenisation method.
However, again, these studies adopted purely numerical methods without incorporating
experimentally measured effective properties from actual AM fabricated lattice structures.
Therefore, the structural safety may not be guaranteed for real applications.

By replacing the numerical homogenisation with the direct experimental characteri-
sation of lattice metamaterials, the effects of manufacturing on the effective properties of
lattice metamaterials can be considered, which obviously means the performance of lattice
structures can be more accurately predicted in simulations, thus the optimised structure can
be more reliable. However, the fact is that few of the existing studies on the optimisation
of FGLSs have adopted an experimental approach to determine the effective properties of
lattice metamaterials, just like research focused on experimental studies of AMed lattices
has rarely applied their findings to the structural design and optimisation of the lattice
structures. Therefore, to facilitate the development of FGLSs towards real applications as
high value-added components, the synergy between experimental and numerical studies
and a holistic methodology for designing such a new family of structures are highly desired.

In this paper, we present a new optimisation framework for numerical optimal design
of high-stiffness and lightweight FGLSs, with a unique focus on improving and ensuring
structural safety by innovatively introducing joint fillets to the lattice cell design for in-
creased effective yield stress, integrating the experimental testing of lattice metamaterials as
a new step for accurately characterising effective properties, and adding a yield constraint
to the optimisation to avoid yield failure of the optimised FGLSs. A typical bending domi-
nated lattice type, body-centred cubic (BCC), as well as the representative parent material
and AM approach, Ti6Al4V and selective laser melting (SLM), respectively, are adopted in
this study to demonstrate the framework and methodologies. The abbreviations used in
this paper are tabulated in Table 1.

Table 1. Abbreviations used in the paper.

Abbreviation Description

FGLS Functionally graded lattice structures
BCC Body-centred cubic
BCC-F Filleted body-centred cubic
AM Additive manufacturing
SLM Selective laser melting
DMLS Direct metal laser sintering
PC Primitive cubic
FE Finite element
RVE Representative volume element
PBC Periodic boundary condition

2. Materials and Methods

Due to the unconventional nature of the study and its workflow, the structure and
methodology of this work is firstly overviewed in this section. Subsequently, the geometries
of BCC type lattice unit cells for the lattice metamaterial were designed in this section.
Fillets were introduced to the joints of lattice cells to reduce stress concentration. The effects
of fillet radii on the effective yields stresses of the BCC type lattices were investigated
through a parametric study using numerical homogenisation. The procedures for experi-
mental characterisation of the effective material properties (i.e., effective values of Young’s
moduli, Poisson’s ratios, and yield stresses) of the BCC and BCC-F lattices are presented
in this section.

2.1. Overview of Workflow and Methodologies

This subsection overviews the structure and methodologies adopted in this paper. The
flowchart in Figure 1 shows the workflow of developing the experimentally characterised,
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yield stress constrained FGLS optimisation framework embodied by the optimal design of
lattice structures composed of filleted BCC lattice cells. The workflow can be divided into
three stages. (i) The first stage is the lattice cell design stage. In this stage, we improved
the joint geometry design for BCC lattice cells by introducing the fillet to increase the
yield stress of the BCC lattice. (For brevity, BCC-F denotes the filleted BCC lattice in this
paper.) Numerical parametric studies were carried out to determine the optimal value
of the fillet parameter, N f (given in Equation (2)). In the numerical studies, the finite
element (FE) models of BCC type lattice unit cells with different strut diameters (D′) and
N f were built. The lattice unit cells were treated as representative volume elements (RVEs)
of the lattice metamaterials. Numerical uniaxial loading tests were conducted on the RVEs
with the periodic boundary conditions (PBCs) [35] applied to evaluate the effective yield
stress of each RVE to determine the optimal value of N f . This optimal value of N f was
then adopted to design testing specimens for the experimental characterisation of lattice
metamaterials in the second stage. (ii) The second stage is experimental characterisation.
The designed specimens composed of BCC and BCC-F lattices were fabricated using SLM.
Quasi-static uniaxial compression tests were conducted on these specimens to characterise
their effective Young’s moduli, effective Poisson’s ratios, and effective yield stresses. (iii) In
the third stage, the experimentally obtained results, combining FE analysis, were used to
develop metamaterial surrogate models quantifying the relationships between the effective
properties and the relative densities of BCC and BCC-F; then, these surrogate models
were employed to formulate yield constrained optimisation problems for designing FGLSs.
The yield stress constraint was developed based on the von Mises yield criterion. An
optimisation platform integrating FE analysis and sensitivity solvers was developed to
implement the optimisation of FGLSs and was tested through two case studies.
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Figure 1. Flowchart of the yield constrained FGLS optimisation framework with experimentally
characterised BCC and BCC-F lattice metamaterials. D′ and N f denote relative strut diameter and
fillet parameter, respectively, which are defined in the next subsection (through Equations (1) and (2),
respectively). FE, AM, RVE, PBC, FGLS denote finite element, additive manufacturing, representative
volume element, periodic boundary condition, and functionally graded lattice structure, respectively.

2.2. Unit Cell Design for Lattice Metamaterials
2.2.1. Design of BCC Type Lattice Unit Cells

The BCC lattice cell type is a bending dominated lattice type [1,36,37] and yield is a
common failure mode of this lattice type. Thus, this lattice cell type was selected in this
study to demonstrate the development of the yield constrained lattice structural optimi-
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sation framework. The lattice struts are usually connected by simple Boolean operations
during the construction of lattice CAD models, resulting in sharp conners in joint regions of
the lattice cells where the lattice struts are intersected [38]. These sharp conners can result
in severe stress concentration in the joint region of lattice cells, resulting in premature yield
failure of the lattice cell. To tackle the problem, in this study, a fillet design was introduced
to the joints of lattice cells to smooth the joint conners. The comparison of an original BCC
lattice cell and a filleted BCC (BCC-F) lattice cell is demonstrated in Figure 2, where l is the
length of a lattice cell, D is the diameter of a lattice sturt, and r f is radius of a fillet. In this
study, for each BBC-F lattice cell, the diameters of all struts were defined as equal, and all
joint corners shared the same radius.
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view, where l, D, and r f denote the length of the lattice cell, the lattice strut diameter, and the fillet
radius, respectively.

Adding fillets to lattice joints results in adding extra material to lattice cells. The
admissible space in a lattice cell for adding fillets is restricted by the topology and the
strut dimeter of the lattice cell. In general, a lattice cell with a higher strut diameter leaves
a smaller space for adding fillets to its joint. Thus, in this study, the assumption was
made that the strut diameter, D, and the fillet radius, r f , generally had a multiplicative
inverse relationship. For the convenience of defining the relationship between D and
r f , the dimensionless relative strut diameter, D′, and relative fillet radius, r′ f , can be
defined as:

D′ = D/l, r′ f = r f /l (1)

In this study, the reciprocal relationship between D′ and r′ f can be defined as:

r′ f = N f /
(
250D′

)
(2)

where N f is a fillet parameter that controls the fillet size relative to the strut diameter.

2.2.2. Numerical Characterisation of Lattice Metamaterials and Parametric Study on the
Fillet Design

The effect of N f on the effective yield stress of the BCC type lattices was investigated
in a numerical parametric study. A lattice cell with larger N f requires the adding of more
material to the joint region, which results in a smaller lattice strut diameter to maintain
the same level of relative density. The minimum value of the strut diameter is restricted
by the manufacturing capability, which in turn restricts the maximum value of N f . In
this study, the maximum value of N f was determined to be 10 so that the minimum strut
diameter would not exceed the manufacturing requirement. The parametric study was
conducted numerically using Abaqus 2018. As previously mentioned, lattice metamaterials
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are composed of periodically distributed lattice unit cells, which can be treated as RVEs.
Numerical homogenisation was conducted on the RVEs of BCC and BCC-F lattices with
different N f values at three relative density levels, i.e., ρ′ = 0.1, 0.3, 0.5. The value
of N f was specified to range from 1 to 10. Periodic boundary conditions (PBCs) were
applied to each RVE by using EasyPBC [35] in Abaqus. The tetrahedral C3D4 element type
was adopted. The mesh size was determined through a mesh size convergence study to
balance accuracy and efficiency. The parent material of the lattice metamaterials was set
to be selective laser melting (SLM) fabricated Ti6Al4V and its properties were obtained
by conducting quasi-static uniaxial tensile tests on standard tensile specimens of Ti6Al4V
fabricated using SLM. The stress–strain curve of the parent material is shown in Figure 3a.
The Young’s modulus was 117.5 GPa, the Poisson’s ratio was 0.34, and the yield stress (0.2%
offset) was 939.625 MPa. Using the experimentally measured parent material properties,
the effective mechanical properties of the lattice metamaterials could be computed. The
0.2% offset yield stress was used to determine the effective yield stresses of the lattice
metamaterials. Figure 3b illustrates examples of the effective stress-effective strain curves
of a BCC RVE, and a BCC-F RVE obtained from the numerical parametric study based on
varied ρ′ and N f , where the determination of effective Young’s modulus (EH) and effective
yield stress (σH

Y ) is demonstrated.
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Figure 3. The stress–strain curves of (a) parent material, i.e., SLM fabricated Ti6Al4V, for lattice
metamaterials, and (b) examples of a BCC-F and a BCC lattice RVEs, where EH and σH

Y are the
effective Young’s modulus and the effective yield stress, respectively. The stress–strain curves of the
parent material and the example RVEs were obtained experimentally and numerically, respectively.

To determine the optimal value of N f , the effects of N f on the effective yield stress of
the BCC type lattice metamaterial at different relative density levels are shown in Figure 4.
At each relative density level, the yield stress of each case was normalised by the effective
yield stress of the BCC lattice without fillets. The normalised yield stress monotonically
increased with the increase of N f at each relative density level, indicating that the effective
yield stress of the BCC type lattice can be improved by increasing the fillet radius in the
given range. Although this improvement decreased with the increase in relative density,
the lattice metamaterial with N f = 10 showed the highest normalised yield stress at each
relative density level. Thus, N f = 10 was determined to be the optimal value for the fillet
design in this study and would be adopted in the specimen designs and experimental
characterisation of the BCC-F lattice in the following section.
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Figure 4. Effect of the fillet parameter, N f , on the normalised effective yield stress, σY , of the BCC type
lattice at different relative density (ρ′ ) levels. At each ρ′ level, the yield stress values are normalised
by the yield stress of the BCC lattice without fillets.

2.3. Experimental Characterisation of BCC and BCC-F Lattice Metamaterials
2.3.1. Design and Fabrication of the BCC and BCC-F Lattice Specimens

It has been discussed in Section 2.2.2 that the effective yield stress of the BCC type
lattice increases monotonically with the increase of the fillet parameter, N f , within the
given range of N f . To reduce the number of tests, two groups of specimens, the BCC lattice
(without fillets) and the BCC-F lattice with the maximum N f , i.e., N f = 10, were designed to
be fabricated for uniaxial compression tests characterising the effective material properties
of the lattice metamaterials. Each specimen group contained three lattice metamaterial
specimen designs with relative strut diameters, D′ds, of 0.144, 0.270, and 0.376, respectively.

Different from the numerical homogenisation method with PBC applied to a single
lattice unit cell, the direct experimental characterisation was conducted on actual lattice
structures, architected by a sufficient amount of repeatedly arranged identical lattice cells
for each lattice design configuration. Each lattice metamaterial specimen was designed
to be a cubic containing 512 (8 × 8 × 8) lattice cells with a uniform cell dimension of
5 × 5 × 5 mm, resulting in the total dimension of a lattice metamaterial specimen being
40 × 40 × 40 mm. The CAD models of specimen designs of the BCC and BCC-F lattices
with different designed D′ds and corresponding relative densities, ρ′ds, are demonstrated
in Figure 5.
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The specimens were fabricated by using SLM with the same parent material, Ti6Al4V,
as given in Section 2.2.2. The processing parameters of SLM are tabulated in Table 2. Three
duplicates were fabricated for each specimen design. All the specimens were separated
from the support material by wire cutting after fabrication. Annealing heat treatments were
performed on the specimens at 800 ◦C for 4 h.

Table 2. Material and processing parameters of SLM.

SLM Processing Parameters Values

Material Ti6Al4V
Powder grade Gd5
Spherical particle size (µm) 15–53
Laser power (W) 320
Laser scanning speed (mm/s) 1200
Hatch spacing (mm) 0.14
Layer thickness (mm) 0.04

The reason for designing the maximum relative density of the lattice metamaterials
to be 0.51 in this study is briefly explained as follows: it was observed that specimens
with a higher relative density fractured after fabrication. Figure 6 shows the cracks on a
BCC lattice sample with a relative density of 0.7. The cracks could be caused by the high
residual stress generated in the lattice specimen during the SLM manufacturing process.
The increase in strut diameter could cause the rise of the temperature gradient in the cross
section of lattice struts, consequently resulting in higher residual stresses. Cracks could be
generated when the residual stresses exceed the tensile stress of the printed parent material.
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Figure 6. Cracks observed on a high relative density (ρ′ds = 0.7) BCC lattice specimen after fabrication.

The two fabricated groups of specimens with different measured relative densities,
ρ′ms, are demonstrated in Figure 7. The measured relative density values were higher than
the designed ones for all specimens, which can be caused by manufacturing errors and
defects, such as adhesion of additional powders on the surfaces of lattice struts [15,39,40].

2.3.2. Experimental Setup and Procedure of Uniaxial Compression Tests

Uniaxial compression tests were conducted to characterise the effective mechanical
properties of the fabricated BCC and BCC-F lattices. The effective mechanical properties to
be experimentally measured include the effective Young’s modulus, the effective Poisson’s
ratio, and the effective yield stress.
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Figure 7. Demonstration of SLM fabricated BCC and BCC-F lattice specimens with different measured
relative densities (ρ′ms).

The experimental setup is shown in Figure 8. The experiments were conducted on an
MTS E64 machine, following the ISO 13314:2011 standard of compression test for porous
and cellular metals [41]. The lattice metamaterial specimen was placed between upper
and lower 42CrMo4 steel (52 HRC) platen grips. The contacting interfaces between the
specimen and the platen grips were lubricated with MoS2 lubricant to reduce the friction
when the specimen expanded off the loading direction under compression. During a
test, the compressive load was measured using a load cell and the displacement (along
the loading direction) of the specimens was measured using an extensometer attached to
the platen grips. The experiments were conducted at room temperature with a loading
rate of 2 mm/min.
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3. Results and Discussion

The experimental results of the uniaxial compression tests on BCC and BCC-F lat-
tices are presented and discussed in this section. Based on the experimental results, the
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effective material properties (i.e., effective values of Young’s moduli, Poisson’s ratio, and
yield stress) of BCC and BCC-F lattices were characterised and evaluated. Subsequently,
surrogate models of both lattices were developed by adopting the experimental character-
isation results with the assistance of numerical homogenisation simulations to quantify
the relationship between relative density and effective material properties of the lattices.
The surrogate models were then used to develop a yield stress constrained optimisation
framework for the design of functionally graded lattice structures. The framework was
tested with an L-shaped beam bending case study and a Messerschmitt-Bölkow-Blohm
(MBB) beam bending case study.

3.1. Experimental Results and Discussion of The Compression Tests

All the experimental results are presented based on the measured relative density
values in this section, hence, for the purpose of brevity the relative density refers to the
experimentally measured relative density in the following contents of this section if not
annotated. The experimental results of the engineering stress–strain curves of the BCC
and the BCC-F specimens at different relative density levels are shown in Figure 9. For all
specimens, the stresses increased linearly during elastic deformation until the specimens
yielded and continued to increase nonlinearly toward the first peak until an abrupt drop
occurred. For the BCC specimen (composed of non-filleted lattices) with a low relative
density (ρ′ = 0.1150 and ρ′ = 0.3727), a 45◦ shear band propagated diagonally throughout
an entire specimen, causing the fracture failure of the whole specimen after a single stress
peak. A similar fracture failure mode of a low relative density Ti6Al4V BCC lattice was
observed in the study of [42]. When the relative density of the BCC specimen increased to
0.5328, the first abrupt drop in stress occurred due to the fracture of the top layer of lattice
cells, followed by plateau stress fluctuation attributed to the gradual propagation of the
diagonal shear bands, which eventually developed into X-shaped shear bands.
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Figure 9. Experimental results of the compressive stress–strain (engineering) curves of specimens of
(a) BCC lattice with ρ′ = 0.1150, BCC-F lattice with ρ′ = 0.1783, (b) BCC lattice with ρ′ = 0.3272, BCC-F
lattice with ρ′ = 0.3700, and (c) BCC lattice with ρ′ = 0.5328, BCC-F lattice with ρ′ = 0.5590, associated
with demonstrations of deformation processes and fracture modes.

For the BCC-F specimens (composed of filleted lattices), when the relative density
ρ′ = 0.1783, the specimen collapsed layer by layer after the first stress peak, resulting in
stress fluctuation in the plateau stress region, until a diagonal shear band was propagated
throughout the specimen, ending with specimen densification. The layer-by-layer collapse
mode could be attributed to the geometrical nonuniformity of lattice struts caused by
manufacturing errors. This geometrical nonuniformity could result in stress localisation
in a lattice layer, and consequently cause premature collapse of this lattice layer. This
layer-by-layer collapse mode of the BCC lattice was also observed in the study of a gradient
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BCC lattice in [42], where the layer with thinner strut collapsed first. When the relative
density of the BCC-F lattice increased to 0.3700, the compressive stress abruptly dropped
after the first stress peak, resulting from the formation of a localised diagonal shear band
on the top left conner of the specimen. The localised shear band was then propagated
throughout the specimen, resulting in the stress fluctuation during the densification of the
specimen. For the BCC-F lattice specimen with ρ′ = 0.5590, the stress abruptly dropped after
the first stress peak due to the collapse of the bottom layer of lattice cells; then, the stress
fluctuated, caused by the propagation of the diagonal shear band during the specimen
densification stage. Similar to the conclusion drawn by Choy et al. [18], with the increase in
the relative density, the deformation behaviour of the BCC and BCC-F lattices exhibited a
tendency towards the deformation behaviour of a solid block.

Because the aim of the uniaxial compression tests was to characterise the effective
material properties of the lattice metamaterials for the purpose of developing surrogate
models used in the lattice structural optimisation, a detailed discussion on the fracture
modes of lattice metamaterials is out of the scope of this research. This study focuses on
the elastic regions and the yield stresses of the stress–strain curves. Good repeatability of
the stress–strain curves before yield was observed from repeated tests (on three duplicated
specimens). The effective Young’s moduli, effective Poisson’s ratios, and effective yield
stresses of the BCC and BCC-F lattices with different relative densities will be evaluated
and compared in the next subsection.

3.2. Evaluation of Effective Properties

The effective Young’s moduli were obtained by measuring the slopes of the
stress–strain curves in the elastic deformation domains. The effective yield stresses were
obtained by measuring the 0.2% offset stresses of the stress–strain curves. The effective Pois-
son’s ratios were obtained by measuring the vertical compressive strains and the horizontal
expansion strains in the elastic deformation domains, where the strains were measured by
adopting the digital image correlation method.

Both the experimental and numerical homogenisation results of the relative effective
Young’s modulus, the relative effective yield stress, and the effective Poisson’s ratio of
the BCC and the BCC-F lattices are shown in Figure 10. For the convenience of compar-
ison, the effective Young’s moduli and yield stresses were normalised by the Young’s
modulus and the yield stress of the parent material, respectively. It can be observed from
Figure 10a–c that the relative effective Young’s moduli and relative effective yield stresses
of both BCC and BCC-F lattices increase with the increasing relative density, while the
effective Poisson’s ratios exhibit an opposite trend, for both the experimental and numerical
homogenisation results.

For the experimental results (symbols in Figure 10), Figure 10a shows that the ex-
perimental relative effective Young’s moduli of the BCC-F lattices are higher than those
of the BCC lattices at the same relative density level, indicating that adding fillets to the
joints of the BCC lattice cells can contribute to the improvement of the effective Young’s
moduli of the lattice metamaterials. This phenomenon can be attributed to the fact that
the BCC lattice type is bending dominant, thus, when the lattice cells are subject to load
along normal directions, the highest stress appears at the roots of lattice struts, i.e., at the
joint of lattice cells. Hence, adding fillet can increase the amount of material in the high
stress region, and consequently provide higher stress resistance. Figure 10b shows that the
experimental relative effective yield stresses of the BCC-F lattices are higher than those of
the BCC lattices at each relative density level, indicating that adding fillets to the joints of
the BCC lattice cells can reduce the stress concentration in the lattice joints, consequently
improving the yield stresses of the lattice metamaterials. This improvement decreases with
the increase in relative density, as the result of the reciprocal relationship between the strut
diameter and fillet radius of the lattice cells proposed in this study, recall Section 2.2.2. As
can be observed in Figure 10c, the effective Poisson’s ratios of the BCC lattice are higher
than those of the BCC-F lattice at the same relative density level.
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To compare the numerical homogenisation results against the experiment results,
Figure 10 shows that the numerical homogenisation results can predict the trends of all
properties for both BCC and BCC-F lattices correctly, but cannot predict the values of all
such properties accurately. Figure 10a shows that the numerical homogenisation results
(solid lines) of the relative effective Young’s moduli are higher than the experimental results
for both BCC and BCC-F lattices. Figure 10b shows that the errors between the simulation
results and the experimental results of the relative effective yield stresses are relatively small
for lattices with high relative densities, however, the simulation results are higher than the
experimental results for lattices with small relative densities. Figure 10c shows that there
are discrepancies between the simulation and experimental results of the effective Poisson’s
ratios of both BCC and BCC-F lattices. The discrepancy between the effective material
properties of lattice metamaterials characterised numerically and experimentally could
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be attributed to the effects of manufacturing defects and errors, such as the waviness and
shape irregularity of lattice struts, on the mechanical properties of the lattice metamaterials
not being considered when constructing the FE models for the simulations. Thus, it
emphasised the necessity of using experimental results for characterising the effective
material properties of lattice metamaterials.

3.3. Development of a Yield Constrained Optimisation Framework for Functionally Graded Lattice
Structural Designs
3.3.1. Development of Surrogate Models of BCC and BCC-F Lattices

The surrogate models of effective properties of the BCC and BCC-F lattices are devel-
oped in this subsection. The models for the effective elasticity tensor components related to
Young’s moduli and Poisson’s ratios, and for effective yield stresses, were developed by
adopting the experimental data obtained in Section 3.1. The shear moduli were required
for the development of surrogate models of the effective elasticity tensors. However, shear
tests were not conducted in this study due to the lack of standard for the shear test for
porous and cellular metals and the restriction of testing equipment. Thus, in this study,
the simulation results of shear moduli were corrected to be used for surrogate model
development. The shear moduli were corrected based on the assumptions of (i) the effects
of manufacturing defects on the Young’s moduli and the shear moduli of the BCC type
of lattices sharing the same trend and (ii) at the same relative density, the relative error, e,
between the simulation results and the experimental results being approximately equal
for the Young’s moduli and the shear moduli. These assumptions were made based on the
following fact: although at the higher hierarchical level, the lattice metamaterials were sub-
ject to shear stress and normal stress under pure shear tests and uniaxial compression tests,
respectively, the lattice cells at the lower hierarchical level were subject to resultant forces
of axial forces and bending forces under both pure shear tests and uniaxial compression
tests. The relative error, e, can be calculated as:

e =
(

EH − EE
)

/EH (3)

where EH and EE represent the numerically homogenised effective Young’s modulus and
the effective Young’s modulus measured from experiments, respectively. The relative
error was calculated at each relative density level for both the BCC and the BCC-F lattices.
The relationship between the relative error, e, and the relative density, ρ′, can be obtained
through regression using second-order polynomial functions shown in Equations (4a) and
(4b), for the BCC and the BCC-F lattices, respectively:

eBCC
(
ρ′
)
= 4.5888

(
ρ′
)2 − 2.6040ρ′ + 0.5731 (4a)

eBCC−F
(
ρ′
)
= 5.3687

(
ρ′
)2 − 3.4265ρ′ + 0.7154 (4b)

The corrected values of the effective shear moduli, GC, at a given relative density ρ′∗,
can be calculated as:

GC|ρ′=ρ′∗ = GH ·
(
1− e

(
ρ′
))∣∣∣

ρ′=ρ′∗
(5)

where GH is the numerically homogenised effective shear modulus. In Figure 11, the
corrected values of the relative effective shear moduli (symbols) for the BCC and the
BCC-F lattices were calculated at each relative density and plotted with the corresponding
numerically homogenised effective shear moduli (solid lines), where all relative values
of the moduli were calculated by normalising the effective shear moduli with the shear
modulus of the parent material.
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Both BCC and BCC-F lattice metamaterials can be simplified as quasi-isotropic meta-
materials because the parent material was approximately isotropic. The effective elas-
ticity tensor, CE, of the BCC and the BCC-F quasi-isotropic lattice metamaterials can be
written as:

CE =



CE
11 CE

12 CE
12 0 0 0

CE
11 CE

12 0 0 0
CE

11 0 0 0
CE

44 0 0
sym CE

44 0
CE

44

 (6)

The components of the effective elasticity tensor can be calculated with the experimen-
tally measured Young’s moduli, EE, Poisson’s ratio, νE, and the simulation-corrected shear
moduli, GC, by using Equations (7a)–(7c):

CE
11 = EE 1− νE

(1− 2νE)(1 + νE)
(7a)

CE
12 = EE νE

(1− 2νE)(1 + νE)
(7b)

CE
44 = GC (7c)

The effective elasticity tensors of the BCC and the BCC-F lattices were calculated at
each relative density level, ρ′. The relationship between ρ′ and CE

11, CE
12, CE

44, and σE
Y , as

shown in Figure 12, can be quantified by second-order polynomial surrogate models, which
can be written as:

CE
ij
(
ρ′
)
= Aij

2
(
ρ′
)2

+ Aij
1 ρ′ + Aij

0 (8a)

σE
Y
(
ρ′
)
= B2

(
ρ′
)2

+ B1ρ′ + B0 (8b)

where Aij
0 , Aij

1 , and Aij
2 are constants for the surrogate model of the effective elasticity

component CE
ij , B0, B1, and B2 are constants for the surrogate model of the effective yield

stress, σE
Y . Note that these surrogate models are only guaranteed to be valid when the value

of the relative density is within the relative density range of the experimental data and the
accuracy of extrapolation beyond the experimentally measured ranges is not guaranteed.
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3.3.2. Optimisation Problem Formulation

The yield stress constraint for the lattice metamaterials was developed based on the
von Mises yield criterion. The widely used von Mises yield criterion has been adopted
to formulate yield stress constraints in mono-scale topology optimisation [43–45] and in
functionally graded lattice structural optimisation [31]. The von Mises stress, σVM, can be
calculated as:

σVM = (0.5((σ1 − σ2)
2 + (σ2 − σ3)

2 +
(

σ3 − σ1)
2
)
+ 3
(

σ2
4 + σ2

5 + σ2
6

)
)

0.5
(9)

where σ1 to σ6 are components of the stress tensor in Voigt notation. According to the von
Mises yield criterion, material starts yielding when σVM exceeds the yield stress of the
material. To ensure the von Mises stress of each lattice cell in a lattice structure is under the
corresponding yield stress, the yield constraint can be written as:

σ
ζ
VM

(
ρ′ζ

)
/σ

Eζ
Y

(
ρ′ζ

)
− cs ≤ 0 (10)

where σ
ζ
VM

(
ρ′ζ

)
and σ

Eζ
Y

(
ρ′ζ

)
represent the von Mises stress and the yield stress of the

ζth lattice cell in a lattice structure, respectively; cs is a safety factor equal to or smaller than
one. Equation (10) constrains the stress of each lattice cell individually. Hence, the number
of yield stress constraints equals the total number of lattice cells in a lattice structure.
To improve computational efficiency, the yield stress constraint was only applied to the
maximum value of σ

ζ
VM

(
ρ′ζ

)
/σ

Eζ
Y

(
ρ′ζ

)
in this study. The adjusted yield stress constraint

can be written as:
max

(
σ

ζ
VM

(
ρ′ζ

)
/σ

Eζ
Y

(
ρ′ζ

))
− cs ≤ 0 (11)

Two optimisation problems, PA and PB, were formulated in this study. Problem PA
was a structural compliance minimisation problem under two inequality constraints, being
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the maximum volume fraction constraint and the yield stress constraint. PA was used to
compare the von Mises stress of the BCC-F lattice structures with and without yield stress
constraint. The formulation of PA can be written as:

PA



min
ρ′ζ

f
(

ρ′ζ

)
= 0.5 FTU, ζ = 1, . . . , N

s.t. h
(

ρ′ζ

)
= K

(
ρ′ζ

)
U− F = 0

g1

(
ρ′ζ

)
= 1

V

N
∑

ζ=1
ρ′ζVζ − v f ≤ 0

g2

(
ρ′ζ

)
= max

(
σ

ζ
VM

(
ρ′ζ

)
/σ

Eζ
Y

(
ρ′ζ

))
− cs ≤ 0

ρ′min ≤ ρ′ζ ≤ ρ′max

(12)

where the design variables, ρ′ζ , are the relative densities of lattice cells in the lattice structure;
ζ and N represent the identifier and the total number of lattice cells, respectively; Vζ and
V denote the volume of the ζth lattice cell and the entire lattice structure, respectively;
h
(

ρ′ζ

)
is the equilibrium equality constraint; K

(
ρ′ζ

)
is the global stiffness matrix; U and F

denote the global displacement tensor and the global external force tensor; g1

(
ρ′ζ

)
is the

maximum volume fraction constraint, where v f is the maximum volume fraction; g2

(
ρ′ζ

)
is the yield stress inequality constraint defined in Equation (11); ρ′min and ρ′max are the
lower and the upper bounds of the design variables, ρ′ζ . The global stiffness matrix in PA
can be written as:

K
(

ρ′ζ

)
=

N

∑
ζ=1

CeT
ζ

(∫
Vζ

BT
ζCE

ζ

(
ρ′ζ

)
BζdVζ

)
Ceζ (13)

where CeT
ζ is the connection matrix that maps the elemental stiffness matrix to the global

stiffness matrix, CE
ζ is the effective elasticity tensor, and Bζ is the elemental strain displace-

ment tensor.
The equilibrium function in Equation (12) was solved using the finite element (FE)

method. Similar to many FE-based structural optimisation frameworks, a checkerboard-like
pattern of alternating material and void can be easily generated in optimised structures [46].
This checkerboard issue can be resolved by adopting filtering techniques [46]. In this study,
a design variable filter was adopted to prevent the checkerboard issue during optimisation.
The filtered relative density, ρ̃′ζ , can be calculated as:

ρ̃′ζ

(
ρ′γ

)
=

∑γ∈Nζ
Hγζρ′γ

∑γ∈Nζ
Hγζ

(14)

where Nζ is a set of lattice cells in which the central distance between the γth and the ζth
lattice cells is smaller than a filter radius, Rmin; Hγζ is a weighting function that can be
written as:

Hγζ = max
(
0, Rmin − ∆γζ

)
(15)

where ∆γζ represents the central distance between the γth and the ζth lattice cells.
The upper bound, ρ′max, and the lower bound, ρ′min, of the design variables were

specified to be 0.5328 and 0.1783, respectively, based on the range of experimental data, as
explained in Section 2.3. To enable topology changes of higher hierarchical level structures
for further structural efficiency improvement, effective properties of lattice metamaterials
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with relative densities lower than ρ′min were penalised to a small positive value (instead of
zero, to avoid singularity) by adopting a threshold function, written as:

Th
(

ρ̃′
)
= 0.5

(
1 + tanh

(
a
(

ρ̃′ − b
)))

(16)

where a and b are constants controlling the slope and the offset of the threshold function,
respectively. With the design variable filter and threshold function applied, the effective
elasticity tensor, the relative density for calculating the volume fraction objective function,
and the effective yield stress can be re-written as:

ĈE
ζ

(
ρ̃′ζ

)
= CE

ζ

(
ρ̃′ζ

)
·Th
(

ρ̃′ζ

)
(17a)

ρ̂′ζ

(
ρ̃′ζ

)
= ρ̃′ζ ·Th

(
ρ̃′ζ

)
(17b)

σ̂
Eζ
Y

(
ρ̃′ζ

)
= σ

Eζ
Y

(
ρ̃′ζ

)
·Th
(

ρ̃′ζ

)
(17c)

The effective elasticity tensor with the design variable filter and the threshold function
applied was adopted to calculate the stress tensor in the yield stress constraint. The stress
tensor can be written as:

σζ

(
ρ̃′ζ

)
= ĈE

ζ

(
ρ̃′ζ

)
BζU

(
ĈE
ζ

(
ρ̃′ζ

))
(18)

where the displacement tensor U is a function of ĈE
ζ

(
ρ̃′ζ

)
, i.e., U = K

(
ĈE
ζ

)−1
F, according

to the equilibrium equality constraint, h
(

ρ̃′ζ

)
.

The maximum value of σ
ζ
VM/σ̂

Eζ
Y in the yield stress constraint was computed by using

the built-in maximisation function in Nastran. To be solved in gradient-based methods,
the optimisation problem should be formulated in a differentiable way. A differentiable
maximisation function can be written in a p-norm form:

max
(

σ
ζ
VM/σ̂

Eζ
Y

)
= ‖σζ

VM/σ̂
Eζ
Y ‖∞ = lim

pn→∞
(

N

∑
ζ=1

∣∣∣σζ
VM/σ̂

Eζ
Y

∣∣∣pn
)

1
pn (19)

where pn is the exponent of the p-norm of σ
ζ
VM/σ̂

Eζ
Y . For σ

ζ
VM/σ̂

Eζ
Y ≥ 0,

∣∣∣σζ
VM/σ̂

Eζ
Y

∣∣∣ =
σ

ζ
VM/σ̂

Eζ
Y . Taking sufficiently large pn, the inequality constraint can be written as:

g
(

ρ̃′ζ

)
= (

N

∑
ζ=1

(σζ
VM

(
ρ̃′ζ

)
/σ̂

Eζ
Y

(
ρ̃′ζ

)
)pn)

1
pn − cs ≤ 0 (20)

Hence, the optimisation problem PA can be re-written as:

PA



min
ρ′ζ

f
(

ρ′ζ

)
= 0.5 FTU, ζ = 1, . . . , N

s.t. h
(

ρ′ζ

)
= K

(
ĈE
ζ

(
ρ̃′ζ

(
ρ′γ

)))
U− F = 0

g1

(
ρ′ζ

)
= 1

V

N

∑
ζ=1

ρ̂′ζ

(
ρ̃′ζ

(
ρ′γ

))
Vζ − v f ≤ 0

g2

(
ρ′ζ

)
= (

N

∑
ζ=1

(
σ

ζ
VM(ρ̃′ζ(ρ′γ))

σ̂
Eζ
Y (ρ̃′ζ(ρ′γ))

)pn)
1

pn − cs ≤ 0

ρ′min ≤ ρ′ζ ≤ ρ′max

(21)
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Problem PB was a structural volume fraction minimisation problem under one inequal-
ity constraint, i.e., the yield stress constraint. Problem PB was the simplest optimisation
problem used to compare the weight reduction performance of the BCC and the BCC-F
lattice structures under the yield stress constraint. PB can be written as:

PB



min
ρ′ζ

f
(

ρ′ζ

)
= 1

V

N

∑
ζ=1

ρ̂′ζ

(
ρ̃′ζ

(
ρ′γ

))
Vζ , ζ = 1, . . . , N

s.t. h
(

ρ′ζ

)
= K

(
ĈE
ζ

(
ρ̃′ζ

(
ρ′γ

)))
U− F = 0

g
(

ρ′ζ

)
=

N

∑
ζ=1

(
σ

ζ
VM(ρ̃′ζ(ρ′γ))

σ̂
Eζ
Y (ρ̃′ζ(ρ′γ))

)pn)
1

pn − cs ≤ 0

ρ′min ≤ ρ′ζ ≤ ρ′max

(22)

3.3.3. Implementation of Optimisation

An optimisation platform was developed to implement the optimisation of FGLSs. A
flowchart of this platform is demonstrated in Figure 13. A MATAB program was devel-
oped as a data hub, where FE models, boundary conditions, and optimisation problem
formulations were defined and written into input files for the FE analysis and optimisation
solver, i.e., Nastran 2018. The optimisation problems were solved in Nastran 2018 and the
optimisation output files were read and processed in the MATLAB program to generate
files for visualising the optimisation results in Tecplot 2018 (contour plots) and Rhino 6
(detailed CAD models for FGLSs).
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3.4. Optimisation Case Study

Two case studies are presented in this section to test the capability of the proposed
yield constrained lattice structural optimisation framework. The first case study was an
L-shaped beam bending case, in which the optimisation problem PA was implemented to
compare the von Mises stress of the optimised BCC-F lattice structures with and without
yield stress constraint. The second case study was a Messerschmitt-Bölkow-Blohm (MBB)
beam bending case, in which the optimisation problem PB was implemented to compare
the weight reduction capability of BCC and BCC-F lattice structures under the yield stress
constraint. The safety factor, cs, was set as one in both case studies.

As mentioned in the previous section, the FE analysis and sensitivity analysis of
optimisation problems were carried out in Nastran 2018. The sensitivity analysis was
conducted using the modified method of feasible directions (MMFD) [47,48]. MMFD is a
built-in optimisation algorithm that is capable of efficiently solving large scale optimisation
problems. In Nastran, a lattice structure was discretised into uniform sized hexahedron
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elements with the effective material properties of lattice metamaterials assigned to each
element, so that one element corresponded to one lattice cell.

3.4.1. L-Shaped Beam Case Study with Optimisation Problem PA

The dimensions and boundary conditions of the L-shaped beam case study are demon-
strated in Figure 14. The top of the vertical part of the beam was fixed and a uniformly
distributed force was applied on the top left edge of the horizontal part of the beam. The L-
shaped beam was discretised into 2560 uniform sized hexahedron elements. The maximum
volume fraction constraint in this case study was set to be v f = 0.25.
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The optimisation results of the distributions of relative density and von Mises stress of
the BCC-F L-shaped beam are shown in Figure 15. The left column and the right column
of Figure 15 show the optimisation results with and without the yield stress constraint
applied, respectively. As shown in Figure 15a,d, both cases exhibited similar relative density
distributions that form two hook-like higher hierarchical level structures. In both cases,
the relative densities were near the upper bound in the front and the back regions of the
vertical part of L-shaped beams, where the beams sustained high normal stress due to the
applied bending force, as shown in Figure 15b,e.

The volume proportion histogram of stress constraint measurement (σVM/σ̂Y) for the
two cases with and without the yield stress constraint are shown in Figure 15c,f, respectively.
The value of σVM/σ̂Y can be used to evaluate the safety of a lattice structure, i.e., the lattice
metamaterial yields when σVM/σ̂Y > 1. With the yield stress constraint applied, the value
of σVM/σ̂Y can be controlled below one, and thereby, the structural safety can be ensured.
However, without yield stress constraint, the value of σVM/σ̂Y can exceed one, indicating
yield can happen in the optimised lattice structure under the applied loading conditions.
For easier comparison, the values of optimised compliance of both cases are normalised
by the optimised compliance of the L-shaped beam without yield stress constraint. The
normalised optimised compliance (C) and the maximum value of the von Mises stress for
the yield stress constraint applied case were both slightly smaller than those of the case
without yield stress constraint. This could be due to the fact that the yield stress constraint
could guide the optimisation searching direction to optimise the stress distribution to
reduce the values of σVM/σ̂Y and could consequently contribute to circumventing some
local optima with high values of σVM/σ̂Y.
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The detailed CAD model of the optimised BCC-F L-shaped beam corresponding to
Figure 15a, as shown in Figure 16, was generated from our optimisation platform presented
in Section 3.3.3 using Rhino 6. It can be observed that inefficient lattice cells were completely
penalised to create voids.
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3.4.2. MBB Beam Case Study with Optimisation Problem PB

The dimensions and the boundary conditions of the MBB beam case study are demon-
strated in Figure 17. Here, only half of the beam model was computed with the symmetric
boundary condition applied to the symmetry plane of the beam. The half beam model was
discretised into 8 × 8 × 24 hexahedron elements with uniform element size. The optimi-
sation problem PB was implemented in this case study to compare the weight reduction
capability of lattice structures with BCC and BCC-F lattice metamaterials.
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The distributions of the relative density and the von Mises stress of the optimised
BCC and BCC-F lattice structures are compared in Figure 18. Similar bridge-like relative
density distributions can be observed in both BCC and BCC-F lattice structures. Lattice
metamaterials with high relative densities distributed in the top and bottom regions of the
beams near the symmetry surface where the beams were subject to high normal stress cause
by the bending force and the left bottom edge of the beams where boundary conditions
were applied. The regions between the top and bottom high relative density regions of the
beams were filled lattice metamaterials with moderate relative densities. The distributions
of the high relative density regions in the optimised BCC and BCC-F lattice structures
were similar. However, more low relative density lattice metamaterials were observed in
the moderate relative density region in the BCC-F lattice structure compared to the BCC
lattice structure.

The optimisation results showed that the BCC-F lattice structure achieved 0.0466 more
reduction in the optimised volume fraction, Vopt, when compared with the BCC lattice
structure, which is a 14.5% improvement. The maximum von Mises stress of the optimised
BCC-F lattice structure was only slightly higher than that of the optimised BCC lattice
structure, without exceeding their yield criteria for both cases. It indicates that adding fillets
to the joints of the BCC type of lattice metamaterials can contribute to higher structural
efficiency by increasing the yield stress of the lattice metamaterials.

The histogram plots of the volume proportion distribution of σVM/σ̂Y for the opti-
mised BCC and BCC-F lattice structures are shown in Figure 18c,f, respectively. The values
of σVM/σ̂Y for both BCC and BCC-F lattice structures were successfully controlled, i.e., they
were not exceeding one, indicating the structural safety of both lattice structures was en-
sured. It can also be observed that the proportion of high σVM/σ̂Y values, i.e., σVM/σ̂Y > 0.8,
in the optimised BCC-F lattice MBB beam was lower than that in the optimised BCC lattice
MBB beam. More specifically, there were only 6.0% of lattice metamaterials subject to
σVM/σ̂Y > 0.8 in the optimised BCC-F lattice MBB beam, while the proportion was 15.1%
for the optimised BCC lattice MBB beam. It indicates that introducing fillets to the BCC type
lattice metamaterials can improve the structural safety of the optimised lattice structure.
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4. Conclusions

A framework for optimising the structural performance of functionally graded lattice
structures (FGLSs) has been developed in this paper, with a particular focus on enhancing
and guaranteeing structural safety through three contributions: firstly, from the lattice cell
design perspective, new fillet features have been added to the joints of BCC lattice cells
to reduce stress concentration; secondly, from the lattice metamaterials characterisation
perspective, the effective material properties (effective elasticity tensors and effective yield
stresses) of BCC and filleted BCC (BCC-F) lattices have been experimentally investigated
and characterised to mitigate the discrepancies between the numerically characterised and
the actual effective material properties; thirdly, a von Mises yield stress constraint for the
optimisation of FGLSs has been developed based on the surrogate models of the effective
material properties of the BCC and BCC-F lattices, developed using the experimental results
with the assistance of numerical homogenisation simulations. The proposed framework
has been implemented by establishing an optimisation platform based on MATLAB and
Nastran and tested through an L-shaped beam bending case study and an MBB beam
bending case study.

The key findings of this paper are summarised as follows: (i) The effective yield stress
of the BCC type lattice metamaterials increases monotonically with the increase of fillet
parameter, N f (see Equation (2)), within the given range (1 to 10) of N f , and the improve-
ment in effective yield stress becomes less significant with increasing relative density of the
lattice metamaterials; (ii) The experimentally characterised effective Young’s moduli and
yield stresses of both lattices are lower than the corresponding numerical homogenisation
results and the discrepancies increase with the decrease of the relative densities of the lattice
metamaterials; (iii) Imposing the developed yield stress constraint can successfully ensure
the structural safety of the optimised beams in both case studies. Additionally, introducing
fillets to the strut joints of the BCC type lattices can effectively improve the lightweighting
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capability and structural safety of the optimised lattice structures. In the MBB beam case
study, the maximum von Mises stresses in the optimised beams are successfully controlled
below yield stresses, and the optimised BCC-F lattice beam achieved 14.5% improvement
in weight reduction compared with the optimised conventional BCC lattice beam.

To broaden the applications in the future, the framework developed in this paper can
be extended to include a wide range of bending dominated lattice metamaterials, such as
primitive cubic lattices.

Author Contributions: Conceptualization, N.L., L.Z. and X.W.; methodology: N.L., L.Z. and X.W.;
software, X.W. and L.S.; validation, L.Z.; formal analysis, L.Z.; investigation, L.Z., X.W., L.S. and
N.L.; resources, Q.H.; data curation, L.Z.; writing—original draft preparation, L.Z.; writing—review
and editing, N.L., L.Z., X.W., L.S. and Q.H.; visualization, L.Z. and X.W.; supervision, N.L.; project
administration, N.L., L.S.; funding acquisition, N.L. All authors have read and agreed to the published
version of the manuscript.

Funding: The research was performed at the AVIC Centre for Structural Design and Manufacture
at Imperial College London. This research was funded by Aviation Industry Corporation of China
(AVIC) and the China Scholarship Council.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon reasonable request
from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funder had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Ashby, M.F. The properties of foams and lattices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 15–30. [CrossRef]

[PubMed]
2. Wegst, U.G.K.; Bai, H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36. [CrossRef]
3. Huang, P.; Chang, W.S.; Ansell, M.P.; Chew, Y.M.J.; Shea, A. Density distribution profile for internodes and nodes of Phyllostachys

edulis (Moso bamboo) by computer tomography scanning. Constr. Build. Mater. 2015, 93, 197–204. [CrossRef]
4. Audibert, C.; Chaves-Jacob, J.; Linares, J.M.; Lopez, Q.A. Bio-inspired method based on bone architecture to optimize the structure

of mechanical workspieces. Mater. Des. 2018, 160, 708–717. [CrossRef]
5. Boyle, C.; Kim, I.Y. Three-dimensional micro-level computational study of Wolff’s law via trabecular bone remodeling in the

human proximal femur using design space topology optimization. J. Biomech. 2011, 44, 935–942. [CrossRef] [PubMed]
6. Alkebsi, E.A.A.; Ameddah, H.; Outtas, T.; Almutawakel, A. Design of graded lattice structures in turbine blades using topology

optimization. Int. J. Comput. Integr. Manuf. 2021, 34, 370–384. [CrossRef]
7. Gok, M.G. Creation and finite-element analysis of multi-lattice structure design in hip stem implant to reduce the stress-shielding

effect. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022, 236, 429–439. [CrossRef]
8. Plocher, J.; Panesar, A. Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced

functionally graded lattice structures. Addit. Manuf. 2020, 33, 101171. [CrossRef]
9. Uribe-Lam, E.; Treviño-Quintanilla, C.D.; Cuan-Urquizo, E.; Olvera-Silva, O. Use of additive manufacturing for the fabrication of

cellular and lattice materials: A review. Mater. Manuf. Process. 2021, 36, 257–280. [CrossRef]
10. Dong, G.; Tang, Y.; Li, D.; Zhao, Y.F. Design and optimization of solid lattice hybrid structures fabricated by additive manufactur-

ing. Addit. Manuf. 2020, 33, 101116. [CrossRef]
11. Xu, W.; Brandt, M.; Sun, S.; Elambasseril, J.; Liu, Q.; Latham, K.; Xia, K.; Qian, M. Additive manufacturing of strong and ductile

Ti-6Al-4V by selective laser melting via in situ martensite decomposition. Acta Mater. 2015, 85, 74–84. [CrossRef]
12. Yap, C.Y.; Chua, C.K.; Dong, Z.L.; Liu, Z.H.; Zhang, D.Q.; Loh, L.E.; Sing, S.L. Review of selective laser melting: Materials and

applications. Appl. Phys. Rev. 2015, 2, 041101. [CrossRef]
13. Vayre, B.; Vignat, F.; Villeneuve, F. Metallic additive manufacturing: State-of-the-art review and prospects. Mech. Ind. 2012, 13,

89–96. [CrossRef]
14. Crupi, V.; Kara, E.; Epasto, G.; Guglielmino, E.; Aykul, H. Static behavior of lattice structures produced via direct metal laser

sintering technology. Mater. Des. 2017, 135, 246–256. [CrossRef]
15. Choy, S.Y.; Sun, C.N.; Leong, K.F.; Wei, J. Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser

melting: Design, orientation and density. Addit. Manuf. 2017, 16, 213–224. [CrossRef]

http://doi.org/10.1098/rsta.2005.1678
http://www.ncbi.nlm.nih.gov/pubmed/18272451
http://doi.org/10.1038/nmat4089
http://doi.org/10.1016/j.conbuildmat.2015.05.120
http://doi.org/10.1016/j.matdes.2018.10.013
http://doi.org/10.1016/j.jbiomech.2010.11.029
http://www.ncbi.nlm.nih.gov/pubmed/21159341
http://doi.org/10.1080/0951192X.2021.1872106
http://doi.org/10.1177/14644207211046200
http://doi.org/10.1016/j.addma.2020.101171
http://doi.org/10.1080/10426914.2020.1819544
http://doi.org/10.1016/j.addma.2020.101116
http://doi.org/10.1016/j.actamat.2014.11.028
http://doi.org/10.1063/1.4935926
http://doi.org/10.1051/meca/2012003
http://doi.org/10.1016/j.matdes.2017.09.003
http://doi.org/10.1016/j.addma.2017.06.012


Materials 2022, 15, 9072 25 of 26

16. Alsalla, H.; Hao, L.; Smith, C. Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured
using the selective laser melting technique. Mater. Sci. Eng. A 2016, 669, 1–6. [CrossRef]

17. Yang, L.; Han, C.; Wu, H.; Hao, L.; Wei, Q.; Yan, C.; Shi, Y. Insights into unit cell size effect on mechanical responses and energy
absorption capability of titanium graded porous structures manufactured by laser powder bed fusion. J. Mech. Behav. Biomed.
Mater. 2020, 109, 103843. [CrossRef]

18. Teimouri, M.; Asgari, M. Mechanical performance of additively manufactured uniform and graded porous structures based on
topology-optimized unit cells. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 235, 26. [CrossRef]

19. Pham, M.S.; Liu, C.; Todd, I.; Lertthanasarn, J. Damage-tolerant architected materials inspired by crystal microstructure. Nature
2019, 565, 305–311. [CrossRef]

20. Bai, L.; Gong, C.; Chen, X.; Zheng, J.; Xin, L.; Xiong, Y.; Wu, X.; Hu, M.; Li, K.; Sun, Y. Quasi-Static compressive responses and
fatigue behaviour of Ti-6Al-4 V graded lattice structures fabricated by laser powder bed fusion. Mater. Des. 2021, 210, 110110.
[CrossRef]

21. Takezawa, A.; Zhang, X.; Kitamura, M. Optimization of an additively manufactured functionally graded lattice structure with
liquid cooling considering structural performances. Int. J. Heat Mass Transf. 2019, 143, 118564. [CrossRef]

22. Simsek, U.; Gayir, C.E.; Kiziltas, G.; Sendur, P. An integrated homogenization–based topology optimization via RBF mapping
strategies for additively manufactured FGLS and its application to bandgap structures. Int. J. Adv. Manuf. Technol. 2020, 111,
1361–1374. [CrossRef]

23. Wang, C.; Zhu, J.; Wu, M.; Hou, J.; Zhou, H.; Meng, L.; Li, C.; Zhang, W. Multi-scale design and optimization for solid-lattice
hybrid structures and their application to aerospace vehicle components. Chin. J. Aeronaut. 2021, 34, 386–398. [CrossRef]

24. Duysinx, P.; Bendsøe, M.P. Topology optimization of continuum structures with local stress constraints. Int. J. Numer. Methods
Eng. 1998, 43, 1453–1478. [CrossRef]

25. Han, Y.; Xu, B.; Wang, Q.; Liu, Y.; Duan, Z. Topology optimization of material nonlinear continuum structures under stress
constraints. Comput. Methods Appl. Mech. Eng. 2021, 378, 113731. [CrossRef]

26. da Silva, G.A.; Aage, N.; Beck, A.T.; Sigmund, O. Three-dimensional manufacturing tolerant topology optimization with hundreds
of millions of local stress constraints. Int. J. Numer. Methods Eng. 2021, 122, 548–578. [CrossRef]

27. Fernandes, R.R.; Tamijani, A.Y. Design optimization of lattice structures with stress constraints. Mater. Des. 2021, 210, 110026.
[CrossRef]

28. Yu, H.; Huang, J.; Zou, B.; Shao, W.; Liu, J. Stress-constrained shell-lattice infill structural optimisation for additive manufacturing.
Virtual Phys. Prototyp. 2020, 15, 35–48. [CrossRef]

29. Zhang, J.Z.; Sharpe, C.; Seepersad, C.C. Stress-Constrained design of functionally graded lattice structures with spline-Based
dimensionality reduction. J. Mech. Des. Trans. ASME 2020, 142, 091702. [CrossRef]

30. Hassani, B.; Hinton, E. A review of homogenization and topology optimization I—Homogenization theory for media with
periodic structure. Comput. Struct. 1998, 69, 707–717. [CrossRef]

31. Thillaithevan, D.; Bruce, P.; Santer, M. Stress-constrained optimization using graded lattice microstructures. Struct. Multidiscip.
Optim. 2021, 63, 721–740. [CrossRef]

32. Deshpande, V.S.; Fleck, N.A.; Ashby, M.F. Effective properties of octet-truss lattice material. J. Mech. Phys. Solids 2001, 49,
1747–1769. [CrossRef]

33. Producers, B.R.; Bureau, N. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. London. Ser. A. Math.
Phys. Sci. 1948, 193, 281–297. [CrossRef]

34. Cheng, L.; Bai, J.; To, A.C. Functionally graded lattice structure topology optimization for the design of additive manufactured
components with stress constraints. Comput. Methods Appl. Mech. Eng. 2019, 344, 334–359. [CrossRef]

35. Omairey, S.L.; Dunning, P.D.; Sriramula, S. Development of an ABAQUS plugin tool for periodic RVE homogenisation. Eng.
Comput. 2019, 35, 567–577. [CrossRef]

36. Deshpande, V.S.; Ashby, M.F.; Fleck, N.A. Foam topology: Bending versus stretching dominated architectures. Acta Mater. 2001,
49, 1035–1040. [CrossRef]

37. Maconachie, T.; Leary, M.; Lozanovski, B.; Zhang, X.; Qian, M.; Faruque, O.; Brandt, M. SLM lattice structures: Properties,
performance, applications and challenges. Mater. Des. 2019, 183, 108137. [CrossRef]

38. Tang, Y.; Xiong, Y.; Park, S.; Boddeti, G.N.; Rosen, D. Generation of Lattice Structures with Convolution Surface. In Proceedings
of the 16th annual International CAD Conference, Singapore, 24–26 June 2019; pp. 69–74.

39. Sing, S.L.; Yeong, W.Y.; Wiria, F.E.; Tay, B.Y. Characterization of Titanium Lattice Structures Fabricated by Selective Laser Melting
Using an Adapted Compressive Test Method. Exp. Mech. 2016, 56, 735–748. [CrossRef]

40. Campoli, G.; Borleffs, M.S.; Amin Yavari, S.; Wauthle, R.; Weinans, H.; Zadpoor, A.A. Mechanical properties of open-cell metallic
biomaterials manufactured using additive manufacturing. Mater. Des. 2013, 49, 957–965. [CrossRef]

41. ISO 13314:2011; Mechanical Testing of Metals—Ductility Testing—Compression Test for Porous and Cellular Metals. International
Organization for Standardization: Geneva, Switzerland, 2011.

42. Onal, E.; Frith, J.E.; Jurg, M.; Wu, X.; Molotnikov, A. Mechanical properties and in vitro behavior of additively manufactured and
functionally graded Ti6Al4V porous scaffolds. Metals 2018, 8, 200. [CrossRef]

43. Collet, M.; Noël, L.; Bruggi, M.; Duysinx, P. Topology optimization for microstructural design under stress constraints.
Struct. Multidiscip. Optim. 2018, 58, 2677–2695. [CrossRef]

http://doi.org/10.1016/j.msea.2016.05.075
http://doi.org/10.1016/j.jmbbm.2020.103843
http://doi.org/10.1177/0954406220947119
http://doi.org/10.1038/s41586-018-0850-3
http://doi.org/10.1016/j.matdes.2021.110110
http://doi.org/10.1016/j.ijheatmasstransfer.2019.118564
http://doi.org/10.1007/s00170-020-06207-8
http://doi.org/10.1016/j.cja.2020.08.015
http://doi.org/10.1002/(SICI)1097-0207(19981230)43:8&lt;1453::AID-NME480&gt;3.0.CO;2-2
http://doi.org/10.1016/j.cma.2021.113731
http://doi.org/10.1002/nme.6548
http://doi.org/10.1016/j.matdes.2021.110026
http://doi.org/10.1080/17452759.2019.1647488
http://doi.org/10.1115/1.4046237
http://doi.org/10.1016/S0045-7949(98)00131-X
http://doi.org/10.1007/s00158-020-02723-z
http://doi.org/10.1016/S0022-5096(01)00010-2
http://doi.org/10.1098/rspa.1948.0045
http://doi.org/10.1016/j.cma.2018.10.010
http://doi.org/10.1007/s00366-018-0616-4
http://doi.org/10.1016/S1359-6454(00)00379-7
http://doi.org/10.1016/j.matdes.2019.108137
http://doi.org/10.1007/s11340-015-0117-y
http://doi.org/10.1016/j.matdes.2013.01.071
http://doi.org/10.3390/met8040200
http://doi.org/10.1007/s00158-018-2045-9


Materials 2022, 15, 9072 26 of 26

44. Holmberg, E.; Torstenfelt, B.; Klarbring, A. Stress constrained topology optimization. Struct. Multidiscip. Optim. 2013, 48, 33–47.
[CrossRef]

45. Lee, E.; James, K.A.; Martins, J.R.R.A. Stress-constrained topology optimization with design-dependent loading. Struct. Multidiscip.
Optim. 2012, 46, 647–661. [CrossRef]

46. Sigmund, O.; Petersson, J. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards,
mesh-dependencies and local minima. Struct. Optim. 1998, 16, 68–75. [CrossRef]

47. SIEMENS. Design Sensitivity and Optimization User’s Guide; Siemens PLM: Plano, TX, USA, 2018.
48. Xu, K.; Wang, G.; Wang, L.; Yun, F.; Sun, W.; Wang, X.; Chen, X. Parameter analysis and optimization of annular jet pump based

on Kriging model. Appl. Sci. 2020, 10, 7860. [CrossRef]
49. Zhu, L.; Sun, L.; Wang, X.; Li, N. Optimisation of three-dimensional hierarchical structures with tailored lattice metamaterial

anisotropy. Mater. Des. 2021, 210, 110083. [CrossRef]

http://doi.org/10.1007/s00158-012-0880-7
http://doi.org/10.1007/s00158-012-0780-x
http://doi.org/10.1007/BF01214002
http://doi.org/10.3390/app10217860
http://doi.org/10.1016/j.matdes.2021.110083

	Introduction 
	Materials and Methods 
	Overview of Workflow and Methodologies 
	Unit Cell Design for Lattice Metamaterials 
	Design of BCC Type Lattice Unit Cells 
	Numerical Characterisation of Lattice Metamaterials and Parametric Study on the Fillet Design 

	Experimental Characterisation of BCC and BCC-F Lattice Metamaterials 
	Design and Fabrication of the BCC and BCC-F Lattice Specimens 
	Experimental Setup and Procedure of Uniaxial Compression Tests 


	Results and Discussion 
	Experimental Results and Discussion of The Compression Tests 
	Evaluation of Effective Properties 
	Development of a Yield Constrained Optimisation Framework for Functionally Graded Lattice Structural Designs 
	Development of Surrogate Models of BCC and BCC-F Lattices 
	Optimisation Problem Formulation 
	Implementation of Optimisation 

	Optimisation Case Study 
	L-Shaped Beam Case Study with Optimisation Problem PA  
	MBB Beam Case Study with Optimisation Problem PB  


	Conclusions 
	References

