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Abstract: Drawbeads are used when forming drawpieces with complex shapes to equalise the flow
resistance of a material around the perimeter of the drawpiece or to change the state of stress in certain
regions of the drawpiece. This article presents a special drawbead simulator for determining the
value of the coefficient of friction on the drawbead. The aim of this paper is the application of artificial
neural networks (ANNs) to understand the effect of the most important parameters of the friction
process (sample orientation in relation to the rolling direction of the steel sheets, surface roughness
of the counter-samples and lubrication conditions) on the coefficient of friction. The intention was
to build a database for training ANNs. The friction coefficient was determined for low-carbon steel
sheets with various drawability indices: drawing quality DQ, deep-drawing quality DDQ and extra
deep-drawing quality EDDQ. Equivalents of the sheets tested in EN standards are DC01 (DQ), DC03
(DDQ) and DC04 (EDDQ). The tests were carried out under the conditions of dry friction and the
sheet surface was lubricated with machine oil LAN46 and hydraulic oil LHL32, commonly used in
sheet metal forming. Moreover, various specimen orientations (0◦ and 90◦) in relation to the rolling
direction of the steel sheets were investigated. Moreover, a wide range of surface roughness values of
the counter-samples (Ra = 0.32 µm, 0.63 µm, 1.25 µm and 2.5 µm) were also considered. In general, the
value of the coefficient of friction increased with increasing surface roughness of the counter-samples.
In the case of LAN46 machine oil, the effectiveness of lubrication decreased with increasing mean
roughness of the counter-samples Ra = 0.32–1.25 µm. With increasing drawing quality of the sheet
metal, the effectiveness of lubrication increased, but only in the range of surface roughness of the
counter-samples in which Ra = 0.32–1.25 µm. This study investigated different transfer functions
and training algorithms to develop the best artificial neural network structure. Backpropagation
in an MLP structure was used to build the structure. In addition, the COF was calculated using a
parameter-based analytical equation. Garson partitioning weight was used to calculate the relative
importance (RI) effect on coefficient of friction. The Bayesian regularization backpropagation (BRB)—
Trainbr training algorithm, together with the radial basis normalized—Radbasn transfer function,
scored best in predicting the coefficient of friction with R2 values between 0.9318 and 0.9180 for the
training and testing datasets, respectively.

Keywords: coefficient of friction; friction; metal forming; surface roughness

1. Introduction

Sheet metal forming (SMF) includes a number of various plastic working processes
carried out mainly in cold-forming conditions and used to form semi-finished products
in the form of sheet metals. Deep drawing is carried out with devices called dies, usu-
ally mounted on hydraulic or mechanical presses. There are methods of unconventional
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forming involving shaping with a rotating tool [1–3]. During deep drawing, a flat blank
is transformed into a three-dimensional drawpiece with a non-expandable surface [4,5].
When forming non-axisymmetric parts, especially in the automotive industry, the dies
usually require drawbeads.

The drawbead used during the SMF process is used to limit the flow of material in
certain areas of the drawpiece. This control is obtained using a restraining force supplied
either by the drawbeads and/or a blankholder tool [6]. The sheet curvature changes many
times during the passage of the sheet metal through the drawbead. The sheet material is
also plastically deformed and subjected to the effects of friction. The friction conditions
existing on the drawbead determine the final quality of the product’s surface and the
required height of the drawbead to obtain the appropriate restraining force. The drawbeads
play a key role in sheet metal forming and its function becomes indispensable for the
forming of drawpieces with complicated shapes [7].

Friction in sheet-metal-forming processes is a complex function of tool- and sheet-
surface roughness, friction conditions, lubricant properties, sliding velocity and pressure
values [8–10]. In most SMF processes, the occurrence of friction is an undesirable phe-
nomenon and causes [11–14] increased forming force, irregular deformation, and a re-
duction in product quality and tool life. The main parameters influencing tribological
phenomena in SMF also include the dynamics of load, kinematics of tool movement,
physicochemical phenomena occurring on the contact surface of the tool and workpiece
and, finally, the temperature of the forming process [7,15,16]. The most effective way to
reduce the unfavourable effects of the frictional forces on the quality of the product and the
course of the forming process is the use of lubrication with the use of solid lubricants, oils
or emulsions [17]. A number of tribological tests have been developed to model the friction
phenomena in specific areas of the forming die, i.e., strip drawing test [18,19], bending
under tension tests [20,21] and drawbead simulator tests [12]. The change in the friction
conditions in the drawbead simulator test analysed in this paper was obtained by changing
the contact angle of the counter-sample [22,23], the shape and dimensions of the thrust
threshold model [24,25], the lubrication conditions (dry friction or lubrication) [22,24,26]
and the speed of sheet metal drawing [24,26,27].

In recent years, many authors have considered the effects of the blank holding force
and the drawbead on the SMF processes. Huh et al. [28] analysed the quantitative effect of
the drawbead on the SMFed part. To overcome wrinkling caused by non-uniform metal
flow, the authors proposed forming analyses with semi-open- and open-type channels.
It was found that forming analysis with semi-open-type channels was more appropriate
than that with open-type channels. Dahham et al. [29] proposed an approach to control
the final shape of the workpiece after elastic springback when using a drawbead. They
also numerically predicted the thinning failure and wrinkling when forming cylindrical
drawpieces. A half circle shape of drawbead was found to be the optimal solution with
regard to thickening and thinning of the drawpiece wall. Wu et al. [30] analysed the effect
of strain-induced surface changes on wear in strip drawing tests with drawbead geometry.
They found that the strain difference between both sides of the sheet strip had a minor effect
on wear behaviour. Bassoli et al. [31] developed an experimental approach to measure
the restraining force exerted on sheet metal by means of a versatile drawbead simulator.
The authors found that the normalised restraining force, which is the restraining force
normalised by drawbead width, increased with increasing values of the bead height-to-
radius ratio. Quenching the drawbead material reduced the effectiveness of the restraining
action due to a reduction in the coefficient of friction. Manjula et al. [32] observed that
the average contact angle increased with the depth of drawbead penetration and that the
actual coefficient of friction was a function of the contact angle. Jansson et al. [33] optimised
the draw-in for non-axisymmetric auto-body parts by using a try-out tool for a part that
was defined by CAD-data surfaces perfectly corresponding to the actual tool surfaces.
However, the method proposed implied producing tools with different drawbeads every
time when a new shape of the drawpiece has to be validated. Figueiredo et al. [26] used
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the drawbead test to analyse the evolution of the coefficient of friction with increasing
surface roughness of the die. It was concluded that the surface roughness of the die material
had a significant effect on the coefficient of friction. Duarte et al. [6] proposed a method
that was developed using the similitude approach in order to understand the effect of the
most important parameters on the drawbead restraining force. The results of the explicit
finite element method (FEM) were compared with the analytical model of Stoughton [34]
and experimental results provided by Nine [35] (the maximum discrepancy was found
to be below 11%). Nanayakkara et al. [36] developed formulae for the determination
of the coefficient of friction for partial penetration of the drawbead. Cillaurren et al. [37]
statistically analysed the sliding velocity and contact pressure ranges in sheet metal forming
processes. The contact pressure and sliding velocity corresponding to a drawbead region
were numerically analysed though FE-based numerical modelling. Duarte and Oliveira [38]
analysed the influence of sheet thickness on the drawbead restraining force in SMF. It was
found that the drawbead restraining force increased linearly with respect to sheet thickness.
Billade and Dahake [39] designed drawbeads in such a way that they produced a part with a
thickness of less than 20%, i.e., the desired value. It was concluded that circular drawbeads
were preferred because thinning was less significant with the circular bead compared to
the step bead. Samuel [22] investigated the behaviour of metal flow passing through two
shapes of drawbeads, i.e., single square and single circular female. The results of the
FEM were in good agreement with the experimental ones. Chen et al. [40] presented an
experimental study focused on the drawbead restraining force and friction characteristics
of dual-phase steels. The influence of surface roughness, material properties, sliding
velocity, temperature, and lubricant and absence of it on friction behaviour was studied.
It was found that lubrication decreased the COF at room temperature and increased the
friction coefficient at elevated temperatures. Furthermore, the drawbead restraining force
was increased with the decrease in drawbead radius. Weinmann et al. [41] developed a
multiple-action hydraulic drawbead simulator for the purpose of studying the effectiveness
of feedback controls in SMF. It was concluded that a pre-specified trajectory of drawbead
restraining force can be followed in spite of changing friction conditions in the drawbead.
The experimental tests also indicated the effectiveness of feedback control in reducing the
sensitivity of the system to process parameter variations and external disturbances.

Recently, various techniques of artificial intelligence (IE), i.e., genetic algorithms, fuzzy
systems, artificial neural networks, and cognitive systems, have been used in the metal
forming industry. Machine learning (ML) has been applied using various artificial neural
network techniques in a number of applications in tribology [42,43]. Two main methods in
supervised machine learning are regression and classification. In the field of tribology, many
tests on materials are typically performed, which define a set of tribological properties [43].
Machine learning systems easily identify trends in data and exhibit the ability to learn.
It allows them make predictions and improve the algorithms on their own. ML systems
are good at handling data that are multi-variety and multi-dimensional. ML algorithms
requires massive datasets to train on, which is the main disadvantage. Machine learning is
autonomous but highly susceptible to errors in processing small datasets [44]. They also
need massive computational resources to function in the case of big data analyses. Among
the applications of machine learning models, the most recent are the ensemble methods [45],
kernel methods [46], linear methods [47] and the artificial neural network methodology [48].
In the literature, machine learning algorithms have already been applied to a variety of
manufacturing issues, such as estimating tool wear in milling operations [49], predicting
tool life in micro-milling [50], the estimation of energy consumption in metal-forming
processes [51] and analysis of bending processes [52].

The applications of AI that have seen the most progress during the past two decades
are diverse, including deep learning in sheet metal bending [53], brake performance [54,55],
wheel and rail wear [56], energy estimation consumption in metal forming [51], buckling
instability prediction [57], extra deep drawing (EDD) steel surface roughness [58], and tool
wear [59], just a few areas where tribology research has been steadily growing. ANNs
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are soft computing tools that can build linear and non-linear models [60]. The network’s
structure and operation resemble the brain and comprise linked neurons that process
information in parallel. ANN architecture contains input, output and hidden layers. Most
analyses require one hidden layer [61]. After training, ANNs may predict output signals
based on input and output signals.

Lee et al. [57] used an artificial intelligent self-learning algorithm to predict the buck-
ling instability for the reliable design of sheet metal panels. Liu et al. [53] developed a novel
theory-guided regularization method for training deep neural networks. The developed
method was used to investigation of the springback phenomenon in sheet metal bending
processes. Najm and Paniti [2] used a machine learning algorithm to investigate the para-
metric effects of single point incremental forming on the pillow effect and wall profile of
AlMn1Mg1 aluminium alloy sheets. Shamsuzzohaa et al. [62] used machine learning and
deep learning algorithms to detect the minimum gaps between components produced after
the punching operation of metal sheet. The outcome of this study contributed to eliminating
the production bottleneck. In the context of triboinformatics or tribology 4.0 [63], advanced
data handling, analysis and learning methods can be developed based upon this sound and
data-rich foundation [64]. There has great potential to automatize and optimize the data
acquisition and processing, which is presently still very manual in the field of tribology.

The aim of this paper is application of ANNs to understand the effect of the various
parameters, i.e., sheet strip orientation, surface roughness of tool (counter-samples), lubri-
cation conditions and mechanical parameters of the workpiece material on the coefficient
of friction (COF). Due to the many parameters that influence friction and determine the
relationship between input and output parameters (COF), we decided to apply artificial
neural networks (ANNs). To the best of the authors knowledge, an analysis of this kind
has not previously been undertaken with regard to friction in the drawbead region of the
stamping tool. The problem of separating the frictional resistance from the total resistance
of the sheet passing through the drawbead was solved using a specially designed and
manufactured drawbead simulator mounted on a universal tensile testing machine. Ex-
periments were conducted using a special drawbead simulator for determining the value
of the coefficient of friction on the drawbead. It was found that COF increased with the
mean surface roughness of the counter-samples for dry and lubricated friction conditions.
The multilayer perceptron was trained using experimental data with an average R2 value
of 0.9293 for both the trained and tested datasets. The analysis of the relative significance
showed that sample orientation in relation to the rolling direction of the steel sheets and
strengthening coefficient significantly affect COF. The strain hardening exponent has only
a slight influence on the COF.

2. Material and Methods
2.1. Test Material

Three types of deep-drawing low-carbon steel sheets were used in the research: 1 mm
thick drawing quality (DQ) steel sheet, 0.8 mm thick deep drawing quality (DDQ) steel
sheet and 1 mm thick extra deep drawing quality (EDDQ) steel sheet. The sheets were
fabricated according to the national Polish standard PN 87/H–92143. However, according
to the EN 10130:2009 standard the grade DQ corresponds to the DC01 steel sheet, grade
DDQ corresponds to the DC03 steel sheet, and grade EDDQ corresponds to the DC04 steel
sheet. Approximate equivalents of the DQ, DDQ and EDDQ steel sheets in AISI standards
are A366, A619, A620, respectively.

The sheets tested are commonly used in the automotive industry for the fabrication
of drawpieces with complex shapes. The basic mechanical parameters of the sheet metals
(Table 1) were determined in a uniaxial tensile test according to ISO 6892-1 [65] on specimens
cut transverse to the rolling direction (90◦) and along the rolling direction (0◦). The values of
the work hardening parameters (strengthening coefficient K and strain hardening exponent
n) were determined based on an approximation of the true stress–true strain relation



Materials 2022, 15, 9022 5 of 25

(Figure 1) by the power law equation σp = K·εn, where σp is the true stress and ε is
plastic strain.

Table 1. Basic mechanical parameters of the sheets tested.

Material Orientation Yield Stress
Rp0.2, MPa

Ultimate
Tensile Stress

Rm, MPa

Strengthening
Coefficient K,

MPa

Strain
Hardening
Exponent n

DQ
0◦ 193 351 554 0.166

90◦ 193 353 563 0.174

DDQ
0◦ 196 336 557 0.192

90◦ 198 311 526 0.177

EDDQ
0◦ 151 282 494 0.221

90◦ 153 287 487 0.211
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Figure 1. The true stress–true strain curves of the test sheets: (a) DQ, (b) DDQ and (c) EDDQ. Figure 1. The true stress–true strain curves of the test sheets: (a) DQ, (b) DDQ and (c) EDDQ.

The measurement of the surface roughness parameters of the test sheets was carried
out using a T8000RC profilometer in accordance with the requirements of the ISO 25178
standard [66]. The main standard 3D parameters and surface topographies determined
by this measurement are listed in Figure 2. Sheet surfaces were sampled with an area of
3 mm × 3 mm.



Materials 2022, 15, 9022 6 of 25

Materials 2022, 15, x FOR PEER REVIEW 6 of 26 
 

 

The measurement of the surface roughness parameters of the test sheets was carried 
out using a T8000RC profilometer in accordance with the requirements of the ISO 25,178 
standard [66]. The main standard 3D parameters and surface topographies determined 
by this measurement are listed in Figure 2. Sheet surfaces were sampled with an area of 3 
mm × 3 mm. 

 
Figure 2. The surface topographies of the test sheets: (a) DQ, (b) DDQ and (c) EDDQ. 

2.2. Experimental Setup 
The drawbead test permitted the simulation of the bending and unbending in SMF 

and the measurement of the COF during the sliding of the sheet against a die. During the 
passage of the sheet metals through the drawbead, the sheet is bent and straightened 
three times (Figure 3). The idea behind the design of the proposed drawbead simulator 
(Figure 4) is the possibility of separating the frictional resistance of the sheet from the 
total resistance of the passage of the sheet metal through the drawbead and thus deter-
mining the value of the COF on the basis of the concept proposed by Nine [35]. 

The tester consists of a body to which three working counter-samples and one guide 
counter-sample made of X165CrV12 cold-work tool steel were attached. The tester was 
mounted on the lower grip of a uniaxial tensile testing machine. The rotational motion of 
the working counter-samples was blocked by fixing pins. The value of the drawbead 
height was set by holding notes. The diameter of the counter-samples was 20 mm. During 
the tests, the pulling force and clamping force were measured using strain gauges. 
Measurement signals were transmitted to the 8-channel HBM amplifier, and then to a 

Figure 2. The surface topographies of the test sheets: (a) DQ, (b) DDQ and (c) EDDQ.

2.2. Experimental Setup

The drawbead test permitted the simulation of the bending and unbending in SMF
and the measurement of the COF during the sliding of the sheet against a die. During the
passage of the sheet metals through the drawbead, the sheet is bent and straightened three
times (Figure 3). The idea behind the design of the proposed drawbead simulator (Figure 4)
is the possibility of separating the frictional resistance of the sheet from the total resistance
of the passage of the sheet metal through the drawbead and thus determining the value of
the COF on the basis of the concept proposed by Nine [35].
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Figure 4. The drawbead simulator.

The tester consists of a body to which three working counter-samples and one guide
counter-sample made of X165CrV12 cold-work tool steel were attached. The tester was
mounted on the lower grip of a uniaxial tensile testing machine. The rotational motion of
the working counter-samples was blocked by fixing pins. The value of the drawbead height
was set by holding notes. The diameter of the counter-samples was 20 mm. During the tests,
the pulling force and clamping force were measured using strain gauges. Measurement
signals were transmitted to the 8-channel HBM amplifier, and then to a computer with
QuantumX Assistant v1.1 R1 software, enabling cooperation with the amplifier and the
recording of the clamping and pulling forces.

The friction test consisted of pulling the sheet strips in conditions involving either
fixed or rotatable cylindrical counter-samples. During friction with the participation of
fixed counter-samples, changes were registered in the pulling force Fbf and the clamping
force Fcf. Similarly, under frictional conditions with freely movable rollers, the pulling force
Fb and the clamping force Fc were measured (Figure 5). The friction test realised in the
presence of fixed counter-samples represents the total resistance of the sheet metal passing
through the drawbead.
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The value of the COF was determined according to the relationship [35]:

µ =
sinα
2α

·Fbf − Fb
Fcf

(1)

where: Fb is the pulling force at the rotatable rollers, Fcf is clamping force with fixed rollers,
Fbf is pulling force with fixed rollers, and 2α = π/2 confirms a full penetration of the middle
counter-sample.

Samples in the form of strips of sheet 200 mm long and 20 mm wide were used as the
test material. They were cut lengthways and transversely to the rolling direction of the
sheet. One end of the sample was mounted on an upper grip of a uniaxial tensile testing
machine. The pulling speed of the sample was 1 mm/s. Four sets of counter-samples were
used with a surface roughness Ra equal to 0.32, 0.63, 1.25 and 2.5 µm in such a way as to
ensure a wide range of variability in the Ra roughness parameter. Before starting the tests,
the samples were cleaned with acetone. The tests were carried out under the conditions of
dry friction and lubrication of the sheet surface with machine oil LAN46 and hydraulic oil
LHL32. The basic physical properties of the oils based on the material cards provided by
the producers are presented in Table 2.

Table 2. The basic physical properties of oils.

Oil Kinematic Viscosity, mm2/s Viscosity Index Density kg/m3

LAN46 43.9 94 875

LHL32 32 95 875

2.3. Artificial Neural Networks

Rumelhart, McClelland and Hinton introduced the multilayer perceptron (MLP) no-
tion in 1986, after Werbos’ 1974 proposal [67]. Network topology is the layout of network
elements and their inputs, outputs and connections. The structure of an ANN can be
described by the number of input and output layers, transfer functions between these levels
and neurons in each layer [68]. A hidden layer separates the ANN’s input and output layers.
Each network layer has many neurons. The number of input variables and output neurons
is the same. Based on the transfer or activation function, these layers’ neurons transfer
weight backward and forward [69]. Backpropagation learning to model an ANN with a
multilayer perceptron (MLP) structure was used in this study. The multilayer perceptron is
defined in Equation (2):

y = f (net) = f

(
n

∑
i=1

wix + b

)
(2)

where y is the output and x is the input, wi are the weights and b is the bias [70].
COF values were predicted using MLP structures in MATLAB R2022a [71]. Figure 6

shows that the network structure has one hidden layer with 10 neurons linking to the
input and output layers for this investigation. Target datasets utilizing real measured
data from three material investigations were adopted. The whole data was accumulated
from three types of deep-drawing steel sheets (DQ, DDQ, and EDDQ). Eight neurons were
inputs: Ra of the counter-samples (µm), friction conditions: dry and oil, kinematic viscosity
m2·s−1, sample orientation to the rolling direction (◦), yield stress Rp0.2 (MPa), ultimate
tensile stress Rm (MPa), strengthening coefficient (MPa), strain hardening exponent, and
COF values were outputs. It is worth to mention that two oils were chosen: machine oil
LAN46 and hydraulic oil LHL32. This study employed 1000 epochs, 0.01 and 0.0001 as
training parameters.
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In order to find the optimal model and structure, different training and transfer
functions, listed in Tables 3 and 4, were trained. The main training parameters were
a learning rate of 0.01, a performance target of 0.001 and 1000 epochs. While a neural
network is functional and has many potential uses, it has certain limitations. Under or
overfitting is one problems that can arise. Overfitting occurs when a network produces a
more significant error for a new dataset than for the one it was trained on. Underfitting
occurs when the model is too simplistic for training on the chosen dataset. A trained
network can remember the acquired knowledge but has not been taught to generalize to
unfit data. Figure 7 displays numerous instances of regression data fitting. Since increasing
the size of an ensemble set does not reliably improve the accuracy but can decrease the
generalizability [72], boosting algorithms are typically accompanied by regularization
approaches to prevent overfitting [73]. Using an extensive network to provide a good fit,
training multiple networks to ensure good generalization, averaging the outputs of the
trained numerous neural networks, randomly separating data and tuning the complexity
of a network through regularization [74] are just a few examples of how to improve and
handle network generalization. In the MLP network created for the purpose of prediction
in this study, generalization was improved by the so-called early stopping method. Early
stopping to improve generalization was used in this study’s MLP network for prediction.
All supervised network generation functions, including backpropagation networks, use
early stopping by default [2]. If data overfitting restarts during network training, validation
subset errors will increase. If the validation error rises over the minimum at a significantly
different iteration number and exceeds the test subset error, the training stops and network
weights and biases return to the minimal validation error [71].
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Table 3. Details of training functions used in multilayer perceptron.

Algorithm Acronym Long Term

Trainlm LM Levenberg–Marquardt

Trainbfg BFG BFGS Quasi-Newton

Trainrp RP Resilient Backpropagation

Trainscg SCG Scaled Conjugate Gradient

Traincgb CGB Conjugate Gradient with Powell/Beale Restarts

Traincgf CGF Fletcher–Powell Conjugate Gradient

Traincgp CGP Polak–Ribiére Conjugate Gradient

Trainoss OSS One Step Secant

Traingdx GDX Variable Learning Rate Backpropagation

Trainbr BRB Bayesian Regularization Backpropagation

Table 4. Details of transfer functions used in multilayer perceptron.

Acronym Long Term Equations

Elliotsig Elliot sigmoid f(x) = elliotsig(x) = (x)/1+|x|

Hardlim Positive hard limit f(x) = hardlim(x) = 1, if x ≥ 0;
=0, otherwise.

Hardlims Symmetric hard limit f(x) = hardlim(x) = 1, if x ≥ 0;
=−1, otherwise.

Logsig Logarithmic sigmoid f(x) = logsig(x) = 1/(1 + exp(−x))

Netinv Inverse f(x) = netinv (x) = 1/x

Poslin Positive linear f(x) = poslin(x) = x, if x≥0;
=0, if x ≤ 0.

Purelin Linear f(x) = purelin(x) = x

Radbas Radial basis f(x) = radbas(x) = exp (−x2)

Radbasn Radial basis normalized f(x) = radbasn(x) = exp (−x2)/sum(exp(−x2))

Satlin Positive saturating linear
f(x) = satlin(x) = 0, if x ≤ 0;
=x, if 0 ≤ x ≤ 1;
=1, if 1 ≤ x.

Satlins Symmetric saturating linear
f(x) = satlins(x) = −1, if x ≤ −1;
=x, if −1 ≤ x ≤ 1;
=1, if 1 ≤ x.

Softmax Soft max f(x) = softmax(x) = exp(x)/sum(exp(x))

Tansig Symmetric sigmoid f(x) = tansig(x) = 2/(1+exp (−2∗x)) − 1

Tribas Triangular basis f(x) = tribas(x) = 1 − abs(x), if −1 ≤ x ≤ 1;
=0, otherwise.

Where x is the weighted sum of w, i, b, and y of Equation (2).

In neural networks, dataset training uses optimization to tune and find network
weights for a good prediction map. Optimization algorithms are called training functions.
Training the network to identify a given input and map it to an output is the training
function. Performance goals, trained datasets, weights and biases affect the training
function. Selecting a suitable training function for the network is one challenge in making
good, rapid and accurate predictions. The transfer function computes each layer’s output
by adopting cumulative weights entering the layer. Transfer functions depend on network
structure and are difficult to set. This study used fifteen transfer functions individually to
increase the prediction accuracy. The output layer’s linear (Purelin) transfer function was



Materials 2022, 15, 9022 11 of 25

chosen in all circumstances. Figure 8 depicts the generated model’s training flowchart as
well as the testing procedure utilizing test data. During the running process, two major
conditions create decisions. The first loop preserves the model and all variables in the first
condition with low conditional limits. After the first condition is met, the second loop is
initiated and terminated by a stricter condition. The second loop starts the training and
compares them to the variables saved from the prior training and repeats this process until
1000 iterations are completed. The third loop increases the conditional limit in case of not
fulfilling the condition requirements in the second loop. To save the results, shared step
loops are provided.
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Collected data must be divided into training, validation and testing sets. The dataset’s
training and testing subsets affect prediction accuracy and training performance [75].
Benchmark performance suffers from inappropriate subsets. Shahin [76] said the dataset’s
splitting ratio has no apparent relationship, whereas Zhang et al. [75] reported it as one
of the primary issues. However, there is no standard setting for the mentioned issue.
Most researchers separate the datasets into lines with varying subgroup ratios based on
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their surveys. 90% vs. 10%, 80% vs. 20%, or 70% vs. 30% are the most common training
and testing ratios. In this paper’s training run, the optimal prediction was achieved by
dividing the actual data (72 samples) into training and testing datasets at 80% and 20%,
respectively. The dataset consisted of 72 rows from experimental components used for
training and testing.

3. Results and Discussion
3.1. Experimental Results

In general, the value of the coefficient of friction increased with increasing surface
roughness of the counter-samples (Figure 9). It is clear that in dry friction conditions
and for the surface roughness of counter-samples Ra = 0.32 µm (Figure 9a), samples
cut perpendicularly to the rolling direction of the sheet showed a greater value for the
coefficient of friction than samples cut along the sheet rolling direction. With a further
increase in the roughness of the counter-samples, the relationship was reversed. This is due
to the large contact surface that occurs when friction is made between surfaces with low
roughness. Under these conditions, there is a strong mechanical interaction of the surface
asperities, which in the case of sheet metal are displaced as a result of the texture created in
the cold-rolling process of the sheet metal. A similar situation occurred during friction tests
under lubrication with LAN46 machine oil (Figure 9b) and LHL32 hydraulic oil (Figure 9c).
The influence of roughness on the effectiveness of lubrication is most important during
the friction of bodies with low roughness. Then, it is possible to form valleys creating oil
pockets on the friction face in which the hydrostatic pressure of the oil closed in the valleys
creates a so-called “lubricant cushion” limiting the metallic contact of the friction faces. As
the roughness of the counter-samples increases, the area of contact surface decreases, but a
most intensive interaction occurs between the tool roughness asperities and the relatively
soft material of the sample.
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conditions and lubrication with (b) LAN46 machine oil and (c) LHL32 hydraulic oil.

To investigate the effect of lubricant on the friction coefficient, let us enter the parameter
effectiveness of lubrication (EOL) determined according to the formula:

EOL =
COF (dry friction)− COF(lubricated conditions)

COF (dry friction)
·100% (3)

In the case of LAN46 machine oil (Figure 10a), the effectiveness of lubrication de-
creased in the range of roughness of counter-samples between Ra = 0.32–1.25 µm. It was
for the roughness of counter-samples of 2.5 mm that the lubricant decreased the friction
coefficient to the greatest extent (14.3–19.1%). The increase in EOL value can be explained
by larger spaces that lie between surface asperities of the counter-samples with the param-
eter Ra = 2.5 µm. In terms of the roughness of the Ra = 0.32–1.25 µm counter-samples,
the dominant friction mechanism was mechanical surface flattening and roughening. The
influence of the lubricant on COF was less significant under these conditions. The change
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in viscosity of the lubricant used, i.e., LHL32, significantly changed the influence of the
roughness of the counter-samples on the value of the EOL parameter (Figure 10b).

With increasing drawing quality of the sheet metal, the value of the EOL decreased
but only in the range of surface roughness of counter-samples between Ra = 0.32–1.25 µm.
In the case of the counter-samples with surface roughness Ra = 2.5 µm, the situation
was reversed. Similarly, to lubrication with LAN46 machine oil, the highest lubrication
efficiency was observed for counter-samples with a surface roughness Ra = 2.5 µm but only
for DDQ and EDDQ materials. Under these conditions, the efficiency of lowering of the
friction coefficient by LHL32 hydraulic lubricant (Figure 10b) was generally lower than that
of the LAN46 hydraulic oil (Figure 10a). Interpretation of the differences in the efficiency of
lubricating oils for the DQ steel sheet was not unambiguous due to many phenomena and
parameters that synergistically affect the value of the COF. Therefore, the next section of
this article presents the use of artificial neural networks to analyse the experimental results
of the DBS test.
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3.2. Results of ANN Modelling

Using the right validation metric to evaluate a predictive model is crucial. This study
compared and validated several structures, training and transferring methods for mea-
suring the agreement between actual and predicted values. Choosing the right validation
metric is vital and challenging to evaluate outcomes and reduce errors. All structures
and models trained and tested in this work were compared using good metrics to as-
sess test performance. Training and test errors must be distinguished. Test errors are
determined using a stored entire dataset unknown to the model, while training errors are
derived using the same data. The training dataset R2 value reveals variation within the
trained samples through the model, while the testing dataset R2 value indicates the model’s
predictive quality.

MLP’s best outcomes from using several models with varied training and transfer
functions have been summarized, with more thorough evaluations shown in Appendix A
(Table A1). When material B, SB and SSB were employed, Table 5 shows the best values
of numerous validation metrics used to evaluate MLP training and transfer functions
performance. Table 5 contains the following statistical parameters: ME—mean error,
MAE—mean absolute error, MSE—mean square error, RMSE—root mean square error,
MRE—mean relative error, SD—standard deviation, SEM—standard error mean. Models
and structures are assessed using R2 and adj. R2.

Table 5. Validation metrics of the best multilayer perceptron (MLP) models for predicting COF.

Training Function Bayesian Regularization Backpropagation (BRB)—Trainbr

Transfer Function Radial Basis Normalized—Radbasn

Validation Metric Training Testing Average (Training
and Testing)

ME 0.0005 −0.0014 0.0001
MAE 0.0081 0.0086 0.0082
MSE 0.0001 0.0001 0.0001

RMSE 0.0108 0.0118 0.0110
MRE 0.0404 0.0415 0.0406
SD 0.0109 0.0122 0.0111

SEM 0.0014 0.0033 0.0013
R2 0.9318 0.9180 0.9293

adj. R2 0.9219 0.9160 0.9195

When the R2 of the testing was compared to all algorithms, it was discovered that the
constructed MLP model performed the best in terms of COF prediction. Using Bayesian
regularization backpropagation (BRB)—Trainbr as a training function and radial basis
normalized—Radbasn as a transfer function, the greatest performance in predicting the
COF was obtained. See Table A1 in the Appendix A for a summary of the results of all
training and transfer functions. Figures 11 and 12 depict R2 and MSE, respectively for each
of the transfer functions predicted by the ANN using the Trainbr training function.

Instead of constructing, executing and evaluating a new ANN model each time, ana-
lytical equations were extracted from the best model to predict COF easily, practically and
rapidly. Thus, the Radbasn transfer function is represented by Equation (4). Equation (5)
provides a prediction of COF before the weights and biases were included. As a result,
Equation (6) demands consistent weights and biases from the best-performing ANN net-
work to predict COF analytically. Equation (7) calculates the COF directly and only by
adding the values of the process parameters. The retrieved ANN network weights and
biases served as one set of input weights (IW) and layer weights (LW). The IW is between
the inputs and the hidden layer, the LW is between the hidden and output layers, and b1
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and b2 are each layer’s biases. The biases b1, b2, IW and LW of the best-trained ANN model
are shown in Table A2 in Appendix A.

f (x) = radbasn(x) =
exp(−x2)

∑
(

exp(−x2)
) (4)

COFpredict
i = b2 + LW × so f tmax(b1 + IW × x) (5)

COFpredict
i = b2 + LW × exp(−(b1+IW×x))2

∑
(

exp(−(b1+IW×x))2
) (6)

COFpredict
i

=
b2
[0.154802]

LW
+
[

0.014177 0.004673 −0.000515 0.003907 0.000085 0.018840 −0.035940 −0.002575 0.145881 0.006270
]

× exp



−



b1

−0.000013
0.000054
−0.000036
0.000032
−0.000016
−0.000073
0.000031
0.000013
0.000001
−0.000022



+

IW

0.000302 0.000674 0.000158 −0.000338 0.000167 0.000563 −0.060694 0.000182 −0.044608 −0.000054
0.000664 −0.056316 0.000150 −0.004919 −0.001404 −0.013884 0.058730 0.003415 −0.040035 −0.004141
0.000043 0.000430 −0.000018 0.000113 −0.000017 −0.000797 −0.001589 0.000004 0.000055 0.000174
0.002863 0.005001 −0.001888 0.005465 −0.000267 −0.032309 −0.004534 0.000139 0.007430 0.006514
−0.002295 −0.003263 0.008779 0.000295 −0.002455 0.009952 −0.014893 0.002099 0.008765 0.012974
−0.004105 −0.006876 0.008167 0.004110 −0.004589 0.007066 0.003317 0.003924 0.010053 0.002716
−0.006618 0.013543 0.002309 0.010179 −0.007722 0.003993 −0.004841 0.007039 −0.001046 0.004050
−0.000002 0.000031 −0.000019 0.000011 −0.000003 −0.000026 0.000006 0.000003 −0.000037 −0.000017


×

x

Ra o f counter samples (µm)
f riction conditions : dry and oil

kinematic viscosity m2/s−1

strengthening coe f f icient (Mpa)
strain hardening exponent

sample orientation (◦)
yield stress Rp0.2 (Mpa)

ultimate tensile stress Rm (Mpa)







2

∑
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exp
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−
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0.000001
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

+

IW

0.000302 0.000674 0.000158 −0.000338 0.000167 0.000563 −0.060694 0.000182 −0.044608 −0.000054
0.000664 −0.056316 0.000150 −0.004919 −0.001404 −0.013884 0.058730 0.003415 −0.040035 −0.004141
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sample orientation (◦)
yield stress Rp0.2 (Mpa)

ultimate tensile stress Rm (Mpa)







2

(7)

Feature, variable or relative importance is the examination of the input variables on
the outputs. However, this analysis shows how each feature’s value affects the model’s
prediction averages, indicating its relative importance. Substituting the input variables
with high relative importance (RI) values affects results more than variables with lower RI
values [68,77,78]. Garson [79], most squares [80], and connection weights [81] calculate the
feature importance. Various research has calculated and assessed variable impacts using
feature importance [78,82–88]. Figure 13 shows the relative importance and weight analysis
of several important factors that affect COF. There are different ways to determine how the
input variables affect the output, which is the COF, based on weights and biases. However,
the Garson method was adopted in this study. The calculation shows that changes in
the sample orientation (◦) to the roller direction and strengthening coefficient K (MPa)
significantly affect COF. Ultimate tensile stress Rm (MPa) and yield stress Rp0.2 (MPa) came
in second concerning COF. Friction conditions and strain hardening exponent had a minor
effect. It is possible that the relative importance regarding the friction conditions is not
reasonable because the data has been categorically encoded and binarized using one hot
encoding. All the actual and predicted COF values for the training and testing datasets are
listed in the Appendix A (Table A3).
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ANN network to predict COF analytically. Equation (7) calculates the COF directly and 
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best-trained ANN model are shown in Table A2 in Appendix A. 
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Figure 12. Evaluation of different transfer functions using Bayesian regularization backpropagation
(BRB)—Trainbr training function by MSE values.
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4. Conclusions

This article presented the results of ANN analysis of the friction behaviour of drawing
quality steel sheets in drawbead profiles during sheet metal forming. The experimental
results were used to train artificial neural networks. The following conclusions can be
drawn from the results presented in this article:

• A trend of increasing the COF with increasing the mean surface roughness of the
counter-samples was observed for all friction conditions analysed.

• As the surface roughness of the counter-samples increased, the area of contact surface
decreased; however, the resulting coefficient of friction is a result of the coexistence of
the following mechanisms: surface flattening and roughening, and lubrication.

• Favourable lubrication conditions occur with low roughness of a soft friction pair
(workpiece) compared to the surface properties of the counter-samples.

• The MLP algorithm successfully predicted the coefficient of friction with R2 values
from 0.9318 for the training dataset and 0.9180 for the testing dataset, with an average
R2 value of 0.9293 for both the training and testing datasets.

• When it came to predict the coefficient of friction accurately, the Bayesian regulariza-
tion backpropagation (BRB)—Trainbr training method fared the best. The radial basis
normalized—Radbasn transfer function provided the best prediction of the COF.

• The relative significance (RI) methods given that sample orientation to the sheet rolling
direction and strengthening coefficient significantly affected COF. The ultimate tensile
and yield stress are tied in second place in terms of influences on COF. There is only a
slight influence from the friction conditions and the strain hardening exponent.
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Appendix A

Table A1. The validation metrics of all training and transfer functions of the multilayer perceptron
(MLP) models for predicting COF.

Training Function Levenberg–Marquardt (LM)—Trainlm

Transfer Function Elliotsig Hardlim Hardlims Logsig Netinv Poslin Purelin Radbas Radbasn Satlin Satlins Softmax Tansig Tribas

Training
R2 0.8730 0.6622 0.7774 0.3718 0.9315 0.8189 0.8414 0.2051 0.8735 0.8779 0.8775 −0.0008 −0.0182 0.0319

MSE 0.0002 0.0006 0.0004 0.0010 0.0001 0.0003 0.0002 0.0014 0.0002 0.0002 0.0002 0.0016 0.0017 0.0016

Testing
R2 0.7875 0.4633 0.6164 0.2741 0.8913 0.7777 0.8049 0.0418 0.7690 0.8459 0.8527 −0.0044 −0.1474 0.0301

MSE 0.0004 0.0007 0.0005 0.0016 0.0002 0.0005 0.0006 0.0015 0.0004 0.0004 0.0002 0.0021 0.0022 0.0019

Training function BFGS Quasi-Newton (BFG)—Trainbfg

Training
R2 0.5293 0.6093 0.6994 −0.0006 0.8169 −0.0045 0.0896 0.0000 −0.0047 −0.0007 −0.0002 0.0103 −0.0043 −0.8322

MSE 0.0008 0.0007 0.0006 0.0019 0.0003 0.0018 0.0014 0.0018 0.0019 0.0017 0.0018 0.0014 0.0017 0.0032

Testing
R2 0.3481 0.5398 0.5154 −0.0518 0.6747 −0.0326 −0.0501 −0.0621 −0.0078 −0.1610 −0.1712 −0.0543 −0.0266 −0.9412

MSE 0.0009 0.0006 0.0004 0.0009 0.0004 0.0014 0.0026 0.0014 0.0010 0.0017 0.0016 0.0032 0.0021 0.0031

Training function Resilient Backpropagation (RP)—Trainrp

Training
R2 0.8856 0.5644 0.7729 0.8950 0.8701 −0.2627 0.5016 −0.0036 −0.0307 −0.0206 −0.0076 −0.5355 0.0000 −0.6498

MSE 0.0002 0.0007 0.0004 0.0002 0.0002 0.0022 0.0009 0.0016 0.0017 0.0015 0.0017 0.0029 0.0018 0.0031

Testing
R2 0.7544 0.4247 0.7373 0.8830 0.6753 −0.3073 0.4009 −0.0046 −0.2294 −0.1607 −0.0947 −0.5593 −0.0197 −0.7014

MSE 0.0003 0.0010 0.0006 0.0002 0.0008 0.0019 0.0007 0.0022 0.0022 0.0032 0.0019 0.0013 0.0012 0.0017

Training function Scaled Conjugate Gradient (SCG)—Trainscg

Training
R2 0.8965 0.7040 0.7380 0.9293 0.7203 −2.8003 0.6393 0.0589 0.4909 −0.0007 0.0412 −0.0009 0.5936 −4.9884

MSE 0.0002 0.0005 0.0005 0.0001 0.0005 0.0062 0.0006 0.0016 0.0007 0.0016 0.0017 0.0018 0.0007 0.0100

Testing
R2 0.7557 0.5815 0.5412 0.9235 0.6609 −2.9296 0.6249 −0.0775 0.4900 −0.0302 −0.1379 −0.0308 0.5858 −5.0740

MSE 0.0006 0.0006 0.0008 0.0002 0.0006 0.0077 0.0006 0.0019 0.0014 0.0021 0.0018 0.0013 0.0006 0.0101

Training function Conjugate Gradient with Powell/Beale Restarts (CGB)—Traincgb

Training
R2 0.9111 0.6653 0.7823 0.8965 −0.0214 0.5384 0.6662 −0.0001 −0.0059 0.7371 −0.0005 −0.0261 0.6954 0.0000

MSE 0.0002 0.0006 0.0004 0.0002 0.0018 0.0008 0.0006 0.0016 0.0015 0.0004 0.0018 0.0019 0.0005 0.0017

Testing
R2 0.8293 0.5424 0.6019 0.7815 −0.0428 0.4136 0.4838 −0.0602 −0.0497 0.5875 −0.0083 −0.0858 0.6272 −0.0289

MSE 0.0003 0.0006 0.0006 0.0003 0.0016 0.0008 0.0009 0.0021 0.0026 0.0010 0.0016 0.0014 0.0007 0.0018

Training function Fletcher–Powell Conjugate Gradient (CGF)—Traincgf

Training
R2 0.8495 0.5491 0.5807 0.5103 0.3220 −1.6810 0.6662 −0.0015 −0.0002 −0.0002 −0.0031 −0.0014 −0.0020 −0.0001

MSE 0.0003 0.0007 0.0007 0.0008 0.0012 0.0046 0.0006 0.0017 0.0018 0.0019 0.0018 0.0017 0.0019 0.0017

Testing
R2 0.7948 0.5297 0.5495 0.3660 0.1933 −1.8698 0.4838 −0.0412 −0.0221 −0.0142 −0.0271 −0.0056 −0.0089 −0.1788

MSE 0.0004 0.0010 0.0007 0.0013 0.0012 0.0048 0.0009 0.0017 0.0014 0.0011 0.0014 0.0018 0.0010 0.0018

Training function Polak–Ribiére Conjugate Gradient (CGP)—Traincgp

Training
R2 0.5955 0.5645 0.7784 0.0086 0.3507 −4.4318 −77.6014 −0.0010 −0.0005 −0.0016 −0.0029 0.0000 0.4306 −0.0003

MSE 0.0007 0.0007 0.0003 0.0017 0.0011 0.0099 0.1404 0.0018 0.0017 0.0014 0.0019 0.0019 0.0010 0.0014

Testing
R2 0.4401 0.4315 0.7301 −0.0084 0.2503 −4.5725 −77.7437 −0.0942 −0.0848 −0.0720 −0.0625 −0.1148 0.2817 −0.0188

MSE 0.0009 0.0009 0.0006 0.0016 0.0014 0.0073 0.0937 0.0013 0.0020 0.0029 0.0010 0.0010 0.0011 0.0029



Materials 2022, 15, 9022 21 of 25

Table A1. Cont.

Training Function Levenberg–Marquardt (LM)—Trainlm

Transfer Function Elliotsig Hardlim Hardlims Logsig Netinv Poslin Purelin Radbas Radbasn Satlin Satlins Softmax Tansig Tribas

Training function One Step Secant (OSS)—Trainoss

Training
R2 0.5604 −0.0399 −0.1893 −0.0036 0.5851 0.2590 0.2152 −0.3388 −0.0002 −0.0002 −0.0003 0.0000 −0.0001 0.0000

MSE 0.0007 0.0017 0.0020 0.0017 0.0008 0.0013 0.0013 0.0024 0.0017 0.0019 0.0020 0.0017 0.0019 0.0017

Testing
R2 0.5409 −0.1051 −0.2987 −0.0484 0.4091 0.2245 0.1251 −0.3659 −0.0188 −0.0142 −0.0160 −0.0117 −0.0156 −0.0176

MSE 0.0006 0.0021 0.0022 0.0016 0.0008 0.0010 0.0016 0.0021 0.0016 0.0011 0.0007 0.0018 0.0010 0.0018

Training function Variable Learning Rate Backpropagation (GDX)—Traingdx

Training
R2 −0.0005 0.7337 0.6988 −1.4754 0.3543 −0.0001 0.6662 −0.3164 −0.0014 −0.0011 0.4030 0.0000 −0.0006 −0.0022

MSE 0.0017 0.0005 0.0005 0.0046 0.0011 0.0015 0.0006 0.0023 0.0018 0.0017 0.0010 0.0017 0.0016 0.0015

Testing
R2 −0.0009 0.6728 0.5573 −1.6742 0.3401 −0.1135 0.4838 −0.4212 −0.0509 −0.0116 0.3546 −0.0383 −0.1115 −0.0801

MSE 0.0017 0.0005 0.0008 0.0031 0.0011 0.0028 0.0009 0.0023 0.0013 0.0019 0.0013 0.0017 0.0024 0.0027

Training function Bayesian Regularization Backpropagation (BRB)—Trainbr

Training
R2 0.9344 0.7203 0.7128 0.9242 0.9188 −0.0011 0.7484 0.9340 0.9318 0.7811 0.7384 −0.0024 0.9435 0.3717

MSE 0.0001 0.0004 0.0005 0.0001 0.0001 0.0018 0.0005 0.0001 0.0001 0.0004 0.0005 0.0017 0.0001 0.0010

Testing
R2 0.8360 0.7120 0.6457 0.8475 0.8728 −0.0208 0.6610 0.7986 0.9180 0.7102 0.5419 −0.0619 0.8796 0.2674

MSE 0.0003 0.0008 0.0006 0.0003 0.0002 0.0015 0.0004 0.0004 0.0001 0.0005 0.0002 0.0017 0.0002 0.0015

Table A2. The weights and biases of the best MLP model for predicting COF (Trainbr with Radbasn).

b1 b2 IW LW

−0.000013

0.154802302

0.000302 0.000664 0.000043 0.002863 −0.002295 −0.004105 −0.006618 −0.000002 0.014177

0.000054 0.000674 −0.056316 0.000430 0.005001 −0.003263 −0.006876 0.013543 0.000031 0.004673

−0.000036 0.000158 0.000150 −0.000018 −0.001888 0.008779 0.008167 0.002309 −0.000019 −0.000515

0.000032 −0.000338 −0.004919 0.000113 0.005465 0.000295 0.004110 0.010179 0.000011 0.003907

−0.000016 0.000167 −0.001404 −0.000017 −0.000267 −0.002455 −0.004589 −0.007722 −0.000003 0.000085

−0.000073 0.000563 −0.013884 −0.000797 −0.032309 0.009952 0.007066 0.003993 −0.000026 0.018840

0.000031 −0.060694 0.058730 −0.001589 −0.004534 −0.014893 0.003317 −0.004841 0.000006 −0.035940

0.000013 0.000182 0.003415 0.000004 0.000139 0.002099 0.003924 0.007039 0.000003 −0.002575

0.000000 −0.044608 −0.040035 0.000055 0.007430 0.008765 0.010053 −0.001046 −0.000037 0.145881

−0.000022 −0.000054 −0.004141 0.000174 0.006514 0.012974 0.002716 0.004050 −0.000017 0.006270

Table A3. All the actual and predicted values of COF (trained and tested sets).

Training Dataset Testing Dataset

Actual Predicted Actual Predicted

1 0.183 0.188 1 0.236 0.235

2 0.188 0.198 2 0.156 0.157

3 0.257 0.265 3 0.178 0.179

4 0.217 0.211 4 0.175 0.178

5 0.162 0.157 5 0.233 0.251

6 0.183 0.197 6 0.133 0.137

7 0.168 0.172 7 0.203 0.204

8 0.17 0.172 8 0.27 0.267

9 0.162 0.166 9 0.19 0.194

10 0.278 0.275 10 0.18 0.171

11 0.16 0.168 11 0.28 0.252

12 0.154 0.161 12 0.166 0.178

13 0.22 0.207 13 0.16 0.153

14 0.165 0.173 14 0.25 0.250

15 0.186 0.177 15 0.197 0.176

16 0.235 0.244 16 0.179 0.178
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Table A3. Cont.

Training Dataset Testing Dataset

Actual Predicted Actual Predicted

17 0.157 0.149 17 0.212 0.218

18 0.222 0.223 18 0.236 0.235

19 0.231 0.240

20 0.142 0.148

21 0.222 0.223

22 0.232 0.250

23 0.129 0.139

24 0.238 0.238

25 0.214 0.230

26 0.225 0.237

27 0.19 0.195

28 0.213 0.230

29 0.265 0.231

30 0.249 0.237

31 0.146 0.162

32 0.189 0.178

33 0.179 0.178

34 0.159 0.163

35 0.175 0.163

36 0.232 0.229

37 0.169 0.162

38 0.21 0.198

39 0.176 0.177

40 0.18 0.186

41 0.204 0.197

42 0.138 0.140

43 0.315 0.285

44 0.254 0.255

45 0.154 0.161

46 0.218 0.236

47 0.242 0.244

48 0.141 0.142

49 0.276 0.248

50 0.17 0.175

51 0.21 0.207

52 0.143 0.146

53 0.15 0.158

54 0.242 0.233

55 0.163 0.157

56 0.236 0.235
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17. Trzepieciński, T. Tribological Performance of Environmentally Friendly Bio-Degradable Lubricants Based on a Combination of
Boric Acid and Bio-Based Oils. Materials 2020, 13, 3892. [CrossRef] [PubMed]
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