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Abstract: In some shape-memory single crystals the stress–strain (σ~ε) curves, belonging to stress
induced martensitic transformations from austenite to martensite at fixed temperature, instead
of being the usual slightly increasing function or horizontal, have an overall negative slope with
sudden stress drops in it. We discuss this phenomenon by using a local equilibrium thermodynamic
approach and analysing the sign of the second derivative of the difference of the Gibbs free energy.
We show that, considering also the possible nucleation and growth of two martensite structural
modifications/variants, the stress–strain loops can be unstable. This means that the overall slope
of the uploading branch of the stress–strain curve can be negative for smooth transformation if the
second martensite, which is more stable with larger transformation strain, is the final product. We
also show that local stress-drops on the stress–strain curve can appear if the nucleation of the second
martensite is difficult, and the presence of such local stress-drops alone can also result in an overall
negative slope of the stress–strain curves. It is illustrated that the increase of the temperature of the
thermal recovery during burst-like transition is a measure of the change of the nucleation energy: the
more stable martensite has larger nucleation energy.

Keywords: shape memory alloys; burst-like recovery; stress–strain instability; martensite stabilization

1. Introduction

It is known that in some shape memory single crystals the stress–strain (σ~ε) curves,
belonging to stress induced martensitic transformations at fixed temperature, can show
anomalous shape: e.g., the uploading branch of the stress–strain curve, instead being the
usual smooth, slightly increasing function, can have an overall negative slope with sudden
stress drops on it [1–10] (Figure 1). This behaviour shows quite a wide variety. It can be
strongly anisotropic and can differ considerably along different crystallographic orienta-
tions (see e.g., Figure 1 in [2], where the upper branch of the σ~ε curves, along [100]A as well
as [110]A directions in a Ni49Fe18Ga27Co6 single crystal, was normal as well as anomalous,
respectively). It is often observed that the transformation is not complete [1,7–9], but there
are also examples when the whole sample has been transformed [4,10]. Furthermore, the
strain recovery of the stress induced martensite to austenite during heating can be very
fast (burst-like recovery). For instance, it was observed that the DSC peak of this recovery
was only about 10−3–10−5 degree wide (instead of the usual 1–50 K wide transitions at
typical 1–10 K/min rates) and was accompanied with jumping of the sample as well as
with audible click [1–10]. In addition, the DSC peak appeared at higher temperature (by
10–60 K higher) than the corresponding peak of the reverse transformation measured after
thermally induced cycling. This indicates that the martensite structure formed during
stress induced changes is more stable than the thermally induced one. Both the martensite
stabilization, manifested in the shift of the DSC peak to higher temperatures during heating,
and the anomalous stress–strain curves, are interpreted by the presence/competition of two
different martensitic structural modifications [2,3,9]. These can be denoted as M1 and M2
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structures, respectively. For instance, in Ni49Fe18Ga27Co6 single crystal M1 and M2 were
identified as twinned 14 M martensite, as well as L1o detwinned tetragonal martensite,
respectively [3], or in Cu–Al–Ni alloys as β′ (18 R monoclinic) and/or twinned γ′ (2 H
orthorhombic) as well as detwinned γ′ phases, respectively [7,8,11]. It can be added that
the appearance of stress drops/jumps or the macroscopic jump of the sample itself can
cause difficulties in experiments. For instance, in ref. [2] it was observed that the DSC peak
of the thermal recovery showed an anomalous shift to lower temperatures with increas-
ing heating rates. In [7] it was mentioned that the slow motion of the crosshead of the
machine did not go down so fast and a stress drop could be registered or that the testing
machine can be slightly deformed itself. However, in these papers the above effects were
carefully handled, and it can be concluded that the observations summarized above on the
anomalous stress–strain curves and on the burst-like recovery are real effects.

Figure 1. Stress–strain curves schematically: (a) typical loop with positive slope of the uploading
branch, (b) anomalous loop with negative overall slope and stress drops on it.

In fact, the above martensite stabilization is similar to the effect of the so-called SIM
aging, where the stabilization is achieved by aging under uniaxial stress after the formation
of stress induced martensite [11–18]. While the SIM aging effect is well interpreted by the
symmetry confirming short range ordering [14,19,20], the interpretation of the anomalous
shape of the stress–strain curves and the burst-like strain recovery still is in infancy [1,3,4,9]
and mostly qualitative arguments were offered. There are only few articles in which more
quantitative treatment can be found from two groups [1,3,21–23]. In [1,3,21] the so-called
theory of diffuse martensitic transformation is used, which involves a second order phase
transformation. The models used in [22,23] are based on first order transformation and
explain the anomalous σ~ε curves only for a transformation between the austenite and
one martensite modification. It was obtained in [22] that the slope of the upper branch
of the σ~ε curve can be negative only if SA − SM > 0, where SA and SM are the stiffness
of the austenite and martensite, respectively. However, this conclusion contradicts to
a set of experimental results where anomalous stress–strain curves were observed for
SA − SM < 0 [3,7,9].

Thus, the main subject of our paper is to provide a simple thermodynamic analysis,
based on our local equilibrium formalism [24,25]. In contrast to [21], we investigate the
stability conditions always for a first order transformation, which is in line with [22,23]. It
will be shown that the uploading stress–strain curve always has positive slope if only one
martensite forms and grows smoothly (i.e., the martensite volume fraction approximately
continuously increases). Negative slope can be obtained for smooth transformations if
there is a growth/competition of two martensite structural modifications/variants and
if the second (more stable) one is the final product. Furthermore, local stress drops on
the σ~ε curve can appear if the nucleation of the second martensite is difficult. We hope
that our results provide an important, new contribution to the understanding of the above
frequently observed experimental behaviour, which can also be manifested in burst-like
temperature induced strain recovery of the stabilized martensite structure. Such martensite
stabilizations are very useful in producing two-way shape memory behaviour and rubber-
like behaviour with extended recoverable strains, important in many applications.
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2. Model Calculations
2.1. The Local Equilibrium Formalism

Let us start from our local equilibrium formalism summarized in [25] and used in [24].
In local equilibrium the derivative of the total change of the Gibbs free energy per unit
volume, ∆G, versus the transformed martensite volume fraction, ξ, should be equal to zero.
For the forward, (from austenite to martensite) transformation,

∂(∆G)

∂ξ
=

∂(∆Gc + E + D)

∂ξ
=

∂(∆Gc)

∂ξ
+ e(ξ) + d(ξ) = 0. (1)

Here, ξ = VM
VM+VA

with V = VA + VM (V is the volume of the sample), E as well as D
denote the elastic and dissipative energies per unit volume, belonging to the A→M (AM)
transformation and e(ξ) = dE(ξ)

dξ as well as d(ξ) = dD(ξ)
dξ , respectively. The total dissipative

energy, Dt =
∫ 1

0 d(ξ)dξ, is obviously positive in both directions (DAM
t = Dt ∼= DMA

t > 0)

and, if the thermoelastic balance is also assumed, then EAM
t = Et =

∫ 1
0 e(ξ)dξ = −EMA

t > 0.
Usually, there is one additional term in the expression of ∆G, which is the nucleation energy
related to the formation of new interfaces during the transformation. Since this is always
positive in both directions, like the dissipative energy, it can be considered as it would be
included in the dissipative term [24,25].

In Equation (1) ∆Gc is the change in the chemical free energy per unit volume and its
derivative can be written as

∂∆Gc

∂ξ
=

∂[ξGM + (1− ξ)GA − GA]

∂ξ
=

∂ξ(GM − GA)

∂ξ
= (GM − GA) + ξ

∂(GM − GA)

∂ξ
(2)

where (
GM − GA) = ∆u− ∆s− εtr (3)

Here ∆s = sM − sA (∆s < 0) as well as ∆u = uM − uA = ∆u (<0) are the entropy and
internal energy changes per unit volume, respectively, and they are independent of ξ. T
and σ are the temperature and stress as well as εtr is the transformation strain, which is
positive for tension.

In the literature it is frequently assumed that the transformation strain, εtr, is constant
and independent of ξ (i.e., the derivative of Equation (3) is zero). However, in general εtr

can depend on the T and/or σ values since in Equation (3) the stress-term has a tensor
character [24,25]. Thus, even for the application of uniaxial stress (which leads to a scalar
term, as in Equation (3)), εtr in principle can depend on T and σ too. In case of formation
and growth of two martensite structural modifications, it can also depend on the volume
fraction of one of these, η(ξ) = η(T,σ) = VM2/VM (VM = VM1 + VM2, V = VM + VA), [24–26].
The η dependence of εtr can be given by the relation [24–26]:

εtr(η) = ε1 + (ε2 − ε1)η (4)

where ε1 and ε2 are the transformation strains when fully one certain martensite structure
forms (at η ∼= 0 and η ∼= 1, respectively). Of course, the details can be very complex and the
value of ε can also be different for twinned or detwinned martensite variants [27–29]. As a
consequence, η can have a ξ-dependence, η(ξ), which explains the ξ-dependence of εtr: εtr(η(ξ)).
Furthermore, εi, due to the different temperature dependence of the elastic moduli of the
austenite and martensite phases, can have a direct temperature dependence too [22,30,31]).
Thus, considerations on the ξ-dependence of the actual strain, ε(ξ) (which should be
distinguished from the transformation strain, εtr can be important for estimation of the σ(ε)
curve (see also below). It is worth mentioning that our description, in order to concentrate
on the interpretation of the main important features, in its form is a simplified one, and is
applicable indeed for single crystals (with two martensite modifications), where the effects
summarized in the introduction were observed. Of course, for more complex systems (e.g.,
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for polycrystalline materials with numerous martensite variants) one would need a more
sophisticated treatment, such as the phase field method in the form of the well-known
Ginzburg–Landau theory (see e.g., [32]).

2.2. Expressions for the σ(ξ) (σ(ε)) Functions

In contrast to [24,25], we will assume that εtr depends on ξ, and we have from (2)
and (3)

∂∆Gc

∂ξ
= ∆u− T∆s− σεtr − ξσ

∂εtr

∂ξ
= ∆u− T∆s− σεtr

(
1 + ξ

∂εtr

εtr∂ξ

)
(5)

Since a similar relation holds for ∂∆GMA
c

∂(1−ξ)
(1− ξ is the austenite volume fraction) belong-

ing to the reverse (martensite to austenite, MA) transformation [24,25]. In the following
we give detailed considerations only for the forward transformation, and expressions with
upper indexes MA as well as AM will be used only if a comparison of the forward and
reverse transformations is made.

Taking Equation (5) equal to zero for T = const.

σ0(T, ξ) =
1

εtr(T)
(

1 + ξ ∂εtr

εtr∂ξ

) [∆u− T∆s] = σo(0, ξ)− T∆s

εtr(T)
(

1 + ξ ∂εtr

εtr∂ξ

) (6)

Here σo(0, ξ) = ∆u
εtr(T=0)

(
1+ξ ∂εtr

εtr∂ξ

) (∆u < 0, ∆s ≤ 0) is the equilibrium transformation

stress (at T = 0). If the transformation strain is independent of ξ, the usual form of the
well-known Clausius–Clapeyron equation is obtained [24,25], i.e., σo(T) = σo(0)− ∆s

εtr T.
Furthermore, from the condition (1), using Equations (5) and (6) as well, we obtain the

expression for the forward branch of the σ(ξ) function (at a fixed value of T) as

σ(T, ξ) = σo(T, ξ) +
e(ξ) + d(ξ)

εtr(T)
(

1 + ξ ∂εtr

εtr∂ξ

) (7)

(see also [24,25] for constant εtr).
The start and finish stresses, for both the forward and reverse transformations, can be

given as

σMs(T, ξ = 0) = σo(T, 0) +
eo + do

εtr

σM f (T, ξ = 1) = σo(T, 1) +
e1 + d1

εtr
(

1 + 1
εtr

∂εtr

∂ξ

∣∣∣
ξ=1

)

σAs(T, 1− ξ = 0) = σo(T, 1− ξ = 0) +
eMA

1 + dMA
1

εtrMA

σA f (T, 1− ξ = 1) = σo(T, 1− ξ = 1) +
eMA

o + dMA
o

εtrMA
(

1 + 1
εtrMA

∂εtrMA

εtrMA∂(1−ξ)

∣∣∣
(1−ξ)=1

) (8)

3. Discussion
3.1. Expressions for the Widths of Transformations—Investigation of the Stability during
Phase Transformation

Let us consider the sign of the second derivative of the difference of the Gibbs free
energy: this gives information about the stability of the system against fluctuations in the
volume fraction during growth. If it is positive the two-phase system is stable during the
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transformation. From Equations (1), (4) and (5) we have, for the austenite to martensite,
AM, transformation

∂2∆G
∂ξ2

⌋
T
=

∂2(∆Gc)

∂ξ2 +

(
∂e
∂ξ

+
∂d
∂ξ

)
= −σ

(
2

∂εtr

∂ξ
+ ξ

∂2εtr

∂ξ2

)
+

(
∂e
∂ξ

+
∂d
∂ξ

)
. (9)

It can be seen that for a detailed stability analysis we have to discuss the meaning of
the terms on the right had side of Equation (9).

3.1.1. Meaning of the Elastic and Dissipative Terms

During thermoelastic AM transformations the elastic energy, E(ξ) > 0, is due to the
local strain fields around the martensite nuclei formed and due to the overlap of the elastic
fields: the latter contribution can be proportional to ξ2 [24,25]. Thus, one can assume that

∂E(ξ)
∂ξ

= e(ξ) = eo + (e1 − eo)ξ > 0 (10)

and the elastic contribution to Equation (9) is

∂e
∂ξ

= (e1 − eo) ≥ 0 (11)

For the reverse transformation the stored elastic energy is released, i.e., eMA(ξ) =
−eMA(1− ξ), and we can similarly write

eMA(1− ξ) = eMA
o +

(
eMA

1 − eMA
o

)
(1− ξ) < 0 (12)

and
∂eMA

∂(1− ξ)
=
(

eMA
1 − eMA

o

)
= −(e1 − eo) ≤ 0

The dissipative energy, D(ξ), is also positive for the forward transformation and can
be considered as the sum of two terms, D = D f + Dn. Df (>0) originates from the frictional-
type motion of the interfaces and can be supposed that it is proportional to ξ, while Dn
(>0) is due to the nucleation energy. In the simple case when a large number of martensite
nuclei form (smooth transformation [22]) Dn can also be approximately a monotonic linear
function of ξ and thus

d(ξ) = do = d1 = const. > 0 (13)

Refs. [24,25] and its contributions to (9) is zero. In a more general case, e.g., if the

nucleation is difficult and happens suddenly at certain temperatures, ∂d
∂ξ = ∂2(D)

∂ξ2 6= 0, and
Dn(ξ) can be a complicated (step-wise) function of ξ (see also below).

3.1.2. Stress–Strain Loops

First consider smooth thermoelastic transformations, when only one type of martensite
structural modification grows, i.e., εtr is independent of ξ (εtr = const.) and ∆s (< 0) =
−∆sMA [24,25]. Then, one gets from Equation (9) with Equation (7) that

∂2∆G
∂ξ2

⌋
T
=

∂σ

∂ξ
εtr =

(
∂e
∂ξ

+
∂d
∂ξ

)
∼= (e1 − eo) = (σM f − σMs)ε

tr (14)

where Equations (11) and (13) were also used. Note, that in this case the second derivative
of ∆G is proportional to the slope of the σ(ξ) function and (σM f − σMs) is the width of the
upper branch of the schematic hysteresis loop shown in Figure 2. Since, in accordance with
Equation (11) e1 − eo ≥ 0, it is usually positive, or close to zero (for horizontal branches),
the stability condition fulfils for this simple case. Similarly, we can deduce for the down
branch (using also that εtr = −εtrMA and Equation (12))
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∂2∆GMA

∂(1 − ξ)2

⌋
T

=
∂σMA

∂(1 − ξ)
εtrMA ∼=

∂eMA

∂(1 − ξ)
= −∂eMA

∂ξ
= (e1 − eo) ∼=

(
σAs − σA f

)
εtr (15)

for which the stability condition also fulfils, since
(

σAs − σA f

)
≥ 0 (Figure 2).

Figure 2. Schematic σ(ξ) hysteresis loop for εtr = const. > 0. Since ε = ξεtr, with the actual value of ε,
this plot corresponds to the σ versus ε plots.

3.1.3. Thermal Hysteresis Loops

Under similar conditions as (14) was obtained we can write for the cooling as well as
for the heating branches of the thermal hysteresis loop (i.e., for the ξ(T) function) [24] that

∂2∆G
∂ξ2

⌋
σ=0

=
∂2(ET + DT)

∂ξ2
∼=
(

∂eT
∂ξ

)
∼= (e1 − eo) ∼=

(
Ms − M f

)
(−∆S) (16)

as well as

∂2∆GMA

∂(1 − ξ)2

⌋
σ=0

∼=
∂eMA

T
∂(1 − ξ)

∼=
(

eMA
1T − eMA

oT

)
= −(e1T − eoT) =

(
A f − AS

)
( − ∆s) > 0 (17)

The lower indexes T indicate that the derivatives of the elastic (and dissipative)
energies can be different for the ξ(T) and σ(ξ) functions (see also below). It is clear, that since
both

(
Ms − M f

)
and

(
A f − AS

)
are positive the thermal hysteresis loops are always

stable. It is worth noting that Equations (16) and (17) are also valid if εtr is not constant,
since at σ = 0 the term σ

(
2 ∂εtr

∂ξ + ξ ∂2εtr

∂ξ2

)
, which is present in Equation (9), cancels out.

3.2. Growth of Two Martensite Modifications

Let us now consider the more general case when εtr has ξ-dependence as given by
Equation (4) with η(ξ). It is clear from Equation (9) that, if the first term is negative and its
magnitude is larger than the last two terms, the system can be unstable. Using Equation (4)
we can write

∂εtr

∂ξ
= (ε2 − ε1)

∂η

∂ξ
(18)

and the first term of Equation (9) will be

− σ(ε2 − ε1)

[
2

∂η

∂ξ
+

∂2η

∂ξ2

]
(19)

This term can be negative if ε2 > ε1 and the second martensite grows monotonically
with ξ (smooth transition). Of course, in general, the situation can be more complex. For
example, during nucleation and growth of two martensite modifications, when the first
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one of them grows and suddenly the second one starts to nucleate and grow, there can
be sudden changes in the stored elastic and nucleation energies (the nucleation energy is
included in D). Thus, in the second derivatives of E and D there can also appear sudden
sign changes (jumps), which can be quite local at around a certain value of ξ. Another
complication is involved in the fact that, in this general case, the martensite volume fraction
is not proportional to the actual strain.

Nevertheless, the slope ∂2∆G
∂ξ2 |T (see Equation (9)) can be negative if the magnitude

of the term given by Equation (19) is larger than the value
(

∂e
∂ξ + ∂d

∂ξ

)
∼= (e1 − eo), and

then the overall slope of the uploading branch of the σ(ε) curve can be negative, i.e., the
two-phase system can be unstable during the transition. For burst-like recovery, when
As − A f

∼= 0,
(

∂e
∂ξ + ∂d

∂ξ

)
∼= (e1 − eo) is close to zero, and in this case the condition of

instability can be given as −σ(ε2 − ε1)
[
2 ∂η

∂ξ + ∂2η

∂ξ2

]
< 0.

3.3. Nucleation Difficulties

Let us consider the following simple case: assume that with increasing stress the M1
martensite modification nucleates first and grows and at a certain transformed volume
fraction, ξc (~εc) the second martensite M2 nucleates. Suppose that M2 is more stable than
M1, in accordance with the higher temperature of burst-like MA transformation and, as
above, ε2 = εtr2 > ε1 = εtr1. Under the same assumptions as Equation (14) was obtained,
we can write for the slopes of the linearized σ1(ξ) and σ2(ξ) functions

(σM f 1 − σMs1) =
(e11 − eo1)

εtr1 ≥ 0 (20)

and

(σM f 2 − σMs2) =
(e12 − eo2)

εtr2
∼= 0 (21)

where relations (7) and (8) were also used and, writing Equation (21), we assumed that
for a burst-like recovery of M2 the slope is approximately zero. Thus, the slope of σ1(ξ) is
larger. In addition, consider the case when σMs1 < σMs2 i.e., if

σo1(T) +
e01 + do1

ε1
< σo2(T) +

e02 + do2

ε2
(22)

which can be fulfilled if do2 is large enough. Indeed, it can be the case if we assume that the
nucleation of M2 is more difficult than the nucleation of M1. For instance, it is well-known
in the literature [33,34] that there can be a competition between habit-plane variants, which
can easily nucleate from austenite (and accompanied with smaller transformation strain),
and oriented martensites. The nucleation of the latter one is more difficult because of
crystallographic compatibility problems, depending on the orientation relationships, and
the formation and growth of which can be accompanied with smaller accumulated stresses
(see e.g., [9,34–36]). The formation of M2 at a certain critical stress/strain can happen either
from the not transformed yet austenite or from the growing M1 (see e.g., [34]).

Figure 3 shows schematically the σ1(ξ) and σ2(ξ) functions (see also Equations (7)
and (8)). The intersection of the two straight lines gives the value of ξc(~εc), at which
σ(ξc) = σMs2, and thus M2 can nucleate which leads to a stress drop. For the estimation
of the stress drop we can use the results of [22]. It was obtained, for the stress induced
austenite to one-martensite-modification transformation, that (due to the transformation
strain) there should exists an overall decrease in stress. This decrease, as compared to the
pure elastic contribution to the stress–strain curve, is proportional to the product of the
martensite volume fraction, ξ, the transformation strain, εtr, and the effective stiffness in
the two-phase region, S(ξ), as compared to the pure elastic contribution to the stress–strain
curve: ∆σ ∼= −ξεtrS(ξ) (ξ corresponds to the parameter ξ ∼= nz(ε)

Ny
used in [22] and
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S(ξ) = SASM
SM+ξ(SA−SM)

). Thus, the stress drop due to the nucleation of M2 martensite at ξc is

proportional to εtr
2 − εtr

1 :
∆σ ∼= −ξcS(ξc)

(
εtr

2 − εtr
1
)
. (23)

Figure 3. Schematic σ1(ξ) and σ1(ξ) functions, and the stress drop, ∆σ at the critical volume fraction
where the second martensite nucleates (see also the text).

Now, if the magnitude of ∆σ is large enough to decrease the stress below the M1 start
stress then after the stress drop, the austenite + M1 two-phase system will be elastically
deformed until the nucleation of M1 martensite happens again and the process is repeated.
In this (i) case the slope after the stress drop will be the similar as the initial slope of the
stress–strain curve, with the effective stiffness S(ξc). In the opposite case, (ii), after the
stress drop there is a further growth of M1 (with a similar course of the stress–strain curve
as observed during the first stage of the process before the stress-drop) until a new M2
nucleates and the process is repeated. Both can be observed in experiments: (i) see Figure 1b
of [2] where the segment of the σ~ε curve after the stress-drop is similar to the initial part,
or (ii) in Figure 1a,b in [1] as examples. Figure 1 in [1] also illustrates that with decreasing
test temperature there is a transition from (i) to (ii). Regarding the unloading process under
compression, with decreasing stress the M2 is stable well below the austenite start stress
of M1, σas1, (even below a certain temperature M2 remains stable at zero stress). Thus,
retwinning of M2 (i.e., the formation of M1 from M2) can start at a certain low stress level
and this leads to the expansion of the sample (ε2 > ε1) and a stress jump can appear (see
Figure 1b). Further details, like the course of the curve during the stress-drops before
reaching the minimum, or where and how M2 nucleates can only be explained on the basis
of microscopic investigations (see e.g., [35–37]) and out of the scope of thermodynamic
considerations used here.

Thus, we demonstrated that if the nucleation of the second martensite is difficult, then
the interplay of the elastic and dissipative contributions to the σ(ξ) curve, can be such
which can explain the formation of several steps on the σ(ε) plots. Of course, during the
local stress drops the system is also unstable. It can also happen, if e.g., there are only
two stress drops, which are frequently observed [2,3], that the presence of these alone can
result in an overall negative slope of the stress–strain curves, i.e., the negative slope can be
produced by pure nucleation difficulties alone.

It can be mentioned that experimental results on superelastic behaviour of Fe based al-
loys sometimes can also show stress drops on the loading branch of the stress–strain curves
(see e.g., Figure 6a in [38] or Figure 2d in [39]) and these show quite strong differences in
compression and tension. The interpretation of these needs a deeper analysis than the one
presented above, where the elastic energy accumulation during martensite formation is
handled mainly by its difference when twinned or detwinned martensite modifications
grow. In the presence of precipitates and/or retaining martentsites, and when the stress
level can be high enough, dislocations can also play a role in the elastic energy accumula-
tion/relaxation as well as in the nucleation barriers and the corresponding microstructure
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evolution can be quite complex. The better understanding of these phenomena is still in
infancy and call for further efforts.

3.4. About the Burst-like Recovery

The shift of the forward transformation peak of the burst-like thermal recovery, as
suggested in [12], can happen through re-twinning of M2: once the twinning is achieved
an “easy way” is opened for transformation to the M1 or austenite phase(s). Thus, the
observed overheating is the consequence of the (nucleation) barrier against re-twinning.
We can obtain an approximate expression for the shift of the forward transformation peak
of the burst-like recovery as compared to the same thermally induced DSC peak, ∆T, using
the results described in the preceding sections. ∆T, can be given as the difference of the
peak temperatures, Tp, during heating:

∆T = Tp1 − Tp2 =
A f 2 + As2

−2∆s2
−

A f 1 + As1

−2∆s1
= ∆To +

d12 + d02 + e12 + e02

−2∆s2
− d11 + d01 + e11 + e01

−2∆s1
(24)

where we used that the start and finfish temperatures can be given from (5) at σ = 0
(see also [24]. Since the burst-like peak belongs to M2/A transformation and for this
(e12 − eo2) ∼= 0 (see (21)), as well as for two martensite variants we can also assume that
the difference of the equilibrium transformation temperatures (∆To = To2 − To1) and the
transformation entropy is approximately zero (∆s1

∼= ∆s2 = ∆s):

∆T ∼=
2(do2 − d01) + 2eo2 − (e11 + e01)

−2∆s
(25)

where it was also used (as in Equations (20) and (21)), that d1i
∼= d0i (i = 1, 2). In accordance

with the previous considerations, we can assume that the difference of the elastic terms
is small (and even can be negative, if e11 + eo1 > 2eo2 since e11 + eo1 > 0) as compared to
the first term. Thus, since ∆T > 0, the first term dominates in Equation (25). Furthermore,
it can also be used that the main difference in the first term is due to the difference of the
nucleation energy, i.e., (do2 − d01) = ∆dn > 0, and thus

∆T ∼=
∆dn

−∆s
=

D2 − D1

−∆s
(26)

where the relation Di =
∫ 1

0 doidξ = doi (see Equation (13) too) was used and Di is the nucle-
ation energy for the heating process. Thus, the shift of the transformation peak is a measure
of the change in the nucleation energy: ∆D = D2 − D1. As a numerical example we can
use the results of [40], where it was obtained that ∆T was about 36 K and using the trans-
formation entropy in this alloy, 0.75 J/mol K [40], we find that D2 − D1

∼= 27 J/mol. This
can be compared to the half of the dissipative energy per one thermal cycle, 2.8 J/mol [41],
which shows that the nucleation energy for M2 can be about an order of magnitude larger
than for M1.

4. Conclusions

The second derivatives of the total Gibbs-free energy, in the framework of a local
equilibrium description, were investigated for shape memory alloys showing a burst-
like shape recovery after anomalous stress–strain load. We have shown that the thermal
hysteresis loops are usually stable and an approximately vertical up branch (i.e., As ∼= Af)
can be obtained during burst-like thermal recovery, indicating that the second derivative of
the elastic energy is approximately zero in this case. It is also shown that the stress–strain
loops for smooth transformations are also stable if only one type of martensite growths.
Instability can appear, i.e., the overall slope of the AM branch can be negative, if nucleation
and growth of two martensite modifications (variants) takes place and if the second (more
stable) one is the final product with εtr

2 > εtr
1 . It is found that local stress-drops, ∆σ, on the

stress–strain curve can appear if the nucleation of the second martensite is difficult and



Materials 2022, 15, 9010 10 of 11

the presence of few local stress-drops alone can also result in an overall negative slope of
the σ~ε curve. Depending on the magnitude of ∆σ, the course of the stress–strain curve
after the stress drop is similar to the initial (elastic) part or to the part belonging to A/M1
transformation. It is illustrated that shift of the temperature of the thermal recovery of M2
is a measure of the change in the nucleation energy ∆D = D2 − D1.
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