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Abstract: Thermoelectric materials in the form of thin films are used to create a wide variety of
sensors and devices. The efficiency of these devices depends on the quality and efficiency of the
thermoelectric materials obtained in the form of thin films. Earlier, we demonstrated that it is possible
to obtain high-performance Bi2Te3Sb1.5 films less than 1 µm thick on polyimide substrates by using
the PLD method, and determined optimal growth conditions. In the current work, the relationship
between growth conditions and droplet fraction on the surface, microstructure, grain size, film
thickness and chemical composition was studied. A power factor of 5.25 µW/cm×K2 was achieved
with the reduction of droplet fraction on the film surface to 0.57%. The dependencies of the film
thickness were studied, and the effect of the thickness on the efficiency of the material is shown. The
general trend in the growth dynamics for Bi2Te3Sb1.5 films we obtained is the reduction of crystalline
size with Pressure-Temperature (PT) criterion. The results of our work also show the possibility
of a significant reduction of droplet phase with simultaneous management of crystalline features
and thermoelectric efficiency of Bi2Te3Sb1.5 films grown on polyimide substrates by varying growth
conditions.

Keywords: pulsed laser deposition; thin films; stoichiometry; polyimide; technology; process innovation;
thermoelectric effect

1. Introduction

Thermoelectric (TE) materials can convert heat to electricity, or vice versa. Thermo-
electrics have long been too inefficient to be cost effective in most applications. However,
growth of interest in thermoelectrics applications began in the mid 1990s, when com-
plex bulk materials were being explored and found that high efficiencies could indeed
be obtained.

The efficiency of thermoelectric devices depends on the efficiency of thermoelectric
materials used [1,2], which is described by the following equation [3,4]:

ZT = T × α2 × σ/k, (1)

where ZT—the dimensionless thermoelectric figure of merit; α, σ, k—Seebeck coefficient,
electrical and thermal conductivity, respectively; T—the average absolute temperature. A
value of power factor (PF = α2 × σ) is also commonly used for rapid characterization of
thin film thermoelectric efficiency.

A basic structure unit of a thermoelectric device is a thermopile that consists of a
pair of connected p- and n- type semiconductors. Bi2Te3 was first investigated as a mate-
rial of great thermoelectric promise in the 1950s [5]. Bi2Te3Sb1.5 is now among the most
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promising p-type materials [6,7] for the room temperature range because of its high α,
about 210 µV/K−1 and ZT about 1.1, which is one of highest among bulk p-type thermo-
electric materials known [7]. As a substrate, the polymer class of materials is promising [8],
especially polyimide materials similar to Kapton [9,10]. The thermal expansion coeffi-
cient of polyimide is 12 × 10−6 K−1 is approximate to that of bismuth telluride coefficient
(20×10−6 K−1), which should have a favorable effect on film stresses and adhesion. The
advantages of polyimide include low (0.12 W·m/K) thermal conductivity, temperature
resistance up to 400 ◦C, market availability, chemical and radiation resistance.

Modern applications of thin film thermoelectrics are wide and promising. Thermo-
electric materials in the form of thin films are used to create thermo-elements in radiome-
try [11,12], microcalorimetry [13–15], in nondispersive infrared (NDIR) gas sensors [16,17],
and in microgenerators [18,19]. Flexible lgTEGs are of particular interest for modern
self-sustained monitoring systems [20,21]. Future low-gradient thermoelectric generators
(lgTEG) that use waste thermal energy from the human body or heated structural ele-
ments for electricity generation can become a convenient compact source of energy for
low-power electronics [22–25]. The successful mass introduction of lgTEG today rests
mainly on solving of the problems of technological implementation of the design, and in
particular on the production of thermoelectric materials in the form of thin films. Two
main technological challenges can be identified for thin film thermoelectric devices such as
lgTEG implementation: the use of flexible substrates for thermoelectric layers and the use
of highly efficient thermoelectric materials [26–29].

Obtaining Bi2Te3Sb1.5 in the form of thin films less than 1 µm thick by physical
vacuum deposition methods is complicated by the following reasons:

• Significant difference in partial pressures of the elements included in the formula leads
to an inhomogeneous expansion of the target material evaporated under vacuum.

• Abundant re-evaporation of volatile elements at high temperatures of the substrate.
• Low sticking coefficient of Te (<0.6) at substrate temperatures below 300 ◦C [7].

To overcome these limitations, the method of pulsed laser deposition may be promis-
ing. The high energies of the expansion particles (from 1 to 100 eV) of the plasma level out
the difference in partial pressures [30], which leads to a congruent transfer of the target ma-
terial to the substrate. This method has been implemented to obtain thin films of bismuth
telluride on solid substrates [31,32]. The use of PLD method to obtain thin Bi2Te3Sb1.5
films on flexible polyimide non-oriented substrates may provide great opportunities for
further scientific research and industrial applications.

In this study, p-type Bi2Te3Sb1.5 thermoelectric materials in the form of thin films were
synthesized on polyimide substrates by pulsed laser deposition method. The influence of
growth conditions on chemical, morphological and thermoelectric features of thin films
was explored.

2. Materials and Methods

To obtain thin films, we used the method of pulsed laser deposition, where the
radiation source was a CompexPro102F KrF excimer laser with a pulse duration of 30 ns and
a wavelength of 248 nm. The films were deposited on substrates at various temperatures
from 25 to 500 ◦C, pressures from 1 × 10–7 to 1 Torr in an inert gas medium (Ar 99.99%), and
a distance from the target to the substrate from 70 to 110 mm. To ensure the homogeneity
of the layers, the rotation of the target and substrate was used, as well as the motion of
the beam along the target surface. The scheme of the process of pulsed laser deposition is
shown in Figure 1.

Cylindrical single-crystal Bi2Te3Sb1.5 ingots were used as targets. According to
the passport data, the material has a Seebeck coefficient of 205 ± 5 µV·K−1, an electri-
cal conductivity of 1050 ± 150 Ω−1·cm−1 and a specific thermal conductivity of about
1.4 ± 0.05 W·m−1·K−1. The film thickness was about 300 nm. The target surface was
polished before each technological process to enhance droplet-free film surface state. The
substrates were polyimide material similar to Kapton, 100 µm thick and with the following
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characteristics: tensile strength from 135 to 1350 MPa, specific volume electrical resistance
1×1015 Ω·cm, dielectric constant 4 × 106 N, dielectric loss tangent 1 × 10−3 Ω cm.
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Figure 1. Scheme of the process of pulsed laser deposition.

The thermoelectric properties of the films were measured on a laboratory measuring
bench by the probe method in linear geometry. Since the nature of the distribution of
thermoelectric properties over the area of the substrates can be inhomogeneous, the bench
design allows measurements of the values α and σ in one area. The measuring head
includes six probes made of closely spaced copper pointed needles. Measurements of the
Seebeck coefficient and electrical conductivity are carried out sequentially.

Two probes are used to measure the Seebeck coefficient by standard technique utilizing
heating one probe and measuring the voltage drop between probes. The central group of
probes is used to measure the sheet resistivity by four-point probe method with the use
of corresponding correction factor for thin film case [33]. The film thickness required to
use this technique in the measured area was taken from a thickness distribution model
obtained earlier on the basis of experimental measurements of the image thicknesses using
the Ntegra Spectra scanning probe microscope and the KLA Tencor P-17 profilometer.

Studies of the chemical composition of the films were carried out using the Tescan
Vega II LMH scanning electron microscope with the Oxford INCA 350 energy dispersion
analyzer of chemical composition. Image analysis when calculating the volume of the
teardrop fraction and grain size was carried out using the ImageJ program. To increase
the contrast at the drop/substrate boundary, a Bandpass filter implemented in the built-in
fast Fourier transform process was used. Next, the Threshold filter converted the image
into binary with separation into droplets and a substrate. The analysis of the volume of the
teardrop fraction included measuring the area of each individual drop, including at the
borders of the image, followed by recalculation into the total occupied area.

3. Results

In this work, two series of experiments were carried out to identify the technological
patterns of the appearance of a droplet fraction, and to study the dependence of thermoelec-
tric properties and crystal size on the conditions for obtaining a thin film coating. In this
case, the variable technological parameters were temperature, pressure, and the distance
between the target and the substrate. According to the results of the analysis of a series of
samples, a significant influence of the technological parameters of the process of obtaining
films on their morphological features can be seen.
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3.1. Study of the Droplet Fraction

The appearance of a droplet fraction on the surface of thin films obtained by PVD
methods is a well-known problem [34]. The presence of a drop phase on the surface of
films can have a significant negative effect in solving problems of nano-structuring of
thermoelectric materials [35,36] in order to increase the thermoelectric efficiency. The
reason for the formation of a droplet phase in the case of using the PLD method is a
complex of various phenomena [35] closely related to the parameters of laser treatment
and growth conditions.

Figure 2 shows the results of studying the drop fraction on the film surface. The
experimental plan (shown in Figure 2a) was drawn up for different modes: temperatures
(T): 250, 400 and 500 ◦C; and distances between the target and the substrate (H): 70, 110
and 150 mm at a fixed pressure P = 1 Torr. The selected samples 7, 5, 3 attract attention
with a clear trend towards a decrease in the volume of the droplet fraction (Figure 2b) and
the average droplet size. Figure 2c shows an example of image processing by the ImageJ
package to calculate the number of drops is given. From left to right: enlarged image of the
deposited film, circled contours of drops, hypothetical topology of the film.
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3.2. Study of the Films Morphology

The study of the microstructure consisted of two stages. To study the dependence of
grain size on laser deposition modes, an experimental plan was drawn up and is shown in
Figure 3a, in which the following parameters were changed: the pressure (P) in the vacuum
chamber was: 0.0001, 0.01, 0.1 and 1 Torr; temperature (T): 25, 200, 350, 500 ◦C. Pictures of
the surface of the selected samples 1, 6, 11, 16 are shown in Figure 3b. The microstructure
of the selected samples differs significantly in grain size. Sample 1 does not show an island
structure without formed grains, while the rest of the samples show a grain structure with
distinct boundaries in samples 6 and 16.
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Figure 3. The results of the study of the microstructure of thin films: (a) the plan of the experi-
ment where the red borders of the cell indicate the samples selected for analysis; (b) images of the
microstructure of the samples. (c) EDS results for selected samples.

3.3. Study of the Films Physical Properties

For the studied samples, the chemical composition was additionally studied using
an energy-dispersed analyzer, which can be seen in Figure 4. The initial composition of
the target was Bi = 9.53%, Te = 59.04%, 34.43%. A good stoichiometry of the deposited
film with a thickness of up to 300 nm is observed: on average, the percentage of antimony
deviates ∆Sb = 1% from the initial one; tellurium ∆Te = 2.8%; and bismuth ∆Bi = 3.6%. The
chemical composition of the droplets differs from the composition of the film by a lower
content of tellurium with an average deviation of ∆Te up to 6%, and an increased content
of bismuth ∆Bi with an average deviation of 4.6%.
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Figure 4. The results of the study of the chemical composition of thin films: plots of thermoelectric
power factor, PF, on the deviation of the stoichiometric composition for the main components, Bi, Te,
Sb: (a) Bi and Sb; (b) Te and Sb; (c) Bi and Te.

4. Discussion
4.1. Analysis of the Droplet Fraction and Films Morphology

The graph in Figure 5 shows the ratio of the number of drops per unit area versus
temperature T and the distance between the target and the substrate H. There are three
fundamental processes that cause droplet formation during PLD: subsurface boiling, shock
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wave recoil pressure expulsion and exfoliation. Thus, target-to-substrate distance should
have a high influence on the amount of droplet phase on films surface due to it’s mechanical
nature. We observe a decrease in the droplet fraction from 8.58 to 0.57% with temperature
and target-to-substrate distance increase.
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Figure 5. Graph of the ratio of the number of drops per unit area of temperature, T, and the distance
between the substrate and the target, N, at a fixed pressure value in the chamber, P = 1 torr.

Figure 6 shows a plot of the main properties of the film: Seebeck coefficient α, electrical
resistance R, and power factor PF on temperature T and pressure P at a fixed distance
between the target and the substrate H = 70 mm. The electrical resistance decreases for
the selected series of samples, which corresponds to the previously obtained experimental
data [32]. Presumably, this is explained by an increase in the size of crystals and film defects,
which leads to an increase in carrier mobility and carrier concentration, which increases
the electrical conductivity [37]. Initially, the slowly increasing Seebeck coefficient increases
abruptly for sample 11, and then decreases for sample 16. This phenomenon is presumably
associated with an increase in the internal concentration of electron carriers due to thermal
excitation [38].
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Figure 6. Plot of basic properties, α, R, PF, versus average grain size, Sb.

Sample 11 in Figure 3 turned out to be optimal for current research, which combines an
increased Seebeck coefficient and low resistance, which leads to a maximum electrical power
factor of 5.25 µW/cm×K2. With a further increase in temperature to 500 ◦C and pressure
to 1 Torr, the resistance continues to decrease, but the Seebeck coefficient also decreases,
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which leads to a decrease in the power factor. This mode is close to the studies [25], where
at a temperature of 400 ◦C the maximum power factor PF = 11.45 × 10−4 W/m·K2 was
achieved. With an increase in the grain size to 0.6 µm, α increases, the resistance R remains
practically unchanged, which leads to an improvement of PF. After a grain size of 0.45 µm,
the growth of α slows down, and the resistance R is at a minimum level, which gives the
highest PF. After a grain size of 0.6 µm, α begins to decrease, while the resistance R highly
increases, which leads to a serious decrease of PF.

The distribution of the average grain size for each sample is shown in Figure 7. The
average grain size was obtained from histograms. For sample 6 with a relative frequency
of 26%, the grain size is 0.23 µm; for sample 11, the relative frequency was 25% for grains
with a size of 0.14 µm. Similar grain sizes were obtained in [39] with similar processing
parameters. The distribution of relative grain size frequency in sample 16 (see Figure 7) has
two peaks: with a relative frequency of 55%, grains with a size of 0.2 µm are found in it,
and with a relative frequency of up to 4%, grains with sizes ranging from 1 to 10 µm are
observed. The excessive grain growth combined with fine grains for sample 16 may be
due to the secondary recrystallization process occurring at high temperatures. A similar
picture is observed in the studies [40], however, the temperatures there were lower, which
is probably due to the technological features of the film growth process.
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4.2. Analysis of the Chemical Composition and Films Thikness

At a film thickness of up to 100 nm, the presence of oxygen and carbon is detected
in the chemical composition, which may be due to the discontinuity of the film. Another
assumption is that the distance between the target and the substrate is too large, which affects
the appearance of defects due to the interaction of laser ablation products with gas atoms
in the chamber, the number of which is proportional to pressure. The smallest deviation
from stoichiometry is maintained under the following modes: pressure 0.1 Torr, temperature
250 ◦C, distance between the target and the substrate 70 mm, and is ∆Sb = 0.5%, ∆Te = 1.45%
and ∆Bi = 1%, and the largest occurs when the pressure rises to 1 Torr and the above regimes
are maintained and amounts to ∆Sb = 4.65%, ∆Te = 7.8% and ∆Bi = 12.45%.

One of the significant influences on the thermoelectric properties of the film is its
thickness. Figure 8 shows the dependences of the thickness on the main technological
parameters of the process, such as the substrate temperature, the pressure in the chamber,
and the distance between the substrate and the target, are shown.
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Figure 8. Plots of the dependence of the thin film thickness, h, on the main parameters of the
technological process, T, P, H: (a) H and P; (b) T and P; (c) H and T.

A combination of technological parameters is observed in which the same duration of
the deposition process and, as a result, the same amount of evaporated material gives a
greater film thickness. At a distance of 90 to 120, a temperature of 450 ◦C and a pressure of
1 Torr, the maximum film thickness reaches 151 nm. However, it can be noted that the ratio
of distance to pressure has a lesser effect than the ratio of temperature to pressure, which
have a greater effect on the amount of material on the substrate and have clear peak regions.
At high pressure and low temperature, we observe a significant reduction in deposited
material, as well as at low pressure and high temperature.

Figure 9 shows a plot of the main properties of the film: the Seebeck coefficient α,
electrical resistance R, and power factor PF on the film thickness. As can be seen from the
graph, there is a clear optimum in the thickness range from 120 to 140 nm, before and after
it the film has too high resistance.
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5. Conclusions

The morphological features of samples of Bi2Te3Sb1.5 thermoelectric films obtained
by pulsed laser deposition on polyimide substrates were studied in this work. We found
that the thermoelectric efficiency of Bi2Te3Sb1.5 films is highly dependent on morphological
structure, and it may be managed by the growth conditions of the pulsed laser deposition
method. We also observed that the best result is achieved with a small deviation of the
film composition from the target composition, which can be varied by combinations of film
growth conditions.
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In the work, the energy PT-criterion was chosen as having the most significant effect
on the structural and physical parameters of the resulting films. Structural studies of the
samples showed that with an increase in the parameter PT, the characteristic grain size
increases. The sample with the highest electric power factor of 5.25 µW/cm×K2 has grains
with a characteristic size of 0.14 µm, with a relative frequency of 25%. The amount of the
droplet phase on the surface observed to be inversely proportional to the selected energy
PT criterion and for the investigated range of technological parameters varied from 8.58
to 0.57%.

The general trends in the growth dynamics of the crystal structure of Bi2Te3Sb1.5 films
are similar to those observed in the literature [41–43] when using other methods of physical
deposition. A positive feature of the PLD method is the possibility of congruent material
transfer, but a negative feature is the formation of a droplet phase on the surface [44,45].
The results of current research show the possibility of a significant reduction in the droplet
phase with simultaneous optimization of the crystallite size and efficiency of Bi2Te3Sb1.5
films on polyimide substrates by choosing the optimal growth conditions.
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