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Abstract: The synthesis of novel phosphorus-containing telomers (P-telomers) was conducted
via a solution-free UV-initiated telomerization process of butyl acrylate, methyl methacrylate, 2-
hydroxyethyl acrylate, and styrene, different phosphorus telogens (dimethyl phosphite (DMPh),
dibutyl phosphite (DBPh), diphenyl phosphite (DPPh) or dibutyl phosphate (DBP)), and a radical
photoinitiator-acylphosphine oxide (APO). The course of the UV-phototelomerization process was
monitored by photo-DSC and the chemical structures of telomers were assessed by FTIR. Final UV-
photocurable varnish compositions consisted of prepared P-telomer syrups, crosslinking monomer
(pentaerythritol triacrylate; PETIA), and a radical UV-photoinitiator (α-hydroxyalkylphenone, HAP).
The influence of P- telomers on the optical and mechanical features of coatings was investigated.
Relatively the highest hardness and satisfactory scratch values, as well as water and solvent resistance,
were observed for varnish based on DMPh-telomers. While the strongest adhesive bond to a glass
substrate was reported for DPPh-telomers. It is worth pointing out that the P-telomers did not affect
the gloss values of varnishes in comparison to the telomer-free reference sample.

Keywords: phosphorus-containing polymers; telomerization; photopolymerization; (meth)acrylates;
varnish

1. Introduction

UV-curable solvent-free coatings are promising for various fields of industrial ap-
plications, e.g., electronics [1,2], automotive [3,4], aerospace [5,6], textile industry [7,8],
etc. This class of materials draws significant attention principally due to the high-speed
curing at room temperature, low emission of organic volatile compounds, and little en-
ergy requirements [9–12]. Binders used in photocurable formulations are mainly based
on (meth)acrylates, which are characterized by the high reactivity of polymeric chains
and hence wide possibilities of modification [13,14]. Particularly interesting types of
(meth)acrylate monomers for coating applications are phosphate (meth)acrylates and
poly(meth)acrylates. The presence of phosphorus atoms in the (meth)acrylate structure
gives the resulting polymer specific properties, for example, flame retardant [15–17],
good adhesion to steel substrates [18,19], corrosion-resistant [20,21], biodegradable proper-
ties [22–24]. An important issue is also the use of phosphate (meth)acrylates in biomedicine,
e.g., hydrogels based on copolymers of 2-hydroxyethyl methacrylate and 2-ethylene glycol
methacrylate phosphate with potential application as scaffolds for tissue engineering [25].
The common pathway for the synthesis of presented phosphorus-containing monomers
is a condensation reaction, phosphorylation, or Pudovik reaction, where the source of
phosphorus atoms is, i.e., phosphoryl chlorides, P2O5, or phosphonic acid esters.

Regarding photocurable compositions based on oligomeric binders containing termi-
nal phosphate or phosphite groups, reports in the literature are limited. Relatively few
patents are described. For example, coatings based on polymers with a pendant or terminal
phosphorus groups obtained by emulsion/suspension polymerization of (meth)acrylic
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acid esters and vinyl esters (e.g., styrene, vinyl chloride) with allyl phosphate or phospho-
ethyl (meth)acrylate [26], polymer composition consisting of suspension polymerization
products of unsaturated phosphorus-containing monomers (such as phosphates of hy-
droxy alkyl (meth)acrylates or dihydrogen phosphate esters of unsaturated alcohols) [27],
coating composition compounded of phosphorus acid functional polyol polymers (i.e.,
unsaturated phosphate esters of polyether glycols, phosphoethyl (meth)acrylate or phos-
phopropyl (meth)acrylate) [28], coating prepared with photocuring phosphorus-nitrogen
acrylic resin [29], and polyurethane-acrylic resin obtained by emulsion polymerization [30].
In contrast, the other invention presents a synthesis of acrylate resins consisting of epoxy
acrylates and phosphorus-containing phenol derivatives [31].

The above examples of synthesis of phosphorus-containing polymers are based on
emulsion or suspension polymerization (sometimes in an organic solvent). However, an
alternative technique preparation of oligomers with phosphorus atoms may be telomer-
ization. Telomerization is a special type of polymerization conducted between one or
more polymerizing compounds (taxogens/ monomers; M) and telogen (a molecule with a
cleavable bond, e.g., C-H, S-H, P-H, Si-H, also named chain transfer agent; YZ) that leads to
the formation of low-molecular-weight products (oligomers/telomers; Y(M)nZ) in which
the ends of the chains contain fragments derived from telogen breakdown. [32,33]. The for-
mation of telomers is most often initiated by thermal initiators but also using UV-radiation,
and γ rays [34,35]. Regarding phosphorus-containing telogens (with P-H groups), they par-
ticipate mainly in thermally initiated telomerization reactions. The most common telogens
suitable for many vinyl monomers are dialkyl phosphites, phosphorus acid, phosphorus tri-
and pentachloride, and alkyl dichlorophosphines or dichlorophosphonates. However, thus
far, phosphate and phosphonate esters were characterized as less effective chain transfer
agents [36]. To the best of the authors’ knowledge, there is no information in the literature
about the preparation of phosphorus-containing oligomers/telomers (P-telomers) via a
UV-induced process.

This paper presents the novel synthesis of phosphorus-containing (meth)acrylates
oligomers (P-telomers) via UV-induced telomerization of n-butyl acrylate, methyl methacry-
late, 2-hydroxyethyl acrylate, and styrene in the presence of phosphate or phosphonate
esters (as P-telogens) and acylphosphine oxide (as a radical photoinitiator). Prepared
phosphorus-containing telomers syrups (P-telomers syrups) were used as binders of UV-
curable varnish coatings. Additionally, the varnish compositions contained a crosslink-
ing monomer (pentaerythritol triacrylate) and an additional radical photoinitiator (α-
hydroxyalkylphenone). Features of the P-telomers syrups, UV-photocurable varnish com-
positions, and cured varnishes were analyzed. It was revealed that UV-phototelomerization
can be an environmentally acceptable way to produce novel phosphorus-containing binders.
Moreover, phosphorus-containing varnish coatings may have potential anti-corrosion, anti-
bacterial, and flame-retardant properties and could be applied as protective coatings on
glass, metal, or wooden substrates.

2. Materials and Methods
2.1. Materials

The phosphorus-containing telomers (P-telomers) were synthesized using the follow-
ing components:

(a) acrylate monomers:

• n-butyl acrylate (BA; BASF, Ludwigshafen, Germany),
• methyl methacrylate (MMA; Sigma Aldrich, Steinheim, Germany),
• 2-hydroxyethyl acrylate (HEA; Across Organics, Geel, Belgium),
• styrene (STY; Sigma Aldrich, Steinheim, Germany).

(b) phosphorus compounds (as telogens)

• dimethyl phosphite (DMPh; Sigma Aldrich, Steinheim, Germany),
• dibutyl phosphite (DBPh; Sigma Aldrich, Steinheim, Germany),
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• diphenyl phosphite (DPPh; Sigma Aldrich, Steinheim, Germany),
• dibutyl phosphate (DBP; Sigma Aldrich, Steinheim, Germany).

The chemical structures of the tested telogens are shown in Figure 1.
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(c) bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide (APO; Omnirad 819, IGM Resins,
Waalwijk, The Netherlands).

The varnish compositions were prepared using P-telomer syrups, pentaerythritol
triacrylate (PETIA; Allnex, Drogenbos, Belgium) as a crosslinking monomer, and 1-hy-
droxycyclohexylphenyl ketone (HAP; Omnirad 184, IGM Resins, Waalwijk, The Nether-
lands) as radical UV-photoinitiator. The addition of PETIA cross-linking monomer was
intended to increase the cross-linking density of the coating and potentially improve
its properties.

2.2. P-Telomers Syrups and Coatings Preparation

The P-telomers syrups were prepared via UV-induced telomerization processes of
mixtures compounded of BA, MMA, HEA, STY, radical UV-photoinitiator (APO), and
one of four organophosphorus telogens (DMPh, DPPh, DBPh, or DBP). Reactions were
realized in the presence of argon at 50 ◦C for 50 min in a glass reactor (250 mL) equipped
with a mechanical stirrer, cooler, and thermocouple. The UV-LED stripe (λ = 390 ± 5 nm;
MEiSSA, Warsaw, Poland) was used as a UV light source. The UV irradiation inside
the reactor (15 mW/cm2) was controlled using the SL2W UV-radiometer (UV-Design,
Brachttal, Germany).

Coating compositions were formed by mixing P-telomers syrups with the multifunc-
tional crosslinking monomer (PETIA) and UV-photoinitiator (HAP). Compositions were
stored for 24 h in a dark place, then applied onto glass substrates using a gap applicator
(60 µm) and UV-irradiated (total UV dose of 6 J/cm2) by means of the medium-pressure
mercury lamp (UV-ABC, Hönle UV-Technology, Gräfelfing, Germany). The systems used
for P-telomers, and varnishes preparation are shown in Table 1.
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Table 1. Composition of P-telomers syrups and UV-photocurable varnishes.

P-Telomers
Syrup

Comonomers [wt%] Telogen

APO b Varnish
Symbol

PETIA c HAP c

BA MMA HEA STY Symbol Dose a

(mole)
Dose b

(wt. Parts)

P-0

40 35 15 10

- 0 0

0.75

V-0/0 0

1

V-0/7.5 7.5

P-DMPh DMPh

0.006

1.65
V-DMPh/0 0

V-DMPh/7.5 7.5

P-DBPh DBPh 2.90
V-DBPh/0 0

V-DBPh/7.5 7.5

P-DPPh DPPh 3.50
V-DPPh/0 0

V-DPPh/7.5 7.5

P-DBP DBP 3.15
V-DBP/0 0

V-DBP/7.5 7.5

a—mole of the telogen/100 wt. parts of the monomers mixture. b—wt. part/100 wt. parts of the monomers
mixture. c—wt. parts/100 wt. parts of the syrup.

2.3. Characterization of P-Telomers Syrups

The dynamic viscosity of the telomers syrups was determined with the DV-II Pro Extra
viscometer (spindle #6 or #7, 50 rpm; Brookfield, New York, NY, USA), at 25 ◦C. The solid
content of the syrups was measured by means of the thermobalance (Radwag, Warsaw,
Poland); samples (ca. 2 g) were heated in aluminum pans at 105 ◦C for 4 h. Gel permeation
chromatography (GPC) was used for the determination of the molecular masses (Mw,
Mn) and polydispersity (PDI) of the P-telomers (telomers syrups were heated at 140 ◦C
for 4 h before the test in order to remove unreacted monomers). The kinetics studies of
the UV-induced telomerization process were realized at 50 ◦C by the photo-DSC method
(the differential scanning calorimeter with UV equipment; Q100, TA Instruments, New
Castle, DE, USA). Samples (of 5 mg) were UV-irradiated (320–390 nm) with an intensity of
15 mW/cm2 in an argon atmosphere.

During the measurements, the polymerization rate (Rp, %/s), conversion of double
bonds (p, %), and photoinitiation index (Ip, s−2) were calculated according to the follow-
ing equations:

Rp =

(
dH
dt

)
H0

[1/s] (1)

p =
∆Ht

∆H0
·100 [%] (2)

Ip =
Rmax

p

tmax
(3)

where: dH/dt is the heat flow recorded during UV-irradiation, H0 is the theoretical heat
value for the complete degree of conversion (∆H = 78.0 kJ/mol for acrylates, ∆H = 54.0 kJ/mol
for methacrylates and ∆H = 67.4 kJ/mol for styrene), ∆Ht is the reaction heat evolved at
time t [37].

The infrared spectra, measured with the Fourier transform infrared spectroscope
with ATR accessories (Nicolet 380, ThermoScientific, Waltham, MA, USA) were used to
characterize the incorporation of groups derived from phosphorus telogens (DMPh, DBPh,
DPPh, and DBP) in the structure of the dry telomers (prepared by drying the reaction
mixtures at 140 ◦C for 4 h before the test to remove unreacted monomers).

2.4. Characterization of the Varnishes

Conversion of C = C bonds (DCC = C) in the varnish coatings after a UV-irradiation
process was monitored using the Fourier transform infrared spectroscope with ATR ac-
cessories (Nicolet 380, ThermoScientific, Waltham, MA, USA) and calculated according to
Equation (4):
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DCc=c =

(
1 − A(t)

A (0)

)
·100 [%] (4)

where A(0) is the initial intensity of the peak at 1635 cm−1 and A(t) is the intensity of the
peak at 1635 cm−1 after t-time. The mentioned peaks were normalized in relation to the
reference peaks at ca. 2960 cm−1 (stretching vibration of asymmetric aliphatic -CH2- groups
in the coating compositions) [38].

Selected mechanical properties of the cured coatings were determined. The pendulum
hardness of varnishes cured on a glass substrate was tested using the König pendulum
(AWS-5, Dozafil, Warsaw, Poland) according to the PN-EN ISO 1522 standard (four mea-
surements for each sample). Adhesion of the coatings to the glass substrate was measured
according to the ISO 4624 standard using a pull-off adhesion tester—Elcometer 510 (Elcome-
ter, Manchester, UK), aluminum dollies (20 mm), and a two-component epoxy adhesive
(results are average made from five measurements). Gloss (at 20◦, ISO 2813) and smoothness
(expressed by Distinctness of Image (DOI) parameter, ASTM D5767) of varnish coatings
applied on white paper panels (WDX Plain White Cards, Leneta Company, Mahwah, NJ,
USA) were measured using the IQ20/60/85 device (four measurements for each sample:
Rhopoint Instruments, St. Leonards-on-Sea, UK). The scratch resistance test was performed
using a scratch apparatus equipped with a steel scratch stylus (Dozafil, Warsaw, Poland)
according to the PN-EN ISO 1518 standard. The presented results corresponded to the
minimum load of the stylus causing a visible scratch on the surface of the coating. The
solvent resistance of cured coatings was tested according to PN-EN ISO 2812-3 standard.
During tests, cotton wool swabs soaked in acetone, propan-2-ol, or methyl ethyl ketone
were placed on the surface of the coatings and covered with the watch glasses for 24 h.
After that time, the swabs were removed, and test panels were wiped with dry cotton wool.
The degree of destruction of the coatings was visually defined (according to ISO 4628-2
or ISO 4628-5). The water resistance of varnish coatings was determined according to the
PN-76/C-81521 standard. Test samples were immersed in distilled water (20 ± 2 ◦C) for
24 h, dried with absorbent paper, and visually evaluated (according to ISO 4628-2).

3. Results and Discussion
3.1. Kinetics of UV-Phototelomerization Process

The results presented in the article refer for the first time to the photochemical telomer-
ization of (meth)acrylate monomers and styrene in the presence of the APO photoinitiator
and P-telogens with different chemical structures. At the beginning, the influence of the
P-telogen’ structures on the process of UV-phototelomerization of the selected monomers
(BA, MMA, HEA, STY) system was investigated by the photo-DSC method. The results of
the kinetic studies of systems containing 0.006 moles of the telogen and 0.5 wt. part of APO
(per 100 wt. parts of monomer mixtures) are presented in Figure 2.

Kinetic studies showed that the UV-photopolymerization of the tested monomers
(without telogen) ran faster (Rp

max ca. 0.11%/s) than their UV-phototelomerization (with
P-telogens). The maximum reaction rates (Rp

max) in UV-phototelomerization systems were
arranged as follows: DBPh (0.10%/s) >DMPh and DPPh (0.09%/s) > DBP (0.07%/s). It
is significant that in systems with P-telogen the time to reach the Rp

max was significantly
shorter (from 1.2 s for a system with DBP, 18 s for DBPh, 19 s for DPPh, 24 s for DMPh) than
during UV-photopolymerization (34 s). Thus, the ability to initiate reactions (Ip, Figure 2d)
in systems with P-telogens was significantly higher than in classical photopolymerization.
In this respect, the system with DBP stood out. Dibutyl phosphate (DBP) is an ester of
phosphoric acid, while the other tested telogens are derivatives of phosphonic acid. During
the initiation of telomerization with DBP, photolysis of the P-OH bond took place, and in
other cases, the P-H bonds were broken. The photo-DSC studies revealed that in the DBP-
APO initiation system, the rapid formation of radicals was also accompanied by a lower
maximum reaction rate. Upon reaching it, the reaction rate slowed down quite sharply.
This might be due to the quenching of the excited states by collisions of hydroxyl radicals
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with macroradicals. Consequently, this system was characterized by the lowest double
bond conversion value (p) after 5 min of UV irradiation (approx. 44%). The mixture without
P-telogen was characterized by the highest value of monomer conversion (53%). Under
the given reaction conditions (i.e., at 15 mW/ cm2 of UV-dose and APO concentration)
monomers conversion was higher than approximately 50%. Among the samples with
phosphonic acid esters (DMPh, DBPh, DPPh) there was a tendency that the larger the alkyl
or aryl substituent, the higher the efficiency of reaction initiation (Ip). The reaction also
ended faster (rapid decrease of Rp to zero), which means that the value of double bond
conversion was lower.
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Figure 2. Photo-DSC curves (a), the reaction rate (b), double bond conversion (c), and photoinitiating
index (d) during BA, MMA, HEA, and STY UV-phototelomerization process in the presence of
different P-telogens (320–390 nm; Io = 15 mW/cm2).

3.2. Properties of P-Telomers and P-Telomers Syrups

The UV-phototelomerization process in a glass reactor was conducted at the same
intensity of UV radiation and temperature as the photo-DSC tests (15 mW/cm2 and 50 ◦C,
respectively). The main difference was the mechanical mixing of the reactants during the
process in a glass reactor. The products of this process were solutions of linear P-telomers
(oligomers) in unreacted monomers, so-called P-telomers syrups. The aim was to achieve
a similar monomer conversion in the syrups, i.e., the solids content (SC) of the telomers
syrup. The selected physicochemical properties of the obtained P-telomers syrups (i.e., the
solid content and dynamic viscosity), as well as molecular weights and polydispersity of
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dry telomers are presented in Figure 3. As mentioned above, the SC values were about 50%
for each sample, independently of the type of phosphorus compound used in the process,
which was most likely due to the amount of photoinitiator used. In contrast, the dynamic
viscosity values of telomer syrups varied from 1.2 to 4.6 Pa·s. The highest value of dynamic
viscosity was achieved for the reference sample P-0 (4.6 Pa·s), as expected. In general, the
telomerization process leads to oligomers rather than polymers, hence the lower viscosity
results of telomer syrups (1.2–2.5 Pa·s). The exception was P-DBP syrup, with a viscosity
close to that of the reference sample P-0 (i.e., 4.5 Pa·s). Already in the photo-DSC studies, a
slightly different course of the process with the participation of DBP telogen was revealed,
i.e., very fast formation of reactive radicals. For this reason, longer chains of oligomers
may be formed in the system, resulting in a higher viscosity of the telomer syrup. This is
confirmed by the results of the molecular weight, presented in Figure 3b; for P-0 polymer
and P-DBP telomer similar values of Mn and Mw (14,500 and 56,000 g/mol, respectively),
as well as PDI values (3.8 a.u.) were observed. However, significantly lower Mn and Mw
values were recorded for the P-DPPh telomer (7000 g/mol and 3300 g/mol, respectively),
and PDI value was the highest (4.6 a.u.). The most favorable PDI results were recorded for
the DMPh sample (3.3 a.u.). As it is known, organophosphorus compounds are not very
effective chain transfer agents [36], which is proved by the presented research.
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Figure 3. The values of dynamic viscosity and solid content of the P-telomers syrups (a), molecular 
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Figure 3. The values of dynamic viscosity and solid content of the P-telomers syrups (a), molecular
weights (Mw, Mn), and polydispersity (PDI) of the P-telomers (b).

The incorporation of groups derived from P- telogens (DMPh, DBPh, DPPh, and
DBP) in the structure of the oligomers was checked by analyzing the FTIR spectra of the
tested phosphorus compounds and dry telomers (Figure 4). The telogen spectra revealed
peaks in the range 1220–1270 cm−1, attributed to P = O stretching vibrations in the telogen
structures (DMPh, DBPh, and DBP), and at a wavelength of 1188 cm−1, derived from
P-O-Ar stretching (DPPh). In the case of FTIR spectra of dry telomeres, a slight shift of
the above-mentioned peaks (from 13 to 29 cm−1) was observed. It was probably caused
by the presence in the structure of linear telomers of hanging hydroxyl groups derived
from the HEA monomer [38]. Nevertheless, the FTIR results confirm the formation of
phosphorus-containing oligomers, i.e., P-telomers. Their structures are also shown in
Figure 4.
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3.3. Properties of UV-Cured Varnish Coatings

Properties of the prepared UV-cured varnish coatings are influenced by many factors,
i.e., the amount and structure of linear telomers, the number of unreacted monomers after
the phototelomerization process, the type and amount of the crosslinking monomer or
UV-photoinitiator added to the coating compositions (which participates in the photo-
crosslinking process).

In this paper, the influence of the P-telomer type (i.e., the structure of terminal phos-
phorus groups) and the presence of crosslinking monomer on the mechanical and optical
properties of UV-cured varnish coatings was tested. The hardness and adhesion of coatings
(total UV dose 6 J/cm2) are presented in Figure 5.
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Figure 5. The values of hardness and adhesion of UV-cured varnish coatings: without crosslinking
monomer PETIA (a), with 7.5 wt. parts of crosslinking monomer PETIA (b).

As can be seen, coatings with crosslinking monomer PETIA (Figure 5b) generally
showed higher hardness (80–110 a.u.) and adhesion to glass substrate (3.7–8.2 MPa) values
than those without PETIA (30–75 a.u. and 1.7–6 MPa, respectively) (Figure 5a). That was
due to the generally higher cross-linking density of the coatings containing PETIA and
additionally the presence of hydroxyl groups (from the structure of this monomer). It
should be noted that in PETIA systems, the UV-crosslinked coating consisted of a linear
telomer (or poly(meth)acrylate; reference sample V-0/7.5) and a cross-linked structure
composed of unreacted monomers (BA, MMA, HEA, STY) and the trifunctional PETIA
monomer (semi-IPN). Therefore, the hardness and adhesion results were higher than those
in Figure 5a. Excellent hardness values were observed for the samples V-DMPh/7.5 and
V-DPPh/7.5 (ca. 110 a.u. and 111 a.u., respectively). These results were even higher than
for the reference sample (V-0/7.5, 106 a.u.). These coatings were also characterized by
higher adhesion to the glass substrate than the reference sample. The highest adhesion
result was obtained for the V-DPPh/7.5 coating (8.2 MPa). Unexpectedly, the V-DBPh
and V-DBP samples showed less adhesion to the substrate than the reference sample (ca.
3.8 MPa), and lower hardness values (79 a.u. and 82 a.u., respectively). Based on the
FTIR spectra evaluation (Figure 6), no unsaturated bonds in the cured coatings were noted
(DCC = C was 100%). On that basis, we believe that the lower adhesion of the V-DBPh/7.5
and V-DBP/7.5 coatings was due to the presence of relatively long aliphatic chains (C4)
in the P-telomere structures, which created spatial obstacles, and the terminal groups
containing phosphorus were trapped in the polymer matrix (semi-IPN), which resulted in
deterioration of adhesion. Additionally, these coatings are based on telomeres with slightly
higher molecular weights (which confirms the adverse effect on adhesion), and their syrups
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have the highest viscosity (which makes the photopolymerization process of the coating
composition more difficult than in the others).
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Figure 6. The FTIR spectra of UV-cured varnish coatings (before and after the UV irradiation process):
V-DMPh/7.5 (a); V-DBPh/7.5 (b); V-DPPh/7.5 (c); V-DBP/7.5 (d).

Regarding the results for coatings without PETIA (Figure 5a), samples based on P-
telomers were allowed to achieve at least two times the higher hardness and adhesion
values compared to the reference sample (V-0/0). However, it should be mentioned
that the hardness values were unsatisfactory (<80 a.u.). The V-DMPh/0 coating was an
exception here. The solution of this P-DMPh telomer was characterized by the lowest
value of dynamic viscosity (1.2 Pa·s) (slightly molecular weight of oligomers, Figure 3b).
Considering this and the comparable number of unreacted monomers in all P-telomers
solutions, it should be stated that in the system with DMPh, the photopolymerization
process of the remaining monomers was easier (due to the low viscosity of the telomer
matrix). Therefore, it was easier to form polymer coils from linear telomers and linear
poly(meth)acrylates, so that the access of phosphorus atoms to the glass surface was limited
(they are trapped in polymer coils), which results in lower adhesion, but slightly higher
hardness than other samples. The molecular weights of telomers also affected the adhesion
results. The highest values were observed for the varnish coatings containing P-DPPh
telomer (the shortest chains were noted). Short telomers chains are more mobile and allow
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better contact with the substrate surface (better wetting) and better ordering of the dipoles,
so adhesion values are higher.

In selected UV-cured varnish coatings containing a crosslinking monomer (total UV
dose 6 J/cm2), the influence of the type of P-telomers on the gloss values (at 20◦) was
investigated. The prepared coatings were characterized by high gloss (from 80 to 89 G.U.)
(Figure 7). The results were similar for all samples, regardless of the presence and type of
P-telomer. It might therefore be concluded that the monomer composition in the tested
systems, in particular the presence of styrene, was responsible for the high results. More
significant differences were noted during measurements of the DOI parameter (described
as the sharpness or clarity of the image produced by the reflection of an object on a surface
varnish coating, the higher the DOI value the varnish coatings are smoother and clearer).
Samples with P-DBPh and P-DBP telomers had the same DOI values (43 a.u.), but an
increase of that parameter was observed for the varnishes based on P-DMPh and P-DPPh
telomers (48 and 57 a.u., respectively). Additionally, the DOI of the reference sample was
also 57 a.u. Generally, slight imperfections of tested varnish coatings were observed.
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Figure 7. The values of gloss at 20◦ and DOI parameter of UV-cured varnish coatings containing
crosslinking monomer.

Resistance to scratch, the organic solvents, and distilled water were evaluated for
UV-cured varnish coatings containing PETIA monomer (Table 2). The minimum load at
which the stylus caused a visible scratch on the surface of the coating was noted. The
values of that parameter were reported from 100 g to 350 g. Therefore, the coatings did not
withstand impact scratch tests. However, among the tested samples, the highest scratch
result was obtained for the varnish coating with P-DMPh telomers (scratch resistance the
same as reference samples). Additionally, the V-DMPh/7.5 coating was more resistant to
water than the other samples (including the reference sample). Moreover, V-DMPh coatings
were characterized by slightly better resistance to organic solvents. On the other hand,
the most significant degradation was observed in the case V-DBP/7.5 sample (cracking of
the coating).
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Table 2. Scratch, water, and solvent resistance of the UV-cured varnish coatings.

Varnish
Symbol

Scratch
Resistance 1 (g)

Effect of
Distilled Water 2

Effect of Organic Solvents 2

Acetone Propan-2-ol MEK

V-0/7.5 350 Blisters 5(S2) Blisters 4(S3) Blisters 4(S3) Blisters 4(S3)
V-DMPh/7.5 350 Blisters 4(S2) Blisters 5(S2) Blisters 3(S2) Blisters 5(S2)
V-DBPh/7.5 200 Blisters 5(S2) Blisters 5(S3) Blisters 5(S3) Blisters 5(S3)

V-DPPh/7.5 100 Matt coating,
blisters 5(S2) Blisters 4(S3) Blisters 4(S3) Blisters 4(S3)

V-DBP/7.5 300 Matt coating,
blisters 5(S2) Cracking without preferential direction 5(S4)

1—measured as the minimum load caused a visible scratch on the surface of the coating; 2—quantity and size
of the blisters or cracking were characterized from 2 to 5 (the number “2” is the lowest value of the parameter),
the first number is the quantity, and the second number (after “S”) is the size (according to ISO 4628-2 and
ISO 4628-5).

4. Conclusions

Phosphorus-containing (meth)acrylate telomers (P-telomers) have been prepared
via a solvent-free UV-phototelomerization process in the presence of APO photoinitiator
and different phosphorus telogens (phosphite or phosphate esters). The prepared P-
telomers syrups compounded with the crosslinking monomer (pentaerythritol triacrylate;
PETIA) and a UV-photoinitiator were tested as solvent-free UV-curable varnish liquid
compositions. The influence of the structure of phosphorus telogens on the course of the
UV-phototelomerization process and the influence of the structure of obtained P-telomers
on the properties of UV-cured varnish coatings were characterized. The main results are
as follows:

• P-telogen/APO initiating systems showed higher efficiency in the process than the
APO photoinitiator itself (higher photoinitiation index), which resulted in a lower rate
of telomerization reaction than in the case of photopolymerization and a slightly lower
monomer conversion.

• Chemical modification of P-telomer syrups with a crosslinking monomer significantly
improved the hardness and adhesion of the obtained coatings. The highest hardness
values were reported for UV-cured varnish coating with dimethyl phosphite (DMPh)
telomers (111 a.u.), while the strongest adhesive bond to the glass surface was observed
in the case of diphenyl phosphite (DPPh) telomers (8.2 MPa).

• The most satisfactory scratch, water, and solvent resistance characterized UV-cured
varnish coatings based on DMPh telomers.
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