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Abstract: One of the major obstacles in the way of high−performance quantum dot light−emitting
diodes (QLEDs) is the charge imbalance arising from more efficient electron injection into the emission
layer than the hole injection. In previous studies, a balanced charge injection was often achieved
by lowering the electron injection efficiency; however, high performance next−generation QLEDs
require the hole injection efficiency to be enhanced to the level of electron injection efficiency. Here,
we introduce a solution−processed HfOx layer for the enhanced hole injection efficiency. A large
amount of oxygen vacancies in the HfOx films creates gap states that lower the hole injection barrier
between the anode and the emission layer, resulting in enhanced light−emitting characteristics. The
insertion of the HfOx layer increased the luminance of the device to 166,600 cd/m2, and the current
efficiency and external quantum efficiency to 16.6 cd/A and 3.68%, respectively, compared with the
values of 63,673 cd/m2, 7.37 cd/A, and 1.64% for the device without HfOx layer. The enhanced
light−emitting characteristics of the device were elucidated by X−ray photoelectron, ultra−violet
photoelectron, and UV−visible spectroscopy. Our results suggest that the insertion of the HfOx layer
is a useful method for improving the light−emitting properties of QLEDs.

Keywords: quantum dots; light−emitting diodes; solution process

1. Introduction

Light−emitting diodes (LEDs) have been extensively researched in the past few
decades as a component of electronic devices that have become indispensable for conve-
nient human life. Various types of light−emitting materials, such as organics, perovskites,
two−dimensional (2D) materials, and quantum dots (QDs) have been used to produce high
brightness LEDs [1–4]. Among these light−emitting materials, QDs have been extensively
emerging owing to their high color purity, solution processability, and facile tunable band
gap [5,6].

Unfortunately, the brightness and efficiency of quantum dot light−emitting diodes
(QLEDs) are not yet optimal and attempts were made to address these shortcomings by
adjusting the charge imbalance between electron and hole injection [7–9]. The charge
imbalance in QLEDs mainly originates from the presence of excess electrons and numerous
studies have been conducted to resolve the problem. Recently, Jin et al. reported the
inclusion of an organic electron−blocking layer (EBL) to rectify the charge balance by
blocking the injection of electrons [10]. Zhang et al. reported the incorporation of a
double−layered structure for electron transport to balance the charge injection [11].

Materials 2022, 15, 8977. https://doi.org/10.3390/ma15248977 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15248977
https://doi.org/10.3390/ma15248977
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://doi.org/10.3390/ma15248977
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15248977?type=check_update&version=2


Materials 2022, 15, 8977 2 of 10

Rather than restricting electron injection to balance the charge injection, another ap-
proach would be to improve the hole injection properties for high performance QLED
devices. Accordingly, many efforts have been devoted to improve the hole injection char-
acteristics of QLEDs, such as doping the hole injection layer (HIL) or hole transport layer
(HTL). However, considering that the hole transporting characteristics are sensitively
affected by the amount of dopant material, attaining efficient hole transporting characteris-
tics with an undoped hole injection/transport layer continues to remain a challenge [12].
Attempts to subject the HIL or HTL to additional treatment have also been reported to
improve the hole injection properties; however, this simultaneously complicated the de-
vice fabrication [13,14]. Therefore, introducing an additional anode buffer layer without
doping or post−chemical treatment is necessary for obtaining solution−processed high
performance QLEDs.

Here, we introduced a solution−processed HfOx layer as an anode buffer layer to
improve the performance of QLEDs. Although the HfOx layer has been widely used as
an insulating layer, modification thereof by introducing a large amount of defect states
originating from the oxygen vacancies in the HfOx film was expected to lower the hole
injection barrier between the anode and emission layer. A large amount of oxygen vacancies
was obtained via spin coating followed by thermally annealing the films at low temperature
of 250 ◦C. The maximum luminance, external quantum efficiency, and current efficiency
of the optimal device was 166,670 cd/m2, 3.68%, and 16.6 cd/A, respectively. These
quantities, which are representative of the QLEDs performance, are more than two−fold
higher than those of the device without the HfOx layer, indicating that the HfOx layer
efficiently enhanced the performance of the QLEDs.

2. Experimental Section
2.1. Solutions Preparation

Solutions of HfOx with different concentrations were prepared by dissolving different
amounts of HfCl4 (Sigma Aldrich, St. Louis, MO, USA) in 10 mL 2−methoxyethanol (Sigma
Aldrich) to obtain 0.01, 0.03, and 0.05 M solution, after which the mixture was stirred for
30 min. A solution of vanadium oxide (V2O5) was prepared by dissolving 0.1 mL of vana-
dium triisopropoxide oxide (Alfa Aesar, Massachusetts, USA) in 13 mL of isopropanol (IPA)
in a nitrogen−filled glove box. After vigorously stirring the solution for 30 min, 66.5 µL
of deionized (DI) water was dropped into the solution to facilitate hydrolysis. A 1 wt%
of Poly[(9,9−dioctylfluorenyl−2,7−diyl)−co−(4,4′−(4−sec−butylphenyl)diphenylamine)]
(TFB) solution was prepared by dissolving TFB into p−xylene, followed by stirring at 80 ◦C
for 30 min.

2.2. Device Fabrication

Patterned ITO glass was ultrasonicated with DI water, acetone, and IPA for 10 min.
The substrates were dried in a stream of N2 gas, followed by exposure to UV−ozone for
15 min to render the surface hydrophilic and remove residual organics. Subsequently, the
HfOx solution was spin−coated onto the substrate at 3000 rpm for 30 s. The spin−coated
HfOx films were pre−annealed at 120 ◦C for 5 min to evaporate the solvents, and finally
annealed at 250 ◦C for 45 min. After the coated substrate was allowed to cool, a V2O5
solution was spin−coated onto the HfOx layer at 3000 rpm for 30 s, followed by annealing
at 60 ◦C for 5 min. Next, a solution of TFB, the HTL material, was spin−coated onto the
V2O5 layer at 3000 rpm for 30 s, followed by annealing at 180 ◦C for 30 min. Then, a solution
of CdSe/ZnS QDs (Uniam, 20 mg/mL) was spin−coated onto the TFB layer at 2000 rpm for
30 s, followed by annealing at 100 ◦C for 10 min. The layer of QDs was covered with a layer
of ZnO by spin coating a solution thereof (Avantama, N−10) onto the QDs at 2000 rpm
for 30 s, followed by annealing at 100 ◦C for 10 min. Finally, an aluminum (Al) cathode
(thickness: 130 nm) was thermally evaporated under vacuum (~8 × 10−6 Torr) at a rate of
3 A/s using a metal shadow mask with an illuminating area of 4 mm2.
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2.3. Characterization

The electroluminescence characteristics of the QLEDs were measured using an OLED
I−V−L test system (M6100, McScience Inc.,Suwon, Republic of Korea), which was equipped
with a Keithley 2400 source meter and a Konica Minolta CS−2000 spectroradiometer. The
ultra−violet photoelectron spectroscopy (UPS) measurements were performed at the Multi-
dimensional Materials Research Center of Kyung Hee University using a helium discharge
lamp (VG Scientific, photon energy 21.22 eV) in a custom−built ultra−high vacuum cham-
ber (base pressure: 5 × 10−10 Torr). A sample bias of −10 V was applied to determine the
secondary electron cut−off (SECO) positions when the work function (WF) was measured.
All spectra were recorded at room temperature by using a hemispherical analyzer (Sci-
enta SES100, Uppsala, Sweden). The overall energy resolution was approximately 0.1 eV.
X−ray photoelectron spectroscopy (XPS) measurements were conducted in an ultrahigh
vacuum chamber (~1 × 10−9 Torr), using a spectrometer (Nexsa, Thermo Fisher Scientific,
Massachusetts, USA) with an Al−Kα (1486.6 eV) source. UV−visible measurements were
conducted using a UV−vis spectrophotometer (Cary 100, Agilent, Santa Clara, USA) to
acquire transmittance spectra of the layers. The surface morphology was investigated using
AFM measurement (Dimension 3100 SPM, Bruker, Massachusetts, USA ).

3. Results and Discussion

Figure 1a shows the schematic illustration of the device fabrication. The final structure
of the device was ITO/(HfOx)/V2O5/TFB/QDs/ZnO/Al. Figure 1b shows the thickness
of HfOx (0.03 M) film obtained from AFM measurement. The thickness was obtained to be
3.7 nm. The thickness of V2O5, TFB, QDs, and ZnO can be estimated to be 4.5, 12, 131, and
38 nm from our previous report [15]. Figure 1c–g shows the surface morphology and 3D
topography of HfOx (0.03 M), V2O5, TFB, QD, and ZnO layers, respectively. The root mean
square values of the layers were 0.1, 0.24, 0.31, 2.94, and 1.38 nm, respectively.

The UPS measurements were intended to determine the WF and valence band maxi-
mum (VBM) values of each of the layers from the SECO position and valence region. The
SECO and valence region spectra of the ITO, ITO/HfOx (0.01 M), ITO/HfOx (0.03 M), and
ITO/HfOx (0.05 M) films are shown in Figure 2a. The obtained WF values of ITO, and
ITO/HfOx (0.01, 0.03, and 0.05 M) were 4.02, 4.07, 4.02, and 3.87 eV. The VBM values of
HfOx (0.01, 0.03, and 0.05 M) were found to be 3.40, 3.41, and 3.39 eV, respectively. The
SECO and valence region spectra of V2O5, HfOx (0.01 M)/V2O5, HfOx (0.03 M)/V2O5, and
HfOx (0.05 M)/V2O5 are shown in Figure 2b. The inset shows the near valence region
spectra of each of the V2O5 layers, indicating the gap states originating from the V4+ state
of V2O5, as previously reported [16–18]. The WF values of V2O5 and those of the HfOx
(0.01, 0.03, and 0.05 M)/V2O5 layers were 4.94, 5.16, 5.24, and 5.17 eV, respectively. The
VBM values of the V2O5 layers were 2.55, 2.55, 2.52, and 2.53 eV, respectively, and the
differences between the Fermi level (EF) and gap state were 0.63, 0.61, 0.59, and 0.62 eV,
respectively. Figure 2c shows the optical band gaps of the HfOx films in the form of the
Tauc plots derived from the UV−vis transmittance, using the following equation

ahv = A
(
hv− Eg

)n (1)

where α is the absorption coefficient, hν is the photon energy, A is a constant, Eg is the
optical band gap, and n = 1/2 for a direct band gap semiconductor [19]. All the HfOx films
had an optical band gap of 4.86 eV, regardless of the concentration of the HfOx solution.
Figure 2d shows the optical band gaps of the V2O5, TFB, and QD layers of 2.67, 2.93, and
2.23 eV, respectively, derived from the Tauc plot. The optical transmission spectra, recorded
by conducting UV−vis measurements of the V2O5/TFB/QDs/ZnO films with and without
the HfOx layer, are shown in Figure 2e. All the films had high transmittance of more than
90% in the 520–580 nm region regardless of the presence of the HfOx layer, indicating that
the HfOx films did not severely affect the transmittance of the device.
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Figure 1. (a) Schematic illustration of the device fabrication. (b) Thickness of the HfOx (0.03 M) films
obtained from AFM measurement. Surface morphology with 3D topography of (c) HfOx (0.03 M),
(d) V2O5, (e)TFB, (f) QD, and (g) ZnO layers.

The chemical states of each of the layers in the device were examined in detail by using
XPS to analyze for hafnium 4d (Hf 4d) and vanadium 2p (V 2p). Reliability was ensured
by calibrating the binding energies by assigning the peak at 285 eV to C 1s. Figure 3a
shows the Hf 4d spectra of the HfOx (0.01 M), HfOx (0.03 M), and HfOx (0.05 M) films.
The doublet at binding energies of ~224.2 eV and 213.4 eV arose as a result of spin orbit
splitting of the Hf 4d orbitals into Hf 4d3/2 and Hf 4d5/2, respectively [20]. Figure 3b–d
shows the Hf 4d3/2 XPS results for the HfOx (0.01 M), HfOx (0.03 M), and HfOx (0.05 M)
films, respectively. Because all the Hf 4d3/2 peaks were slightly asymmetric, as shown
in Figure 3b−d, Hf ions of different valences were considered to exist in the HfOx film.
The XPS profile of Hf 4d3/2 was deconvoluted into two peaks using Gaussian–Lorentzian
fitting. The asymmetric Hf 4d3/2 peak can be deconvoluted into two peaks centered at
the binding energies of ~223.7 eV and ~225.1 eV. The Hf in HfOx is widely known to exist
in the Hf4+ and Hfx+ (x < 4) states. The lower electronegativity of Hf (1.3) than oxygen
(3.44) suggests that the Hf with lower valency (Hfx+), which would be less affected by the
surrounding oxygen atoms, and would have lower binding energy than stoichiometric Hf
in the form of HfO2 [21]. This suggests that the amount of Hfx+ is related to the amount
of oxygen vacancies in the film, which is consistent with our previous report [22]. The
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concentration of Hfx+ in HfOx (0.01 M), HfOx (0.03 M), and HfOx (0.05 M) was 78.4, 80.7, and
79.5%, respectively, indicating that the HfOx (0.03 M) film possesses the highest amount of
oxygen vacancies.
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HfOx (0.03 M), and HfOx (0.05 M) films; and (d) V2O5, TFB, and QDs. (e) Optical transmittance
spectra of glass/V2O5/TFB/QDs/ZnO films with and without the HfOx layer.

figfig:materials-2102600-f004a−d shows the deconvoluted V 2p3/2 XPS profiles for the
V2O5, and HfOx (0.01, 0.03, and 0.05 M)/V2O5 films, respectively. The V 2p3/2 spectrum
was deconvoluted into two peaks centered at the higher and lower binding energies of
~517.7 eV and ~516.6 eV, respectively. The peak centered at the higher of these two values
indicates the V in V5+, whereas the peak centered at the lower value indicates the V in
V4+ [23]. Because the V4+ state forms a hole transport channel near the Fermi level, it is
necessary to clarify the concentration of V4+ in the V2O5 film [16]. The concentration of V4+

in V2O5, and in the HfOx (0.01, 0.03, and 0.05 M)/V2O5 films was 23.13, 24.59, 26.00, and
25,49%; thus, the HfOx (0.03 M)/V2O5 film had the highest concentration of V4+. During
the formation of the V2O5 layer above the oxygen−deficient HfOx layer, the oxygen can
diffuse from V2O5 to HfOx because of the difference in the oxygen density between V2O5
and HfOx. This indicates that the highest V4+ concentration of HfOx (0.03 M)/V2O5 could
be the consequence of the existence of the highest concentration of oxygen vacancies in
HfOx (0.03 M) film [24].

figfig:materials-2102600-f005 shows the schematic interfacial energy band diagram of
the QLEDs with the aligned Fermi level corresponding to the UPS results and the Tauc plot.
The V4+−related gap states of V2O5 near the Fermi level are shown in Figure 5a–d. In the
case of HfOx, Hadacek et al. and Hildebrandt et al. reported that the oxygen−deficient
HfOx films exhibit p−type behavior. In addition, Kaisar et al. revealed that the origin of
the p−type conductivity of oxygen−deficient HfOx is due to the oxygen vacancy−related
defect states, which are located ~3 eV above the VBM [25–27]. Because of the high concen-



Materials 2022, 15, 8977 6 of 10

tration of Hfx+ in our HfOx films representative of the large amount of oxygen vacancies in
the HfOx films, we indicated that the oxygen−related defect states of HfOx are located 3 eV
above the VBM. Therefore, as shown in Figure 5, all the devices containing the HfOx layer
would be expected to exhibit enhanced hole injection characteristics owing to the lowered
hole injection barrier. In addition, because the device with the HfOx (0.03 M) layer has the
lowest hole injection barrier of 0.18 eV at the HfOx/V2O5 interface, the device with the
HfOx (0.03 M) layer would be predicted to exhibit the optimal hole injection characteristics.
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To corroborate the abovementioned results, we first recorded the current density−voltage
(J−V) curves of the hole only devices (HODs) with the structure ITO/(HfOx)/V2O5/TFB/Al
as shown in Figure 6a−b. The HOD without the HfOx film had the lowest current density,
with that of the HfOx (0.01 M) film being slightly higher. The HOD with the HfOx (0.03 M)
film had the highest current density. Considering the alignment of the interfacial energy
bands, as shown in Figure 5, the enhanced current density of the HOD can be attributed
to the well−aligned gap states between the HfOx and V2O5 layers. Moreover, taking
into account that the HfOx (0.03 M)/V2O5 film contains the highest concentration of gap
states, originating from the V4+ state, the well−aligned energy levels and the concentration
of gap states can both contribute to efficient hole injection. Figure 6c shows the current
density−voltage−luminance (J−V−L) characteristics of the QLEDs with and without the
HfOx (0.01, 0.03, and 0.05 M) layer. Consistent with the aforementioned improved hole
injection characteristics, the QLED with the HfOx (0.03 M) layer had the highest luminance
of 166,670 cd/m2, more than twice as high as the QLED without the HfOx layer. In terms
of the current density, the device without the HfOx layer had higher values compared
with the devices with the HfOx layer. This can be attributed to the high conduction band
offset between HfOx and V2O5, which would have efficiently blocked the leakage current
toward the ITO. Owing to the diminished leakage current and enhanced hole injection
characteristics, the current efficiency (CE) and external quantum efficiency (EQE) of QLEDs
with the HfOx (0.03 M) layer increased considerably, as shown in Figure 6c,d. The device
with the HfOx (0.03 M) layer exhibited CE and EQE values of 16.6 cd/A and 3.68%, which
is more than two−fold higher than the 7.37 cd/A and 1.64% of the device without the
HfOx layer. Figure 6e shows the electroluminescence (EL) spectra of the QLED devices
with the HfOx (0.01 M), HfOx (0.03 M), and HfOx (0.05 M) layers, and without the HfOx
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layer at the maximum luminance of each of these devices. The operating image of the
QLED is shown in the inset of Figure 6e. All the QLEDs had an emission peak with full
width at half maximum (FWHM) of ~25 nm without significant peak shift, indicating that
the devices exhibited high color purity. To identify the stability of the device, the lifetime
was confirmed at which the luminance reached half of the initial value with the initial
luminance discussed, as shown in Figure 6f. The initial luminance values of the devices
without HfOx and with HfOx (0.03 M) were 2320.2 and 2535.9 cd/m2, respectively. The
lifetimes of the devices at an L0 = 100 cd/m2 was obtained using the following equation

(L0)
n × T50 = constant (2)

where n is the acceleration factor (1.514), L0 is the initial luminance, L is the luminance, and
T50 is the time which the luminance reached the half of the initial luminance value [22].
The longer lifetime of 139 h was obtained by adding HfOx (0.03 M) layer, compared with
the 75.9 h of the device without HfOx layer.
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4. Conclusions

We fabricated QLEDs with highly enhanced light−emitting characteristics by adding
a solution−processed HfOx interfacial layer. The defect states of the HfOx layer, originating
from the large amount of oxygen vacancies, could be well−aligned with the gap state of
V2O5, resulting in lowering the hole injection barrier from ITO to V2O5. Furthermore, the
oxygen−deficient HfOx film also contributed to the increase in the formation of the V4+

state in the V2O5 layer, resulting in enhanced hole injection characteristics. Owing to the
improved hole injection characteristics, the device with the optimal HfOx concentration had
the highest luminance of 166,670 cd/m2, current efficiency of 16.6 cd/m2, and EQE of 3.68%
compared with the values of 63,673 cd/m2, 7.37 cd/A, and 1.64%, respectively, for the
device without HfOx layer. UPS and XPS measurements enabled us to identify the origin
of the enhanced light−emitting characteristics of the devices. Our results indicate that we
developed a useful and facile method for improving the hole injection characteristics of
QLEDs by incorporating a solution−processable HfOx interfacial layer.
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