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Abstract: Phyllite is widely distributed in nature, and it deserves to be studied considering rock
engineering applications. In this study, uniaxial compression tests were conducted on foliated
phyllite with different foliation angles under dry and water-saturated conditions. The impacts of
water content and foliation angle on the stress–strain curves and basic mechanical properties of
the Phyllite were analyzed. The experimental results indicate that the peak stress and peak strain
decrease first and then increase with increasing foliation angle as a U-shape or V-shape, and the
phyllite specimens are weakened significantly by the presence of water. Moreover, an approach
with acoustic emission, digital image correlation, and scanning electron microscopic is employed to
observe and analyze the macroscopic and mesoscopic failure process. The results show that tensile
microcracks dominate during the progressive failure of phyllite, and their initiation, propagation,
and coalescence are the main reasons for the failure of the phyllite specimens. The water acts on
biotite and clay minerals that are main components of phyllite, and it contributes to the initiation,
propagation, and coalescence of numerous microcracks. Finally, four failure modes are classified as
followed: (a) for the specimens with small foliation angles α = 0◦ or 30◦ (Saturated), both shear sliding
and tensile-split across the foliation planes; (b) for the specimens with low to medium foliation angles
α = 30◦ (Dry) or 45◦(Saturated), shear sliding dominates the foliation planes; (c) for the specimens
with medium to high foliation angles α = 45◦ (Dry) or 60◦, shear sliding dominates the foliation planes;
(d) for the specimens with high foliation angles α = 90◦, tensile-split dominates the foliation planes.

Keywords: anisotropic rock; phyllite; crack evolution; failure modes; DIC method; AE parame-
ter analysis

1. Introduction

As a typical metamorphic rock, phyllite is encountered frequently in mining and
geotechnical engineering, e.g., in tunneling, underground construction, mining, oil and
gas extraction, etc. Practical operations in tunneling and underground mining show that
a large number of foliation planes often appear in phyllite, and these foliation planes
have a considerable influence on the mechanical properties and failure behavior of the
phyllite [1–5]. In addition, various geological disasters such as roof caving, rib spalling,
and rockburst are relevant to foliation planes that bring great difficulty for rock excavation
and support [6–10].

To investigate the failure behavior of foliated or layered rock materials, many schol-
ars derived a number of constitutive laws and failure criteria for transversely isotropic
rocks [11–14]. These constitutive laws and failure criteria agreed well with the experimen-
tal data of many investigators in terms of prediction of strength and deformation, but
they were difficult to be used to characterize crack evolution during the loading process.
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Accordingly, substantial studies were carried out on the strength, deformation charac-
teristics, and failure behavior of transversely isotropic rocks by both experimental and
numerical methods [15–18]. Tien et al. [19] investigated 3D macroscopic-fractured surfaces
of simulated transversely isotropic rocks by reconstructing unrolled images from a rotary
scanner and divided the failure modes into four kinds: sliding failure along discontinuities,
tensile fracture across the discontinuities, tensile-split along the discontinuities, and sliding
failure across the discontinuities. Yin and Yang [20] studied three kinds of transversely
isotropic rock-like specimens with different bedding thickness ratios under conventional
triaxial compression and divided the failure modes into three kinds: tensile-split along the
core axes (0◦, 15◦, and 30◦), shear-sliding along the bedding plane (45◦, 60◦, and 75◦), and
split along the vertical bedding plane (90◦). Furthermore, the development of the Digital
Image Correlation method (DIC) [21–23], Acoustic Emission techniques (AE) [24–27], and
Scanning Electron Microscopic observation (SEM) was found to be suitable for capturing
the progressive failure process and understanding the failure mechanism of the rock. The
aforementioned studies show that the failure mode transforms from tensile splitting across
discontinuities to shear slip along discontinuities, and finally to tensile splitting along
discontinuities with increasing foliation angle.

In addition to foliation angle, water content has a significant impact on the mechanical
properties and failure behavior of phyllite. Previous studies indicate that the presence
of water significantly weakens the mechanical properties of the rock such as its strength,
rigidity, and brittleness [28]. In the saturation process, microcracks are filled with water,
and crack tips are the most active areas of the water-rock reaction, which may decrease
the critical stress intensity factor [29,30]. Furthermore, phyllite is a compact lustrous
metamorphic rock. The rock is always rich in mica, chlorite, and quartz and it possesses
the lepido granoblastic texture. Some changes may happen when phyllite is saturated such
as clay mineral expansion, pore filling, non-uniform deformation, and calcite dissolution,
respectively [31,32]. All of these changes result in the weakness of physical-mechanical
properties and the generation of new defects like microcracks.

Though various isotropic rocks were studied, many new techniques in laboratory
testing have made it possible to systematically investigate the coupling effects of foliation
angle and water content on the mechanical properties and failure behavior by using an
approach of AE, DIC and SEM techniques for foliated phyllite under uniaxial compression.

2. Materials and Methods
2.1. Rock Specimens

The rock samples used in this study are foliated phyllite, taken from Longling county,
Yunnan province, China. The X-ray diffraction result shows the mineral composition of the
phyllite consisting of approximately 53.8% biotite, 22.4% kaolinite, and 16.4% quartz, as
shown in Figure 1. The SEM observation of the phyllite specimens indicates that foliations
are parallel to one another with a thickness of from 20 to 140 µm, and a large number of
microcracks and micropores are scattered in foliation planes.

According to ISRM suggested methods [33,34], a large phyllite block from the field
was manufactured into d50 mm × 100 mm cylindrical specimens having five foliation
angles 0◦, 30◦, 45◦, 60◦, and 90◦. These specimens were divided into two parts: dry groups
and water-saturated groups. The dry groups were placed in a drying oven for 24 h until
the weight of each specimen no longer decreased, and the water-saturated groups were
placed in a vacuum water-filling device for 48 h until the weight of each specimen no
longer increased. Moreover, all specimens were sealed with plastic wrap once the process
of drying or saturation was completed. To select intact specimens, serials of density and
wave velocity tests were carried out using the prepared phyllite specimens to remove
the specimens with macro-fractures induced by specimen preparation. In this study, all
properties had been tested twice for obtaining reliable results. The physical properties of
the intact phyllite specimens are tabulated in Table 1.
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Figure 1. X-ray diffraction (XRD) and Standard Electronic Modules (SEM) analysis.

Table 1. Basic physical properties of phyllite with different foliation angles.

Foliation Angle α

(◦)
Dry Density

(g/cm3)
Saturation

Density (g/cm3)
Saturated Water

Content (%)
Dry Wave

Velocity (m/s)
Saturation Wave

Velocity (m/s)

0 2.756 2.775 0.689 3750 4319
30 2.768 2.780 0.434 4332 4573
45 2.762 2.770 0.290 4279 4656
60 2.763 2.782 0.688 4807 5164
90 2.760 2.768 0.290 5942 6095

Average 2.762 2.775 0.471 4622 4961

In Table 1, the average density of phyllite in the dry and water-saturated conditions is
2.762 g/cm3 and 2.775 g/cm3, respectively. The density of phyllite in dry conditions was
significantly lower than that in water-saturated conditions, indicating that phyllite had
a good water-absorbing ability. Furthermore, the water-absorbing ability is significantly
affected by foliation angles, and the water-absorbing ability with different foliation angles
from strong to weak is 0◦, 60◦, 30◦, 45◦, and 90◦. Furthermore, the wave velocity is also
significantly influenced by foliation angle and water content. When the foliation angle
increased from 0◦ to 90◦, the average wave velocity of specimens under dry conditions
increased from 3750 to 5942 m/s (58.5% increment). The average wave velocity of specimens
under dry conditions is lower than that of under water-saturated conditions. From the
physical features, the phyllite specimens in this study are of the typical isotropic rocks and
have a good water-absorbing ability.

2.2. Testing Setup and Methods

The testing setup consists of a loading system, a DIC system, and an AE system, as
shown in Figure 2. Uniaxial compression tests were conducted on a new SANS electro-
hydraulic servo-controlled rigidity testing machine and a loading control system DCS-200.
According to ISRM Suggested methods for rock characterization, testing, and monitor-
ing [33], the stress control mode was adopted in the uniaxial compression tests and the
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stress loading rate was set at 0.5 MPa/s. In order to record the crack evolution of the
foliated phyllite under uniaxial compression, both the Digital Image Correlation (DIC)
method and acoustic emission (AE) technology were conducted. The DIC system con-
sisted of an industrial camera with a resolution of 2448 × 2048 pixels and a frame rate of
15 frames per second, two LED lamps for supplemental lights, and a computer with GOM
correlate software for image collection and processing. The AE system was composed
of a MICRO-II-32 all-digital AE workstation produced by American Physical Acoustics
Corporation, four amplifiers with a 40 dB threshold, and four sensors fixed on both sides of
the specimens.
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Figure 2. Schematic diagram of the loading system, the DIC system, and the AE system.

3. Mechanical Behavior Analysis
3.1. Stress–Strain Curves

Figure 3 shows the stress–strain curves of foliated phyllite with different foliation
angles under uniaxial compression. Compared with the characteristics of typical stress-
strain curves of low-porosity rocks [35,36], the stress–strain curves of the phyllite are
different in three aspects: (1) fluctuating at the elastic deformation stage; (2) a lack of a clear
stable and unstable crack growth stage; (3) dropping rapidly after the peak stress but
maintaining a certain residual strength. The stress–strain curves of the phyllite specimens
with various foliation angles were apparently different from those with various water
contents. As shown in Figure 3, at the pore compaction stage, the compacting ability of
the specimens decreased with increasing foliation angle but increased with increasing
water content. At the elastic deformation stage, the axial strain at α = 0◦ and α = 90◦ was
apparently larger than that at α = 30◦, 45◦, and 60◦, and this case was more obvious in the
water-saturated specimens. At the stable crack growth stage and unstable crack growth
stage, the axial stress increased slowly with increasing axial strain for a short loading
duration, especially for specimens under dry conditions. At the post-peak stage, the axial
strain at α = 0◦ dropped rapidly after peak load but maintained a certain residual strength.
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3.2. Mechanical Properties

The basic mechanical properties of phyllite specimens such as uniaxial compressive
strength, peak axial strain and elastic modulus were obtained. Figure 4 indicates the
mechanical properties of the dry and saturated phyllite specimens. To define the anisotropy
degree of foliated phyllite specimens, the ratios between the largest and smallest values
of different mechanical properties are employed such as σc

max/σc
min, εc

max/εc
min, and

Emax/Emin.
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As illustrated in Figure 4a, the average strength σc of foliated phyllite varies with
foliation angle α in a U-shape, and the maximum strength is at α = 90◦ while the minimum
strength is at α = 30◦. The foliation angle has a significant effect on the strength: For dry
specimens, the maximum strength is 116.6 MPa at α = 90◦ and the minimum strength is
33.7 MPa at α = 30◦, and σc

max/σc
min is approximately equal to 0.29; For saturated specimens,

the maximum strength is 104.6 MPa at α = 90◦ and the minimum strength is 9.6 MPa at
α = 30◦, and σc

max/σc
min is approximately equal to 0.09. Furthermore, the presence of water
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significantly reduces the strength of the phyllite, and the reduction is related to the foliation
angle. For specimens with different foliation angles, the maximum strength reduction is
71.4% at α = 30◦, the least strength reduction is 10.3% at α = 90◦, and the average strength
reduction is 36.0%.

Figure 4b shows that the average strain εc of foliated phyllite varies with the foliation
angle α in a V-shape, and the maximum strain is 4.9 × 10−3 at α = 0◦ or 90◦ while the
minimum strain is at α = 30◦. The foliation angle has a significant effect on peak axial
strain: for dry specimens, the maximum strain is 4.9 × 10−3 at α = 0◦ and the minimum
strain is 2.3 × 10−3 at α = 30◦, and εc

max/εc
min is approximately equal to 0.47; for saturated

specimens, the maximum strain is 4.4 × 10−3 at α = 90◦ and the minimum strain is
1.8 × 10−3 at α = 30◦, and εc

max/εc
min is approximately equal to 0.41. Furthermore, the

presence of water significantly reduces the strain of phyllite, and the reduction is related to
the foliation angle. For specimens with different foliation angles, the maximum strength
reduction is 59.5% at α = 60◦, the least strength reduction is 12.6% at α = 90◦, and the
average strength reduction is 33.6%.

Figure 4c displays that the average elastic modulus E of foliated phyllite varies with
foliation angle α in a wavy shape. It is obvious that the presence of water has a significant
influence on elastic modulus of phyllite: for specimens of dry groups, the elastic modulus
first increases, then decreases and finally increases again with increasing foliation angle; for
specimens of saturated groups, the elastic modulus first decreases, then increases, and then
decreases and finally increases again with increasing foliation angle. Generally, the elastic
modulus of dry phyllite is large than that of saturated phyllite, for example, the elastic
modulus reduction is 76.9% at α = 30◦. However, there are some special situations, e.g., the
elastic modulus increment is 69.9% and 43.9% at α = 45◦ and α = 90◦, respectively. Overall,
the discreteness of elastic modulus of dry phyllite is less than that of saturated phyllite for
different foliation angles.

4. Crack Evolution Behavior Analysis
4.1. Macro-Crack Evolution Behavior

According to the axial stress–strain curves of foliated phyllite, a typical entire crack
evolution process is shown in Figure 5. To obtain a set of representative pictures of
maximum principal strain fields during the whole loading stage, some specific photos at the
moments corresponding to special loading stages were chosen. These photos were imported
to the GOM-correlated software and the surface strain fields were analyzed. In addition,
the characteristics of crack evolution were obtained by analyzing the counts rate and
accumulated energy of AE generated by microcracks in rocks during uniaxial compression.

Figure 6 demonstrates the crack evolution process of dry phyllite with 0◦ foliation
angle at different loading times. A shear sliding crack initiates from the end of specimen and
extends obliquely downward to the middle area of the specimen. Then, a tensile splitting
crack, connected to the initial shear sliding crack, vertically propagates downwards to
the inside specimen. Meantime, another shear sliding crack initiates from the connection
position of shear sliding crack and tensile splitting crack and extends obliquely upward
to the end of specimen. Afterwards, an approximately inverted conical failure surface
appears and further promotes the initial tensile splitting crack vertically downward and
finally causes the instable failure of the specimen. Significantly, the initiation and extension
of cracks are accompanied by the evident variations of AE events rate and accumulated
AE energy. Though AE count peaks appear several times and the cumulative counts
rise step by step, the largest peak of AE events rate and the maximum accumulated AE
energy occurs at the failure moment of the specimen. The crack evolution process of
water-saturated phyllite at α = 0◦ and 30◦ was similar to that of dry phyllite α = 0◦, but
there are also significant differences between them. For example, the extension of the initial
shear sliding crack is steeper and the propagation of the tensile splitting crack easily bends
and turns to a foliation plane. In addition, the value of AE events rate and accumulated AE
energy of water-saturated phyllite are over one order of magnitude smaller than those of
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water-saturated phyllite. These results show that water has a significant influence on both
a reduction in the intensity of the AE signal generated by rock failure and a weakening of
the signal reception by hindering signal propagation.
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The crack evolution processes of dry phyllite at α = 30◦ and water-saturated phyllite
at α = 45◦ were similar. Figure 7 illustrates the crack evolution process of water-saturated
phyllite with 45◦ foliation angle at different loading times. Several shear sliding cracks
initiate from the end of specimen and extend obliquely downward to the position around
the middle area of specimen. Then another shear sliding crack, connected to the initial
shear sliding crack, extends obliquely downward to one side of specimen. Afterwards,
a triangular sliding block appears in one side of the specimen and finally causes the instable
failure. Moreover, a sharp increase in AE events rate and an accumulated AE energy would
occur at the moment when the stress suddenly drops and the larger the stress drops, the
greater the AE events rate and accumulated AE energy increment are. The crack evolution
process of dry phyllite at α = 30◦ was similar to that of water-saturated phyllite α = 45◦.

Figure 8 shows the crack evolution process of water-saturated phyllite with 60◦ foli-
ation angle at different loading times. A shear sliding crack initiates from the end of the
specimen and extends obliquely downward. Then, several shear sliding cracks propagate
from the end of the specimen, which is near to and parallel to initial shear sliding crack.
Moreover, the propagation path of the shear sliding crack is located in one of foliation
planes and causes the ultimate instable failure of specimen. The crack evolution processes
of water-saturated phyllite α = 60◦ and dry phyllite at α = 45◦ and 60◦ are similar, but
two differences still exist in them: (1) the crack propagation along foliation planes is af-
fected by the foliation angle; (2) the water content contributes to decrease the resistance of
crack propagation so that few shear sliding crack initiates from the end of the specimen
and extends obliquely downward along foliation planes in the water-saturated specimen.
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Figure 8. Crack evolution process of water-saturated phyllite with 60◦ foliation angle (S-W-60◦).

Figure 9 shows the crack evolution process of dry phyllite with 90◦ foliation angle at
different loading times. Several tensile splitting cracks initiate from the end of the specimen
and extend vertically downward to the other end of the specimen. Especially, the outside
tensile splitting crack extends faster than the inside one, causing the block spalling of
specimen step by step. The crack evolution processes of water-saturated phyllite α = 90◦

and dry phyllite at α = 90◦ were similar except that the number of tensile splitting cracks
is few.

4.2. Micro-Crack Failure Modes

The DIC method can effectively identify the macro-crack evolution on the surface
of specimens. Additionally, Acoustic Emission (AE) can be used to study the real-time
formation and growth of local failure in rock materials by means of AE event counts
(Accumulated AE event counts), AE energy (Accumulated AE energy), crack classification,
AE peak frequency, and AE position. AE event counts and AE energy can be adopted
in analyzing macro-crack evolution. In addition, AE parameter analysis can be used to
classify tensile crack mode and shear/mixed crack mode at a microscopic scale in rock
mechanics. As illustrated in Figure 10, the waveform of the tensile events is mainly in the
form of longitudinal waves, and the RA value is low in one hit event. On the contrary,
the RA value of shear wave resulting from shear events is usually higher. Thus, many
scholars put forward adopting the ratio of RA value to the Average Frequency (AF) as
a classification criterion and the slope of the transition line between tensile crack and
shear crack is commonly decided by the rock type. Based on previous studies [37–40], the
optimal ratio of AF and RA is approximately from 100 to 500 for brittle rock materials
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subjected to compression loading, and it was adopted as 100 in this study in the light of the
phyllite lithology.
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Figure 10. Classification of tensile and shear cracks based on AE parameter analysis: (a) Graphical
representations of AE characteristic parameters; (b) Comparison between typical waveform of tensile
event and shear event; (c) Crack classification methods in AE parameter analysis.

Figure 11 shows typical scatter diagrams between AF and RA values for foliated
phyllite with different foliation angles under dry and water-saturated conditions. The
AF-RA points are divided into two groups by the transition line. The upper groups (red)
are located in the domain where AF value is higher and RA value is lower, which is
consistent with the feature of tensile crack. Similarly, the lower groups (black) are located



Materials 2022, 15, 8962 11 of 22

in the domain where AF value is lower and RA value is higher, which is consistent with
the feature of shear/mixed crack. Furthermore, the intensity degree of AF-RA points
reflects the crack scale during rock deformation. Among the specimens with different
foliation angles, the specimen with 30◦ foliation angle yields the minimum cracking scale
and the one of 0◦ foliation angle does the maximum cracking scale. Compared with the dry
specimens, the saturated specimens yield relatively lower cracking scale.
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Figure 12 shows the proportions of shear and tensile cracks for foliated phyllite with
different foliation angles. For the dry specimens, the proportions of shear and tensile cracks
in phyllite are 19.87% and 80.13% on average, respectively. Additionally, the maximum
proportion of shear cracks is 31.88% at α = 0◦, and the minimum proportion of shear
cracks is 13.17% at α = 45◦. For the saturated specimens, the proportions of shear and
tensile cracks in phyllite are 13.43% and 86.57% on average, respectively. The maximum
proportion of shear cracks is 18.36% at α = 0◦, and the minimum proportion of shear cracks
is 8.84% at α = 60◦. Overall, the proportion of tensile cracks is almost 2 to 7 times of that
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of shear cracks, which is much different from the crack classification results of other rock
types in previous studies [37]. For example, the proportions of shear cracks in marble and
fine-grained granite are 66.81% and 84.79% on average, respectively. These results show
that the tensile microcracks are more easily developed than shear microcracks, and the
initiation, propagation, and coalescence of tensile microcracks are the main reasons for the
failure of the phyllite specimens.
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4.3. Ultimate Failure Mode

Previous studies had put forward that the failure mechanism of layered rock such as
sandstone and shale is mainly controlled by the weak cementation between the foliation or
bedding planes [18,30]. As illustrated in Table 2, the failure mode of foliated phyllite mainly
depends on the foliation angle and is significantly influenced by water. When the foliation
angle was small, the shear sliding cracks were developed through the foliation plane first,
and they would not further extend once the frictional resistance was large enough. Then,
two cases would appear: at α = 0◦~30◦, a shear sliding crack propagates from the inner
tip of initial shear sliding cracks to the top of the specimen; at α = 30◦~45◦, a shear sliding
crack propagates from the inner tip of initial shear sliding cracks to the side of the specimen.
When the foliation angle was larger (45◦–60◦), the shear sliding cracks grew along the
foliation plane so that they could not be stopped by the frictional resistance. When the
foliation angle was a nearly vertical plane (90◦), the tensile splitting cracks extended along
the foliation plane firstly and destroyed the specimen gradually. Overall, the failure of
foliated phyllite tended to change from shear sliding mode to tensile splitting mode with
increasing foliation angle, and it was more and more closely related to the foliation plane.

Figure 13 shows four typical failure modes of foliated phyllite and the failure sketches
of two adjacent tunnels with different foliation angles. Where T1 shows tensile splitting
cracks developed along the foliation plane, T2 does tensile splitting cracks developed
through the foliation plane, S1 indicates shear slide cracks developed along the foliation
plane, and S2 does shear slide cracks developed through the foliation plane. The first is the
mixed mode (sliding + splitting). A tensile splitting crack, initiated from the intersection of
two shear sliding cracks, develops downward across the foliation plane. The second is the
sliding mode. The failure of the specimens in this mode presented a triangular sliding block
on one side of the specimen caused by the intersection between one shear sliding crack
developed along the foliation plane and another shear sliding crack developed through
the foliation plane. The third is also the sliding mode. The failure of the specimens in this
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mode was caused by one shear sliding crack that developed along the foliation plane and
got through from one side of the specimen to the other. The last one is the splitting mode.
This mode presented multiple tensile splitting cracks developed along across the foliation
plane and divided the specimens into several long columns. Finally, these long columns
gradually were buckled.

Table 2. Ultimate failure modes of foliated phyllite with different foliation angles.

Specimen Type 0◦ 30◦ 45◦ 60◦ 90◦
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Figure 13. Comparison of failure mechanisms between foliated phyllite with different: (a) Shear
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(Mode II); (c) Shear sliding along foliation planes (Mode III); (d) Tensile splitting along foliation
planes (Mode IV).
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4.4. Microscopic Characteristics Analysis in Typical Fracture Surface

Previous studies indicate that microscopic morphological characteristics are related
to crack initiation, crack propagation, and fracture modes [41]. To reveal the connection
between them, the Scanning Electron Microscopic (SEM) technique was adopted to observe
the morphological characteristics of typical failure fracture.

According to Mohr–Coulomb criterion, the shear failure of intact specimens often
occurs along the direction of the maximum shear stress subjected to uniaxial compression
loading. However, previous studies indicate that the foliation plane and water content have
a great influence on the failure of rock specimens. As shown in Figure 14, the orientation of
maximum principal stress (σ1) is always acting vertically downward, and the orientation
of maximum shear stress (τmax) is only dependent on the internal friction angle of the
rock material. With increasing foliation angle, the angle between the foliation plane and
maximum shear stress (τmax) gradually decreases at first to zero and then increases, and
the angle between the foliation plane and maximum principal stress (σ1) decreases from
90◦ to 0◦.

Materials 2022, 15, x FOR PEER REVIEW 16 of 24 
 

 

 
Figure 14. Failure mechanism analysis of foliated phyllite under uniaxial compression. 

Figure 15 shows that the SEM scanning characteristics of four typical shear fracture 
surfaces of phyllite. When the foliation angle is close to 0°, the component of maximum 
principal stress (σ1) vertical to the foliation plane is larger than that of maximum principal 
stress (σ1) horizontal to the foliation plane. In this condition, the foliation plane hardly 
affects the initial failure process. As illustrated in Figure 15a, the whole shear fracture 
surface is relatively complete but partially broken with the flaky mineral particles that 
mostly present alternating foliations contact, and the surface appears with irregular jag-
ged characteristics because of the shear failure in intergranular and trans-granular cracks. 
Overall, the whole surface is rough, but the area between two adjacent foliations is much 
smoother than that in other areas. Furthermore, the irregular jagged fracture surfaces are 
also flat but the orientation of them is different. Nevertheless, there is also a slight differ-
ence between foliated phyllite and intact rock materials, and the difference lies in the crack 
propagation path transforming from shearing slide along maximum shear stress to ten-
sile-split along maximum principal stress.  

Figure 14. Failure mechanism analysis of foliated phyllite under uniaxial compression.

Figure 15 shows that the SEM scanning characteristics of four typical shear fracture
surfaces of phyllite. When the foliation angle is close to 0◦, the component of maximum
principal stress (σ1) vertical to the foliation plane is larger than that of maximum principal
stress (σ1) horizontal to the foliation plane. In this condition, the foliation plane hardly
affects the initial failure process. As illustrated in Figure 15a, the whole shear fracture
surface is relatively complete but partially broken with the flaky mineral particles that
mostly present alternating foliations contact, and the surface appears with irregular jagged
characteristics because of the shear failure in intergranular and trans-granular cracks.
Overall, the whole surface is rough, but the area between two adjacent foliations is much
smoother than that in other areas. Furthermore, the irregular jagged fracture surfaces
are also flat but the orientation of them is different. Nevertheless, there is also a slight
difference between foliated phyllite and intact rock materials, and the difference lies in the
crack propagation path transforming from shearing slide along maximum shear stress to
tensile-split along maximum principal stress.
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With an increasing foliation angle, the component of maximum principal stress (σ1)
horizontal to the foliation plane is large enough to shearing slide along the foliation
plane. As illustrated in Figure 15b–d, the whole shear fracture surface almost is located
in the cleavage plane and is relatively flat. Significantly, the fracture surface damage is
closely related to the component of maximum principal stress (σ1) vertical to the foliation
plane, which decreases with the increasing foliation angle. For specimens with a 45◦

foliation angle, the shear sliding between different thin foliation planes resulted in a great
number of river-like traces, which were approximately perpendicular to the shear direction
and are randomly scattered on the step-shaped fracture surface. Furthermore, the shear
failure between adjacent foliation planes brought about numerous debris appearing in the
cleavage edge. For specimens with a 60◦ foliation angle, some river-like traces were also
approximately perpendicular to the shear direction, but the number of traces was smaller
than that of specimens with a 45◦ foliation angle. Numerous pieces of debris appear in
both the edge and middle of the cleavage, reflecting that the failure of the foliation plane is
influenced by both shear sliding and splitting tensile.
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Figure 16 shows that the characteristics of two typical tensile splitting fracture surfaces
of phyllite from SEM observation. When the foliation angle is close to 90◦, the maximum
principal stress (σ1) is approximately parallel to the foliation plane, which makes the tension
at the foliation plane large enough to develop splitting tensile cracks along the foliation
plane and lead to failure of the specimen. As shown in Figure 16, the fracture surface
across the foliation plane is relatively rough but that along the foliation plane is flat. There
are many broken flaky mineral particles in the fracture surface across the foliation plane,
having the characteristics of intergranular or trans-granular tensile failure. Meanwhile,
these areas between two adjacent foliations are much smoother than other areas. For the
fracture surface along the foliation plane, the tensile failure between adjacent foliation
planes brought about the appearance of numerous debris in the cleavage. The results
show that the foliation plane in phyllite plays a vital role in changing failure behavior and
affecting the microscopic morphology of the fracture surface.
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Figure 16. SEM photos of the fracture surfaces for phyllite subjected to tensile failure in uniaxial
compression: (a) S-D-0; (b) S-D-90.

Energy Dispersive Spectroscopy (EDS) has been widely used in the mineral composi-
tion analysis of rock materials with the advantage of easy operation, quick analysis, and low
cost. By scanning the region within the 1 µm fracture surface, the element from Beryllium
(Be) to Uranium (U) could be identified [42,43]. In this study, four rock fractures were
selected from the parallel and vertical surface of the foliation plane in specimens under
dry and water-saturated conditions. All experiments were repeated twice by changing
the scanning region and magnification. As illustrated in Table 3, the contents of Sodium,
Magnesium, and Calcium are more extensive in specimens under dry conditions, and
the content of potassium is more extensive in specimens under water-saturated condi-
tions. This result indicates that the amount of biotite contained in phyllite participated
in the hydration reaction, resulting in the Potassium ions (Na+) in biotite being replaced
by other macromolecules or the ions of Sodium (Na+), Magnesium (Mg+), and Calcium
(Ca+). Due to the radii of these replaced macromolecules or ionic being larger than the
radius of Potassium ions (Na+), some tensile cracks initiate and propagate from biotite
cleavage, and then small fragments gradually divorce from the edge of biotite cleavage.
Thus, the presence of water could contribute to accelerating the evolution of micro-cracks.
Furthermore, the contents of Silicon, Calcium, and Iron are more extensive on the fracture
surface that is vertical to the foliation plane, and the contents of Aluminium and Titanium
are more extensive on the fracture surface parallel to the foliation plane. This indicates that



Materials 2022, 15, 8962 17 of 22

the biotite on the foliation plane is larger than that on the vertical foliation plane and the
quartz on the foliation plane is less than that on the vertical foliation plane, reflecting that
the mineral composition distribution of phyllite is anisotropic.

Table 3. Different quantification mineral composition.

Oxides Elements VD/% VW/% PD/% PW/%

Na2O 2.80 3.17 1.70 3.19
MgO 2.70 3.22 2.89 3.94
Al2O3 13.64 13.65 23.48 21.52
SiO2 69.31 71.55 61.71 61.07
K2O 3.07 2.46 6.03 4.77
CaO 1.36 1.55 0.26 0.79
TiO2 0.61 0.35 1.25 1.54

Fe2O3 6.50 4.05 2.68 3.18
Notes: VD, vertical fracture surface of foliation plane in specimens under dry condition (S-D-0◦); VW, vertical
fracture surface of foliation plane in specimens under water-saturated condition (S-W-0◦); PD, parallel fracture
surface of foliation plane in specimens under dry condition (S-D-60◦); PW, parallel fracture surface of foliation
plane in specimens under water-saturated condition (S-W-60◦).

For water-saturated phyllite specimens, the internal micropores and microcracks are
full of water so that all minerals are in full contact with the water. Owing to the clay
minerals having a large specific surface area and good hydrophilicity, the thickness of the
water film gradually increases, accompanied by the expanding mineral particles and the
weakness of adhesion between particles, which results in the initiation and propagation of
numerous microcracks (Figure 17). Furthermore, the distribution of mineral composition
and micro defects in phyllite is inhomogeneous, which may cause extra internal stress and
inhomogeneous deformation between minerals particles.
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5. Discussion

Extensive studies have been performed to study anisotropic rocks [1,19,20,44–47].
Figure 18 indicates that the uniaxial compressive strength of anisotropic rock changes with
foliation angle or bedding angle α in a U-shape, shoulder shape, or wave shape. In this
study, the strength of foliated phyllite with multiple parallel macro weak planes varies
with foliation angle α in a U-shape, and the maximum strength is at α = 90◦ while the
minimum strength is at α = 30◦. In particular, the strength of the specimen at α = 45◦ large
than that at α = 30◦ or α = 60◦, and in this sense, the curve of strength and foliation angle is
in a wave shape.
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Figure 18. Uniaxial compressive strength of anisotropic rock versus foliation or bedding angle.

Furthermore, many scholars [1,4,19,20] have put forward many classifications of
ultimate failure mode for anisotropic rock, and typical failure modes have been listed in
Table 4. For specimens of S-D-45, S-D-60, and S-W-60, the shear cracks along discontinuities
(S1) cause the overall failure, which is similar to category SD in Tien et al. For specimens
of S-D-90 and S-W-90, the tensile-split along discontinuities (T1) causes the overall failure,
which is similar to category TD in Tien et al. However, there exist two types different from
previous studies in terms of the failure process. Both tensile fracture across discontinuities
and sliding failure across discontinuities were not found in the study. For specimens of
S-D-0, S-W-0, and S-W-30, a combination of sliding failure across discontinuities and tensile
fracture across discontinuities (M1) causes the overall failure. For specimens of S-D-30 and
S-W-45, a combination of sliding failure along discontinuities and sliding failure across
discontinuities (M2) causes the overall failure.

Future research should carefully consider the effects of water content and foliation
angle on foliated phyllite in practical applications. Moreover, theoretical analysis and nu-
merical simulation are necessary to investigate the damage processes and crack evolution.

Table 4. Classification of ultimate failure mode in the present experimental results.

Type Label Description of Failure Modes Type Failure Modes Specimens

I

1 
 

Specimen Type 0° 30° 45° 60° 90° 

Dry groups 
Picture 

     
Forms Sliding + splitting Sliding Sliding Sliding Splitting 

Saturated 
groups 

Picture 

     

Forms Sliding + splitting Sliding + splitting Sliding Sliding Splitting 
Type Label Description of Failure Modes Type Failure Modes Specimens 

Ⅰ 

 

Tensile fracture across discontinuities T2 None 

Ⅱ 

 

Sliding failure across discontinuities S2 None 

Ⅲ 

 

Sliding failure along discontinuities S1 
S-D-45 
S-D-60 
S-W-60 

Ⅳ 

 

Tensile-split along discontinuities T1 S-D-90 
S-W-90 

Tensile fracture across discontinuities T2 None

II

1 
 

Specimen Type 0° 30° 45° 60° 90° 

Dry groups 
Picture 

     
Forms Sliding + splitting Sliding Sliding Sliding Splitting 

Saturated 
groups 

Picture 

     

Forms Sliding + splitting Sliding + splitting Sliding Sliding Splitting 
Type Label Description of Failure Modes Type Failure Modes Specimens 

Ⅰ 

 

Tensile fracture across discontinuities T2 None 

Ⅱ 

 

Sliding failure across discontinuities S2 None 

Ⅲ 

 

Sliding failure along discontinuities S1 
S-D-45 
S-D-60 
S-W-60 

Ⅳ 

 

Tensile-split along discontinuities T1 S-D-90 
S-W-90 

Sliding failure across discontinuities S2 None
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Table 4. Cont.

Type Label Description of Failure Modes Type Failure Modes Specimens

III

1 
 

Specimen Type 0° 30° 45° 60° 90° 

Dry groups 
Picture 

     
Forms Sliding + splitting Sliding Sliding Sliding Splitting 

Saturated 
groups 

Picture 

     

Forms Sliding + splitting Sliding + splitting Sliding Sliding Splitting 
Type Label Description of Failure Modes Type Failure Modes Specimens 

Ⅰ 

 

Tensile fracture across discontinuities T2 None 

Ⅱ 

 

Sliding failure across discontinuities S2 None 

Ⅲ 

 

Sliding failure along discontinuities S1 
S-D-45 
S-D-60 
S-W-60 

Ⅳ 

 

Tensile-split along discontinuities T1 S-D-90 
S-W-90 

Sliding failure along discontinuities S1
S-D-45
S-D-60
S-W-60

IV

1 
 

Specimen Type 0° 30° 45° 60° 90° 

Dry groups 
Picture 

     
Forms Sliding + splitting Sliding Sliding Sliding Splitting 

Saturated 
groups 

Picture 

     

Forms Sliding + splitting Sliding + splitting Sliding Sliding Splitting 
Type Label Description of Failure Modes Type Failure Modes Specimens 

Ⅰ 

 

Tensile fracture across discontinuities T2 None 

Ⅱ 

 

Sliding failure across discontinuities S2 None 

Ⅲ 

 

Sliding failure along discontinuities S1 
S-D-45 
S-D-60 
S-W-60 

Ⅳ 

 

Tensile-split along discontinuities T1 S-D-90 
S-W-90 Tensile-split along discontinuities T1 S-D-90

S-W-90

V

 

2 

Ⅴ 

 

Sliding failure across discontinuities and Tensile 
fracture across discontinuities M1 (S2 + T2) 

S-D-0 
S-W-0 

S-W-30 

Ⅵ 

 

Sliding failure along discontinuities and Sliding 
failure across discontinuities 

M2 (S1 + S2) S-D-30 
S-W-45 

 

Sliding failure across discontinuities and
Tensile fracture across discontinuities M1 (S2 + T2)

S-D-0
S-W-0
S-W-30

VI

 

2 

Ⅴ 

 

Sliding failure across discontinuities and Tensile 
fracture across discontinuities M1 (S2 + T2) 

S-D-0 
S-W-0 

S-W-30 

Ⅵ 

 

Sliding failure along discontinuities and Sliding 
failure across discontinuities 

M2 (S1 + S2) S-D-30 
S-W-45 

 

Sliding failure along discontinuities and
Sliding failure across discontinuities M2 (S1 + S2) S-D-30

S-W-45

6. Conclusions

The following conclusions can be drawn from the experiments in this study:
(1) The axial stress–strain curves of foliated phyllite have at least one or more features

as follows: (a) fluctuating at elastic deformation stage in specimens at foliation angle α = 0◦

and 90◦; (b) lacking stable and unstable crack growth stage for all specimens, especially
the specimens under water-saturated condition; (c) dropping rapidly after peak load but
maintaining a low residual strength for most specimens.

(2) The mechanical properties are dependent on foliation angle and water content.
The compression strength and peak strain first decrease and then increase with increasing
foliation angle in a U-shape or V-shape, and they reach the maximum and minimum
values at α = 90◦ and α = 30◦, respectively. The presence of water significantly reduces
peak strength and peak strain: The maximum, minimum, and average strength reductions
are 71.4%, 10.3%, and 36.0%, respectively; The maximum, minimum, and average strain
reductions are 59.5%, 12.6%, and 33.6%, respectively. The elastic modulus varies with the
foliation angle in a wavy shape, and it is affected by water content. The effect of water
content on elastic modulus is negative for specimens at α = 0◦, 30◦, and α = 60◦, but it is
positive for other foliation angles.

(3) With the help of AE, DIC, and SEM techniques, the experiments show that foliation
angle and water content have a significant influence on crack evolution. The water acts on
biotite and clay minerals that are the main components of phyllite, and it contributes to the
initiation, propagation, and coalescence of numerous microcracks. Furthermore, the tensile
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micro-cracks are the main reason for the failure of the phyllite, especially for saturated
groups. From viewpoint of macro-cracks, the initiation shear crack is dominant at lower
foliation angles, i.e., 0◦, 30◦, 45◦, and 60◦, and the influence of foliation planes on the crack
propagation path increases with the foliation angle increasing. At higher foliation angles,
such as 90◦, tensile cracks initiate and extend along the vertical foliation plane, and finally
cause the tensile fracture in foliations from outside to inside.

(4) The ultimate failure modes of foliated phyllite are determined by both foliation
angles and water content. Four failure modes are classified as follows: (a) for the specimens
with small foliation angles α = 0◦ and 30◦ (Water-saturated), both shear sliding and tensile
splitting across the foliation planes; (b) for the specimens with low to medium foliation
angles α = 30◦ (Dry) and 45◦(Water-saturated), shear sliding dominates the foliation planes;
(c) for the specimens with medium to high foliation angles α = 45◦ (Dry) and 60◦, shear
sliding dominates the foliation planes; (d) for the specimens with high foliation angles
α = 90◦, tensile splitting dominates the foliation planes.
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