
Citation: Du, F.; Zhou, P.; Guo, P.; Li,

C.; Deng, L.; Wang, X.; Jin, J. Effect of

Hot Deformation Parameters on

Heat-Treated Microstructures and

Mechanical Properties of 300M Steel.

Materials 2022, 15, 8927. https://

doi.org/10.3390/ma15248927

Academic Editor: Elena Pereloma

Received: 28 October 2022

Accepted: 12 December 2022

Published: 14 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Effect of Hot Deformation Parameters on Heat-Treated
Microstructures and Mechanical Properties of 300M Steel
Fei Du 1, Peng Zhou 2, Peng Guo 3, Cheng Li 1, Lei Deng 1,*, Xinyun Wang 1 and Junsong Jin 1

1 State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science
and Technology, 1037 Luoyu Road, Wuhan 430074, China

2 Huazhong University of Science & Technology Analytical & Testing Center, 1037 Luoyu Road,
Wuhan 430074, China

3 State Key Laboratory of Advanced Brazing Filler Metals and Technology, Zhengzhou Research Institute of
Mechanical Engineering Co., Ltd., Zhengzhou 450001, China

* Correspondence: denglei@hust.edu.cn

Abstract: The high strength of 300M steel originates from the heat treatment process after forging, but
how hot deformation affects the heat-treated microstructure and mechanical properties is unclear. In
this study, compression tests under different hot deformation parameters and post-deformation heat
treatment experiments were carried out, and the martensite transformation process was investigated
using in situ observation. The results show that the grain size of the specimen deformed at low
temperature and high strain rate is smaller, and annealing twins will be formed. Both austenite
grain boundaries and twin boundaries hinder the growth of martensite blocks, reducing the size of
martensite units after heat treatment and thus resulting in higher yield strength. Besides, the mathe-
matical models were established to describe the relationship between hot deformation parameters
and grain size after deformation, martensite packet size and martensite block width, respectively,
after heat treatment. The relationship between yield strength and hot deformation parameters was
also analyzed. According to the results and models, the hot deformation parameters would be
optimized more reasonably to improve the final mechanical properties of 300M steel forgings.

Keywords: 300M steel; hot deformation; heat treatment; microstructure evolution; yield strength

1. Introduction

As one of the ultra-high strength steels, 300M steel has good fracture toughness,
excellent stress corrosion resistance and fatigue resistance, and is widely used for key parts
in the aviation industry and other fields, such as aircraft landing gear, pressure vessels,
fasteners, etc. [1–3]. Generally, the manufacturing of such large bearing forgings consists of
conducting hot deformation first, then heat treating and, finally, machining [4]. The hot
deformation process is not only a process to change the shape and size of forgings, but also
can control and improve the final microstructure of 300M steel in combination with the
heat treatment process [5,6]. Therefore, it is crucial to study the changes in the structure
and properties of 300M steel throughout the process, including hot deformation and heat
treatment, to ensure the excellent service performance of 300M steel.

Several scholars have studied the hot deformation and heat treatment process of 300M
steel. For the hot deformation process, scholars mainly focus on the rheological and recrys-
tallization behavior under different deformation parameters. Skubisz et al. [7] investigated
the influence of processing conditions on the forgeability, microstructure and properties
of 300M steel, and dynamic behavior modeling and processing maps were carried out.
Qi et al. [8] studied the deformation behavior of 300M steel at 850~1200 ◦C and 0.001~10 s−1

and found that temperature and strain rate significantly affect the microstructure evolution.
Luo et al. [9] studied the microstructure evolution behavior of 300M steel under different
deformation parameters by isothermal compression experiments, and the results showed
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that fine equiaxed recrystallized grains formed near the initial grain boundaries at a certain
amount of deformation when the strain rate was 25 s−1. Liu et al. [10] investigated the effect
of hot deformation parameters on the dynamic recrystallization behavior of 300M steel
and developed a kinetic model of dynamic recrystallization based on the flow stress–strain
curve. Guo et al. [11] investigated the dynamic recrystallization behavior of 300M steel at
deformation temperatures of 900–1150 ◦C and strain rates of 0.001–50 s−1 and found that
the dynamic recrystallization mechanism of 300M steel was closely related to the strain rate.

Since the phase transformation during heat treatment determines the final mechanical
properties of 300M steel, the research on heat treatment has focused on phase transformation
and its effect on mechanical properties. Liu et al. [12] investigated the characteristics of
martensite transformation from deformed austenite with various states of 300M steel. The
results showed that deformed-quenched 300M steel at different strains mainly consisted
of lath martensite, complemental twinned martensite and retained austenite, and the
length and width of the martensite block decreased with the increase of strain. In addition,
Kasana et al. [13] investigated the effects of four different heat treatment routes on the
properties of 300M steel and successfully developed 300M steel with minimum segregation
and superior mechanical properties. Owing to non-uniform phase formation of 300M large
forgings in the quench process, Chentouf et al. [14] studied the influence of different cooling
rates on phase transformation and determined the critical transition temperature and
microstructure accurately. However, these studies did not explain the influence mechanism
of deformation parameters on the martensite transformation, nor did they consider the
effect of strain rate. In addition, some scholars [15–17] investigated the effect of prior
austenite grain size on martensite unit size and established a relationship model between
them. However, these studies were conducted to obtain different austenite grain sizes by
heat treatment, which did not take into account the influence of dislocation, twin and other
factors introduced in hot deformation. In summary, the current studies on hot deformation
and heat treatment of 300M steel are independent. In actual production, the service
performance of large bearing forgings is determined by the combination of hot deformation
and subsequent heat treatment. In this work, the whole process of hot deformation and
heat treatment was studied for the first time to help understand the inheritance relationship
between them and obtain the optimal process parameters for excellent forgings.

In this study, through the hot compression and heat treatment experiments of 300M
steel, the effect of hot deformation parameters on heat-treated microstructure and mechani-
cal properties was studied. The martensite transformation during the cooling process of
heat treatment was analyzed by in situ observation, and the influence mechanism of hot
deformation parameters on the heat-treated microstructure was clarified. In addition, the
relationship models between hot deformation parameters and grain size after deformation,
martensite packet size and martensite block width after heat treatment were established.
The relationship between yield strength and hot deformation parameters was also analyzed.

2. Materials and Methods

The material used in this study was commercial 300M steel, and its chemical composi-
tion (wt.%) is shown in Table 1. The initial material is a bar with a diameter of 300 mm and
a length of 1500 mm. The experimental procedure is shown in Figure 1. Firstly, isothermal
compression experiments were conducted on the specimen of ϕ 8 mm×12 mm using the
GLEEBLE-3500 thermal simulation tester. The deformation temperatures were 950 ◦C
1000 ◦C 1050 ◦C and 1100 ◦C, the strain rates were 0.01 s−1, 0.1 s−1, 1 s−1 and 10 s−1 and
the compression amount was 50% (corresponding to the true strain of 0.69). During the
compression experiments, the specimens were heated to the deformation temperature at a
heating rate of 5 ◦C·s−1, held for 4 min, then compressed isothermally and air-cooled to
room temperature. The compressed specimens were subsequently heat treated. Firstly, the
specimens were austenitized at 870 ◦C for 1 h, then oil quenched and twice tempered at
300 ◦C for 2 h.
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Table 1. The chemical composition of 300M steel (wt.%).

C Mn Si Ni Cr V Mo Fe

0.38 0.74 1.64 1.87 0.84 0.08 0.40 Balance
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After hot deformation and heat treatment, the specimens were cut along the axial
direction and polished. The hot deformation specimens were etched by saturated picric acid
solution at room temperature, and the grain structure was observed by a metallographic
microscope (OLYMPUS BX61M). The heat-treated specimens were etched with a 4% nitric
acid alcohol solution, and the microstructure was observed by scanning electron microscope
(SEM). The distribution of martensite units and residual austenite were obtained by electron
backscattered diffraction (EBSD) with a scanning step of 0.1 µm. In order to visualize the
microstructure evolution during the quenching process of heat treatment, an in situ laser
confocal microscope (VL2000DX) was used to observe the martensite transformation during
cooling, with an image acquisition frequency of 5 images/s.

A sample of ϕ 4 mm×6 mm was taken from the heat-treated specimens by wire
cutting, and a compression test was performed at room temperature using an AC-IC 100 kN
mechanical tester to obtain the yield strength.

3. Results and Discussion
3.1. Microstructure

The initial state of 300M steel is annealed, and its metallographic structure is shown
in Figure 2, with an initial grain size of about 50 µm, and the microstructure of 300M
steel under different deformation parameters is shown in Figure 3. The microstructure
is affected by temperature and strain rate [18,19]. Figure 3a,d,g show the metallographic
images after hot deformation. It can be seen that dynamic recrystallization occurred
under different hot deformation conditions, and the recrystallized grain size decreased
with the increase of the Zener–Hollomon (Z) parameter. The Z parameter is the strain rate
coefficient coupled with the temperature effect, with the expression Z =

.
ε exp(Q/RT) [18],

where Q is the deformation activation energy (381.34 kJ·mol−1) [11], R is the gas constant
(8.314 J·(mol·K)−1) and T is the thermodynamic temperature. Figure 3b,e,h show the SEM
of the heat-treated specimens, and the prior austenite grain boundaries (PAGB), martensite
packets and blocks were observed obviously. Figure 3c,f,i show the EBSD of the heat-treated
specimens, and the black lines in the figures are the interfaces with orientation differences
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of 21–47◦, which can be considered as PAGB during heat treatment [20]. Figure 4 shows
the point-to-point orientation difference on the red line in Figure 3i. The interface with a
point-to-point orientation difference greater than 15◦ is usually considered a martensite
grain boundary. As shown in Figure 4, the orientation difference of the martensite block
grain boundaries is between 51.7◦ and 60.3◦. The width of the martensite block can be
obtained by measuring the distance between adjacent grains at 15◦ (blue line in Figure 4).
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after deformation; (b,e,h) are SEM of martensite microstructure after heat treatment (the dotted lines
represent martensite packet boundaries); (c,f,i) are EBSD of martensite microstructure after heat
treatment (the dotted lines represent martensite packet boundaries).
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Based on the microstructure and EBSD results, the linear intercept method [21] was
used to calculate the recrystallized grain size (dgrain), martensite packet size (dpacket) and
martensite block width (dblock) under different hot deformation parameters, as shown in
Figure 5. It can be seen that ln dgrain, ln dpacket and ln dblock decreased with the increase of ln
Z. Among them, the relationship between ln dgrain and ln Z is linear, and the relationship
model between recrystallized grain size after hot deformation and Z parameters was
established by linear fitting, as shown in Equation (1). In Figure 5b,c, when ln Z > 36,
the decrease tendency of ln dpacket and ln dblock increased with the increase of ln Z. The
relationship models between the martensite unit size after heat treatment and Z parameters
were established respectively by data fitting, as shown in Equations (2) and (3). The reasons
for this phenomenon will be analyzed in Section 3.2.

dgrain = 3.54 × 104 × Z−0.2138 (1)

dpacket = 3.4 × Z0.137−0.003ln Z (2)

dblock = 1.1 × Z0.035−0.0016ln Z (3)
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3.2. Mechanism of Microstructure Evolution

The martensite transformation during the cooling process of heat treatment is shown in
Figure 6. The specimen to be observed was pre-compressed at 1050 ◦C, 10 s−1 (ln Z = 37).
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Austenite grains were nearly equiaxed. In addition, austenite grain boundaries and twin
boundaries can be clearly seen in Figure 6a when the temperature was above the martensite
transformation point. No twins were observed after the hot deformation, as shown in
Figure 3g. The twins in Figure 6a were annealing twins generated during the holding process.
When the temperature was lowered to the martensite transformation point, martensite
blocks started to form inside the austenite grains. First, some martensite blocks with different
orientations divided an austenite grain into 3–5 parts. The supercooling degree increased with
the further decrease in temperature, and the undercooled austenite continuously transformed
to martensite. The martensite blocks with the same habit plane constituted a martensite
packet, as shown in Figure 6b,c. From the results of in situ observation, the martensite blocks
and packets did not grow through austenite grain boundaries. Some ended up growing at
other martensite interfaces in the same parent austenite grain, and some ended up growing
at austenite grain boundaries. It is obvious from Figure 6h that the colored areas representing
the martensite blocks do not cross the black lines representing the austenite grain boundaries.
Exceptionally, in Figure 6c,d, it appears that the martensite block “crosses” the austenite
grain boundary, but this austenite grain boundary is probably the habit plane for martensitic
transformation. Martensite and austenite are different in atomic arrangement and crystal
structure; when the martensite nucleus A is perpendicular to the habit plane generated in
austenite, the martensite nucleus A will exert a phase transition moment on the austenite
crystal. In order to reduce the nucleation work and eliminate the rotational effect caused by
the phase transition moment on the austenite, the material will form the martensite nucleus
B perpendicular to the habit plane on the other side of the habit plane so that the moment
vectors of nucleus B and A offset each other, as shown in Figure 7. When the habit plane is
just at the grain boundary, there is a phenomenon that the martensite “crosses” the grain
boundary. In other words, two different martensite blocks are on both sides of the habit plane.
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Figure 6. In situ observation of the martensite transformation of 300M steel during the cooling process
at (a) 279.3 ◦C (the yellow arrows represent twin boundaries); (b) 276.4 ◦C (the twin boundaries in
Figure 6b,c are represented by green lines); (c) 274 ◦C (the yellow arrows represent phase transition
moment); (d) 267.1 ◦C; (e) 252.7 ◦C; (f) 239.1 ◦C; (g) 196.2 ◦C; and (h) the superposition of martensite
formed at different temperatures (the different colors represent martensite transformed at different
temperatures, and the black lines represent the austenite grain boundaries and twin boundaries).
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In addition, as shown in Figure 6b,c, the directions of martensite blocks were different
on both sides of twin boundaries. That is to say, the martensitic blocks also did not cross the
twin boundaries, except the austenite grain boundaries, indicating that the twin boundaries
located inside the austenite grains also hinder the growth of martensite. When the Z
parameter increased, the grain sizes decreased during the hot deformation process. It is
generally believed that distortion energy can promote the formation of annealing twins [22].
As the Z parameter increased further (ln Z > 36), the distortion energy of the sample
increased greatly, which led to the formation of annealing twins during the holding process.
The twin boundaries and austenite grain boundaries simultaneously hindered the growth
of martensite blocks during heat treatment, resulting in an increasing tendency to reduce
the martensite packet size and block width.

Based on the above analysis, the mechanism of hot deformation parameters on the
martensite unit size after heat treatment is proposed in Figure 8. First, the initial structure
undergoes dynamic recrystallization during hot deformation, and the initial coarse grains
are refined. With the increase of the Z parameter, the recrystallized grain size decreases, as
shown in Figure 8a,b, and annealing twins are formed during the holding process. During
the cooling process, several martensite blocks are formed first in the austenite grains, which
divide the austenite grains into 3–5 parts because the growth of martensite blocks will not
cross the austenite grain boundaries and twin boundaries, as shown in Figure 8c. As the
temperature decreases further, the austenite continues to transform to martensite along the
previously formed martensite block habit plane, and these martensite blocks with the same
habit plane will form a martensite packet, as shown in Figure 8d,e. When the martensite
transformation is completed, 3–5 martensite packets are generated in one austenite grain. In
addition, the untransformed austenite exists between the martensites as residual austenite,
as shown in Figure 8f.
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Figure 8. Schematic diagram of the martensite transformation mechanism: (a) initial grains; (b) forma-
tion of fine grains after deformation; (c) division of austenite grains by martensite blocks and annealing
twins; (d) formation of martensite packets by martensite blocks with the same habit plane; (e) increase in
martensite content; (f) completion of phase transformation.

3.3. Mechanical Properties

The compression curves of the heat-treated specimens at room temperature are shown
in Figure 9a. It can be seen that the hot deformation parameters have a significant effect
on the mechanical properties after heat treatment. The force increased rapidly with the
increase of stroke. When the applied stress reached the yield strength, the material entered
plastic deformation. The yield strength of heat-treated specimens gradually increased with
the decrease of deformation temperature or the increase of strain rate. Figure 9b shows the
relationship between yield strength (σy) and Z parameters. Based on previous studies, σy
can be described by the following equation [16,23]:

σy = σ0 + σp + σs + σρ + kHPd−1/2 (4)

where σ0 is the friction stress for pure iron, σp is the precipitation hardening, σs is the solid
solution hardening, σρ is the hardening of dislocations and kHPd−1/2 is the grain boundary
strengthening (kHP: Hall–Petch slope; d: the effective grain size or the spacing of high
angle boundaries). In the heat treatment process, the deformed sample was held for a
long time above the recrystallization temperature, making the dislocation density greatly
decrease and remain stable. In addition, the cooling rate was sufficient to make almost
all austenite transform into martensite [24]. Meanwhile, due to the same concentration
of alloy elements and heat treatment process, the first four terms on the right side of
Equation (4) are expected to be nearly constant [16,25]. Therefore, the increase of yield
strength is mainly caused by grain boundary strengthening. Since the martensite block
is a high angle boundary, the yield strength is directly related to dblock. As discussed in
Section 3.2, during the hot deformation process, the grain size decreased with the increase
of the Z parameter. Therefore, the yield strength increased with the increase of the Z
parameter. In addition, when ln Z > 36, annealing twins were formed during the heat
treatment. The twin and austenite grain boundaries simultaneously hindered the growth
of the martensite block, which had a stronger inhibition on the growth of martensite.
Accordingly, the increasing tendency of yield strength increased, as shown by the blue
dotted line in Figure 9b.
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4. Conclusions

In this study, the effect of hot deformation parameters on heat-treated microstructure
and mechanical properties was investigated through hot compression and heat treatment
tests of 300M steel. In addition, in situ observation of the martensite transformation
during the cooling process of heat treatment was carried out. The following conclusions
were obtained.

(1) Dynamic recrystallization occurred after hot deformation, and the microstructure
after heat treatment was mainly martensite. With the increase of the Z parameter, the
recrystallization grain size and the martensite unit size decreased. In addition, the
decreasing tendency of the martensite block width and the martensite packet size
also increased.

(2) With the increase of the Z parameter, annealing twins were formed during the heat
treatment. The twin boundaries hinder the growth of martensite, making the decreas-
ing tendency of the martensite unit size increase.

(3) The yield strength was mainly affected by the martensite unit size and increased with
the increase of the Z parameter. When ln Z > 36, annealing twins were formed and
the increasing tendency of yield strength increased.
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