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Abstract: This work is a comprehensive literature overview in the area of probabilistic methods
related to composite materials with components exhibiting hyper-elastic constitutive behavior. A
practical area of potential applications is seen to be rubber, rubber-like, or even rubber-based hetero-
geneous media, which have a huge importance in civil, mechanical, environmental, and aerospace
engineering. The overview proposed and related discussion starts with some general introductory
remarks and a general overview of the theories and methods of hyper-elastic material with a special
emphasis on the recent progress. Further, a detailed review of the current trends in probabilistic
methods is provided, which is followed by a literature perspective on the theoretical, experimental,
and numerical treatments of interphase composites. The most important part of this work is a
discussion of the up-to-date methods and works that used the homogenization method and effective
medium analysis. There is a specific focus on random composites with and without any interface
defects, but the approaches recalled here may also serve as well in sensitivity analysis and opti-
mization studies. This discussion may be especially helpful in all engineering analyses and models
related to the reliability of elastomers, whose applicability range, which includes energy absorbers,
automotive details, sportswear, and the elements of water supply networks, is still increasing, as well
as areas where a stochastic response is the basis of some limit functions that are fundamental for such
composites in structural health monitoring.

Keywords: composites; hyper-elasticity; homogenization; probabilistic methods; interface defects;
rubber-like materials

1. Introductory Remarks

The computational analysis of materials is now standard and decisive for the design
of contemporary appliances, mechanical parts, and bearing systems that are made of both
homogeneous and heterogeneous (composite) materials. It is especially remarkable in the
area of polymeric materials [1] that are reinforced or filled with some other specific micro-
injections or nano-particles [2–5]. Such materials modeling needs a specific approach that is
most frequently based upon macro-modeling that is linked with a calculation of the overall
properties [6]; nevertheless, it may demand precise experimentally verified knowledge
concerning the nano-mechanics of the reinforcements [7]. There is no doubt that numerical
simulation changed the entire design process by supplementing the traditional cycle of
conceptualizing and laboratory testing with various modeling tools, including sensitivity
analyses [8], stochastic models [9] that include various nonlinearities [10], accounting
for the anisotropy of fillers [11], atomistic modeling [12], and multiscale approaches [13],
finally leading to reliability assessments [14]. It cuts down the design time and provides
tools for a very optimized or complex solution that is unavailable when using even a
very advanced analytical approach. All computations are based on constitutive models of
materials, which involves defining their behavior under different mechanical, thermal [15],
electrical [16], magnetic, and coupled [17] conditions. They are well-defined for relatively
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simple continua [18–20] but are still challenging for composites outside of the elastic region.
In this review, the hyper-elastic response of a complex continuum is studied. It is highly
useful for predicting the behavior of rubber-like composites with a polymeric matrix. Their
main strengths include their ease of usage and calibration, computational efficiency, and
flexibility of usage and accessibility in commercial codes. They could also be quite easily
augmented to capture hysteresis in cyclic loading. Applications of various hyper-elastic
constitutive models range from the tire industry to biological tissues, such as human
arteries [21] and polymers, and include civil engineering, where such materials are applied
as vibration dampers and protection.

This review work consists of five sections, starting with a retrospective look into
hyper-elastic materials and their constitutive models. Then, a relatively short description
and literature overview are given related to the probabilistic methods that are available in
modern engineering. The next part is devoted to the characterization of interphases and
interface defects that are inherent in composite materials. Further, multiscale models of
composite materials and the additional numerical simulations are briefly characterized,
together with their recent advances. The key milestones and very recent ideas in the
homogenization method end the entire review.

2. Hyper-Elastic Materials

An early motivation for the theoretical formulation of hyper-elastic materials was
the lack of existence of large-strain models capturing deformations that accounted for
their non-linearity above an infinitesimal level. Such materials can deform significantly
and nonlinearly upon loading without breaking and then return to their initial configu-
ration. Such rubber elasticity is achieved due to very flexible long-chain molecules and
a three-dimensional network structure that is formed via cross-linking or some entangle-
ments between molecules. This behavior characterizes a wide range of continua, including
rubber-like materials, polymers [22], and elastomers [23]. Its implementation in the finite
element framework requires two important ingredients to solve the given boundary value
problem. They are the stress tensor and the consistent fourth-order tangent operator; the
latter is the result of linearization of the former rubber-like materials, which are generally
modeled as homogeneous, isotropic, incompressible or nearly incompressible, geomet-
rically and physically nonlinear, hyper- or visco-elastic solids [24–28] and visco-plastic
solids [29]. Their models are commonly supported by experimental data. The most com-
mon tests involve uniaxial tension, biaxial tension, and pure shear. Some models also
consider aging [30,31], the Mullins effect [32–34], hysteresis [35], or the failure of rubber-
like materials [36,37]. Hyper-elastic models are reviewed in this work and their theoretical
introduction is available, for example, in [38–41], whereas some numerical illustrations are
contained in [42–45]. Let us recall the basic concepts for hyper-elastic constitutive models,
which can be generally divided into three essentially different categories: phenomenologi-
cal models [46,47], micromechanical approaches, and constitutive theories obtained with
the use of the artificial neural networks (ANNs [48–52]). They are all presented graphically
in Figures 1–4, respectively.

Phenomenological models are generally based on invariants, the stretch ratio, or both.
Their parameters do not bear any physical interpretation. Invariant-based phenomenologi-
cal models can be further divided into models that leverage a series function, including
the limitation of chain extensibility, or are based on a logarithmic function, power law,
or exponential function. They were developed in the mid- and late-twentieth century
and provide all analytical solutions for an isotropic single-phase medium. The number of
parameters included in their equations is small, which enables their analytical treatment
of simple engineering problems. Contemporary models introduce more parameters that
increase the flexibility and accuracy of calculations. The trade-off is a considerable increase
in calibration and computation efforts that makes them preferable for large-scale computer
simulations and not for analytical calculus.
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Micromechanical models are based on the analysis of networks of cross-linked long-
chain molecules. They could be subdivided into these based on a Gaussian or non-Gaussian
network model, or involve a mixture of the two. Artificial neural networks could be classical
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and bear no mechanical constraints, or constitutive and include such constraints in the
network. A comparison of various constitutive models has been provided below and
notation applied in the relevant formulas is the following one: W (with various upper
superscripts) denotes a function of deformation energy density, σ11 denotes the true Cauchy
stress under uniaxial tension, µ is the shear modulus (the second Lame constant), ν is the
Poisson ratio, λi denote principal stretches of the material (λ in uniaxial state) and J is their
product. Moreover, I1 is the first invariant of the right Cauchy-Green deformation tensor,
F is the deformation gradient, λL is the first Lame constant, while Ci and Di as well as Ap,
Bp, αp and βp are different material constants in the constitutive theories presented below.
The Readers are encouraged to look into the given references to find a specific physical or
mathematical explanation of some other parameters appearing below.

The first proposed hyper-elastic models were invariant-based, specifically the series
function ones. The first theoretical approach was done by Mooney and Rivlin [53,54]. The
model includes the first two invariants in their first powers:

WMR= C1(I1−3)+C2(I2−3) (1)

σMR
11 =

(
2Cm

1,MR +
2Cm

2,MR

λ

)(
λ2 − 1

λ

)
(2)

This model was simplified to include only the first invariant; it is widely known as the
neo-Hookean model [55–57]:

WNH= C1(I1−3) (3)

σNH
11 = 2C1

(
λ− 1
λ2

)
(4)

A third, second-power term was included by Isihara [58]:

WI= C10(I1−3)+C20(I1−3)2+C01(I2−3) (5)

σI
11= C10

(
λ− 1
λ2

)
+

(
λ3 +

C20

C01
−
[

1+
C20

C01

]
1
λ3

)
(6)

Next, a third term for the first invariant was added by Yeoh [59]:

WY= C1(I1−3)+C2(I1−3)2 (7)

σY
11= 2

(
C1+2C2(I1−3)+3C3(I1−3)2

)(
λ− 1
λ2

)
(8)

Carroll’s model drops the conventional (Ii−3) form [60] to give

WC= β1I1+β2I4
1+β3

√
I2 (9)

σC
11 =

[
2β1+8β2

(
2
λ
+λ2

)3
+β3

(
1 + λ3

)−1/2
][
λ− 1
λ2

]
(10)

It violates the restriction introduced by Ogden and Treolar that U(I1, I2, I3) = 0 in the reference
configuration and the following modification was proposed to overcome this peculiarity:

WCM= β1(I1−3)+β2

(
I4
1−81

)
+β3

(√
I2 −
√

3
)

(11)

σCM
11 =

[
2β1+8β2

(
2
λ
+λ2

)3
+β3

(
1 + λ3

)−1/2
][
λ− 1
λ2

]
(12)

It is called a modified Carrol’s model and is presented here in the incompressible
form [61]. The last series function model was introduced by Zhao [62]. It adds terms with
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mixed invariants in different powers governed by the same constant. This concept was also
used before by Bahreman and Darijani.

WZ = C1
−1(I2−3) + C1

1(I1−3) + C1
2

(
I2
1−2I2 − 3

)
+ C1

2

(
I2
1−2I2 − 3

)2
(13)

σZ
11 =

[
2β1+8β2

(
2
λ
+λ2

)3
+β3

(
1 + λ3

)−1/2
][
λ − 1

λ2

]
(14)

The second most common variants of phenomenological models are power, exponen-
tial, or logarithmic ones. The first one was proposed by Knowles [63]:

WK =
µ

2b

((
1 +

b(I1 − 3)
n

)n
− 1
)

(15)

σS
11 =

(
1
2

N

∑
p=1

Ap

(
I1

3

)αp

+
1
2

N

∑
p=1

Bp

(
I1

3

)βp
)(

λ − 1
λ2

)
(16)

The next one was proposed by Swanson [64]:

WS =
3
2

N

∑
p=1

Ap

1 + αp

(
I1

3

)1+αp

+
3
2

N

∑
p=1

Bp

1 + βp

(
I1

3

)1+βp

(17)

σS
11 =

(
1
2

N

∑
p=1

Ap

(
I1

3

)αp

+
1
2

N

∑
p=1

Bp

(
I1

3

)βp
)(

λ − 1
λ2

)
(18)

The next model was proposed by Gregory [65]:

WG =
A

2(1− n/2)

(
I1−3 + C2

)1−n/2
+

B
2(1−m/2)

(
I1−3 + C2

)1−m/2
(19)

σG
11 =

[
A
(

I1 − 3 + C2
)n/2

+B
(

I1−3 + N2
)m/2

][
λ− λ−2

]
(20)

A further modification was invented recently by Hong et al. and it was called a
modified Gregory model [47]:

WMG =
A

1 + α

(
I1−3 + M2

)1+α
+

B
1 + β

(
I1−3 + N2

)1+β
(21)

σMG
11 = 2

[
A
(

I1−3 + M2
)α

+B
(

I1−3 + N2
)1+β

][
λ− λ−2

]
(22)

Another variant of a power-law-based function was put forward by Lopez-Pamies [66], where

WLP =
M

∑
r=1

31−αr

2αr
µr

[
Iαr
1 −3αr

]
(23)

σLP
11 =

λ3−1
2λ+ λ4

M

∑
r=1

31−αrµr

(
λ2 +

2
λ

)αr

(24)

This type of function was also proposed by Yeoh in his modified form by adding an
exponential term [67]:

WY = C1(I1−3) + C2(I1−3)2 + C3(I1−3)3 +
α

β

(
1− e−β(I1−3)

)
(25)

σY
11= 2

(
C1+2C2(I1−3)+3C3(I1−3)2

)(
λ− 1
λ2

)
(26)
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This was generalized in 2019 by Travis et al. to include arbitrary powers of all three
terms. It was further called the generalized Yeoh model [68].

WGY= C1(I1−3)m+C2(I1−3)p (27)

σGY
11 = 2

(
λ− 1
λ2

)
mC1(I1−3)m−1+pC2(I1−3)p−1+qC3(I1−3)q−1 (28)

Gent and Thomas moved away from using a power function and instead proposed a
linear term combined with a relatively simple logarithmic term that allowed for a relatively
easy stress formulation [69]:

WGT= C1(I1−3)+C2 ln
[

I2

3

]
(29)

σGT
11 =

(
C1 +

C2

λ

)(
λ− 1
λ2

)
(30)

These logarithmic or (later) exponential terms are incorporated into their energy
functions to allow for a better estimation of deformation in uniaxial tension and equi-
biaxial tension.

The first proposal of a combined exponential and logarithmic function was put forward
by Hart-Smith [70]:

WHS= c10

∫
exp

(
c1
[
I1−3

]2)dI1+c01 ln
(

I2

3

)
(31)

σHS
11 = 2

[
c10 exp

(
c1[I1−3]2

)
+

c01

λI2

][
λ− 1
λ2

]
(32)

Another variant of such a combination was proposed by Alexander [71]:

WA= c1

∫
exp

(
c3
[
I1−3

]2)dI1+c2 ln
(

I2−3 + c4

c4

)
+c3

[
I1−3

]
(33)

σA
11= 2

(
c1 exp

(
c3[I1−3]2

)
+

1
λ

[
c2c4

I2−3 + c4
+c3

])(
λ− λ−2

)
(34)

Some other variations were put forward by Veronda and Westmann, Vito, Humphrey
and Yin, and much later by Mansouri and Darijani.

Another combination of such a phenomenological model was introduced by Hoss and
Marczak [72]. It consists of three terms, namely, power, exponential, and logarithmic terms:

WHM =
α

β

(
1− e−β(I1−3)

)
+
µ

2b

((
1+

b(I1−3)
n

)n
−1
)
+C2 ln

(
1
3

I2

)
(35)

σHM
11 = 2

(
λ− 1
λ2

)(
αe−β(I1−3) +

µ

2

(
1+

b(I1−3)
n

)n−1
+

1
λ

C2

I2

)
(36)

Next is the exponential-linear model [73], which instead of the summation of the
logarithmic and linear terms, proposed their multiplication:

WEL = A
(

1
α

ea(I1−3) + b(I1 − 2)(1− ln(I1 − 2))− 1
a
− b
)

(37)

σEL
11 =

λ3−1
2λ+ λ4

M

∑
r=1

31−αrµr

(
λ2 +

2
λ

)αr

(38)
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The most recent form of this type of model is the Anssari–Benam–Bucchi model [74]:

WABB= µN
(

1
6N

(I1−3)− ln
(

I1−3N
3− 3N

))
(39)

σABB
11 = 2µ

9N−
(
λ2+2λ−1

)
3N−

(
λ2+2λ−1

)(λ2 − 1
λ

)
(40)

Another type of phenomenological model limits chain extensibility. This type intro-
duces a limit for the stretch ratio for the macromolecular chain of rubber Im and provides
other parameters for small strains. The first one was introduced by Warner [75]:

WW= −µIm

2
ln
(

1− I1 − 3
Im − 3

)
(41)

σW
11 =

(
1
2

N

∑
p=1

Ap

(
I1

3

)αp

+
1
2

N

∑
p=1

Bp

(
I1

3

)βp
)(

λ− 1
λ2

)
(42)

A further proposal with a much more elaborate logarithmic term was made by van
der Waals [76]. It includes the limit stretch λm:

WVW= −µ[λm−3][ln(1− θ)+θ]− 2
3

(
Ĩ−3

2

) 3
2

, θ =

√
Î−3
λ2

m−3
, Î= βI1 + (1− β)I2 (43)

σVW
11 =

[β+ λ−1−βλ−1
] µ

1− η−aµ

(
Ĩ−3

2

)1/2
(λ− λ−2

)
(44)

A small difference in the quotient was then proposed by Gent [77]. It allowed for
better accuracy for small stretches:

WG= −µJm
2

ln
[

1− I1−3
Jm

]
(45)

σG
11 =

(
µJm

Jm−I1+3

)(
λ− 1
λ2

)
, Jm= Im−3, I1= λ2 +

2
λ

(46)

In the early 2000s, Pucci and Saccomandi [78] proposed a model with two logarithmic terms:

WPS= −Jm
µ

2
ln
(

1− I1−3
Jm

)
+c2 ln

(
I2

3

)
(47)

σPS
11 =

(
Jmµ

Jm−I1+3
+

2c2

λI2

)(
λ− λ−2

)
(48)

The last variant of this kind of phenomenological model was put forward by Horgan
and Murphy [79]:

WHM =
2µ(Im−3)

c2 ln
(

1−λ
c
1+λ

c
2+λ

c
3

Im−3

)
(49)

σHS
11 =

(
Jmµ

Jm−I1+3
+

2c2

λI2

)(
λ− λ−2

)
(50)

Phenomenological models based on the stretch ratio are simple, yet could be used for
large strain ratios, especially the famous Ogden variant. The first one was proposed by
Valanis and Landel [80]:

WVL = 2µ
3

∑
i=1

(λi ln(λi − 1)) (51)
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σVL
11 = I−1/2

3 λi
∂W
∂λi

(52)

Its compressible form and additional proofs and its experimental validation is also
provided in [81]. Further proposals were prepared by Ogden [14]:

WO =
M

∑
r=1

µr
αr

[
λαr

1 +λαr
2 +λαr

3 −3
]

(53)

σO
11= 2

µr
αr
λαr − 1√

λ

αr

(54)

• Shariff [13]:

WS= ω(λ1)+ω(λ2)+ω(λ3) = E
n

∑
j=0
αjϕj(λi) (55)

σS
11 = E

λ

ln λ+ α1ϑ1+α2ϑ1

+α3

[
ϑ2
λ3.6 − ϑ3

λ−1.8

]
+α4[ϑ2 − ϑ3]


ϑ1 =

[
e1−λ−e1−λ

1
2 +λ− λ− 1

2

]
, ϑ2 = (λ− 1)3, ϑ3 =

(
λ−

1
2−1

)3

(56)

• Attard and Hunt [25]:

WAH =
M

∑
r=1

Ar

2r
tr
(

Cr−I
)
+

Br

2r
tr
(

Cr−I
)

, tr
(

Cr−I
)
=
[
λ1

2r + λ2
2r + λ3

2r−3
]

(57)

σAH
11 =

M

∑
r=1

Ar

[
λ2r−1−λ−r−1

]
+Br

[
λr−1−λ−2r−1

]
(58)

• and Arman and Narooei [82]:

WAN =
N

∑
p=1

Ap

(
exp
[
mp

(
λ

αp
1 + λ

αp
2 + λ

αp
3 − 3

)]
− 1
)
+

N

∑
q=1

Bq

(
exp
[
nq

(
λ
−βq
1 + λ

−βq
2 + λ

−βq
3 − 3

)]
− 1
)

(59)

σAN
11 =

E
λ

ln λ+ α1ϑ1+α2ϑ1

+α3

[
ϑ2
λ3.6 − ϑ3

λ−1.8

]
+α4[ϑ2 − ϑ3]

 (60)

Mixed phenomenological models use invariants and stretch ratios that can capture
small and high strains well. They emerged in the early 2000s. Some examples are the
continuum hybrid model [83]:

WCH= K1(I1−3)+K2 ln
I2

3
+
µ

α
(λα1 +λ

α
2 +λ

α
3 −3) (61)

σCH
11 = I−1/2

3 λi
∂U
∂λi

(62)

and the WFB model [84]:

WWFB =
∫ Lf

1

(
F(λ1)A

(
λ1e−BI1

)
+C
(
λ1I−D

1

))(
λ2

1 −
1
λ1

)
dλ1 (63)

σWFB
11 = I−1/2

3 λi
∂U
∂λi

(64)
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Micromechanical network models aim to determine the microstructural mechanisms
of the material that relate to their mechanical properties. They can be categorized by the
presence of a Gaussian character in the chain network. Gaussian chain network models
characterize small and moderate stretches well but are not as accurate for large ones with
hardening. The first Gaussian model was proposed by Treloar [85]:

WG =
1
2

NkT
(
λ2

1+λ
2
2+λ

2
3−3

)
(65)

σG
11= I−1/2

3 λi
∂U
∂λi

(66)

Some other variants include the slip-link model [86]:

WSL =
1
2

Ge

3

∑
i=1

 (1 + η)
(
1− α2)λ2

i(
1 + ηλ2

i

)(
1− α2 ∑3

i=1 λ
2
i

) + ln

(
1 + η

3

∑
i=1
λ2

i

) (67)

σSL
11= µc

(
λ− λ−2

)
+

2µe
β

(
λ
β
2 −1−λ−β−1

)
(68)

and also the tube [43] model. The tube model potential consists of two parts that character-
ize chain cross-linkings WT,c and chain entanglements WT,e such that

WT= WT,c+WT,e =
3

∑
i=1

µc
2

(
λ

2
i−1

)
+

2µe

β2

(
λ
−β
i −1

)
(69)

σT
11= µc

(
λ− λ−2

)
+

2µe
β

(
λ
β
2 −1−λ−β−1

)
(70)

The most recent Gaussian-type model is a nonaffine tube model [87] characterized as

WNT= Wph+Went= Gc

3

∑
i=1

λ2
i

2
+Ge

3

∑
i=1

(
λi +

1
λi

)
(71)

σNT
11 = µc

(
λ− λ−2

)
+

2µe
β

(
λ
β
2 −1−λ−β−1

)
(72)

Non-Gaussian chain network models apply the mechanical property of a non-Gaussian
single chain to the molecular chains of the rubber network. The first three-chain model
assumed a distribution of molecular chains along principal directions and was efficient
only for small stretches. This limitation was overcome by Arruda and Boyce by introducing
limited chain extensibility. Furthermore, a more general distribution of molecular chains
was allowed in further theories that also introduced chain entanglement and cross-linking.

The three-chain model is defined in the following manner [88]:

W3C =
µN
3

3

∑
i=1

(
γiλr,i+ ln

(
γi

sin hγi

))
(73)

σ3C
11 =

µ

3λ

(
λ2

[
3N− λ2

N− λ2

]
− 1
λ

[
3N− λ−1

N− λ−1

])
(74)

The well-known and frequently used Arruda–Boyce model is presented next [89]:

WAB= C1


(

1
2 I1 − 3

)
+ 1

20(λA)
2 +

1
1050(λA)

4

(
I3
1 − 27

)
+

19
7000(λA)

6

(
I4
1 − 81

)
+ 519

673750(λA)
8

(
I5
1 − 243

)
= C1

5
∑

i=1
αiβ̂

i−1
(

Ii
1 − 3i

) (75)
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σAB
11 = 2C1

(
λ− 1

λ2

) 1
2 + 2

20(λA)
2 (I1 −9) + 3

1050(λA)
4

(
I2
1−27

)
+

4·19
7000(λA)

6

(
I3
1−81

)
+ 5·519

673750(λA)
8

(
I4
1 −243

) (76)

• The eight-chain model is as follows [90]:

W8C =
µN
3

(
γλr+ ln

(
γ

sin hγi

))
(77)

σ8C
11 =

µ

3

([
3N− λ2

cu

N− λ2
cu

])(
λ− λ−2

)
, λcu =

√
1
3

(
λ+

2
λ

)
(78)

A systematical consideration of the affine, three-chain, eight-chain, and micro-sphere
models is provided in [91].

The Flory–Erman approach, which is an extension of the nonaffine-tube model and
consists of the phantom energy WFE,pe function and micromechanics of chain molecules
WFE,ce, is provided in the following way [92]:

WFE= WFE,pe+WFE,ce =
3
∑

i=1

µ
2

([
1− 1

φ

][
λ

2
i−1

]
+ [Bi+Di− ln(Bi+1)− ln(Di+1)]

)
ξ =

[
1− 1

φ

]
n, µ = nKθ, Bi= κ2

(
λ

2
i−1

)(
λ

2
i +κ

)−2
, Di = λ

2
i κ
−1Bi

(79)

σFE
11 = µ

(
1− 2
φ

)(
λ− λ−2

)
+

∂Um
FE,ce

∂λi
(80)

The Gaussian nature of the phantom part of this model causes a deviation at high
strains. This is overcome in its modified version proposed by Boyce and Arruda. It replaces
the neo-Hookean part with an eight-chain model such that

WFE,m= W8C+WFE,ce= µN
(
γλr+ ln

(
γ

sin hγi

))
+

3

∑
i=1

µ

2
([Bi+Di− ln(Bi+1)− ln(Di+1)]) (81)

σFE,m
11 = σ8C

11 +
∂WFE,ce

∂λi
(82)

In its simplified version, the micro-sphere model [93] is given as

WMS= µ

(
λrL−1(λr)+ ln

(
γ

sin h(γ)

))
(83)

σMS
11 = µc

(
λ− λ−2

)
+

2µe
β

(
λ
β
2 −1−λ−β−1

)
(84)

One of the modern formulations of a hyper-elastic material is the extended tube
model [94], which includes five parameters. It focuses on the molecular–statistical approach
for polymer networks and it is based on the following formulae:

WET =
µc
2


(

1− δ2
)(

I1−3
)

1− δ2(I1−3
) + ln

(
1− δ2(I1−3

))+
3

∑
i=1

2µe

β2

(
λ
−β
i −1

)
(85)

σET
11 = µc

(
λ− λ−2

) 1− δ2(
1− δ2(I1−3)

)2 −
δ2

1− δ2(I1−3)

+
2µe
β

(
λ
β
2 −1−λ−β−1

)
(86)
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• Network averaging tube [95]:

WNA= µcκn ln

 sin
(

Π√
n

)(
I1
3

)q/2

sin
(

Π√
n

(
I1
3

)q/2
)
 (87)

σNA
11 =

µ

3

([
3N− λ2

cu

N− λ2
cu

])(
λ− λ−2

)
(88)

• SpT [96]:

WSpT = GcNln

(
3N + 1

2 I1

3N − I1

)
+ Ge ∑

i
λi (89)

σ
SpT
11 =

µ

3

([
3N− λ2

cu

N− λ2
cu

])(
λ− λ−2

)
(90)

• Wu-Giessen or full-network [97]:

WFN= W3C(1− ρ)+ρW8C (91)

σFN
11 = σ3C

11 (1− ρ)+ρσ8C
11 (92)

• Lim [98]:
WL = WG(1− f ) + fW8C (93)

σS
11 =

(
1
2

N

∑
p=1

Ap

(
I1

3

)αp

+
1
2

N

∑
p=1

Bp

(
I1

3

)βp
)(

λ− 1
λ2

)
(94)

• Bechir and Chavalier [99]:

WWG =
3
2

N

∑
p=1

Ap

1 + αp

(
I1

3

)1+αp

+
3
2

N

∑
p=1

Bp

1 + βp

(
I1

3

)1+βp

(95)

σS
11 =

(
1
2

N

∑
p=1

Ap

(
I1

3

)αp

+
1
2

N

∑
p=1

Bp

(
I1

3

)βp
)(

λ− 1
λ2

)
(96)

Only recently have some efforts been made to define the hyper-elastic behavior of
multi-phase materials. This was because of the high complexity of numerical simulations
and the unavailability of analytical solutions. These problems were overcome by a rapid
increase in computational resources, allowing for an iterative solution. Some examples
of contemporary studies include [100–108], as well as [109] for the visco-elastic regime.
Demand for advanced hyper-elastic models is stimulated by the biotechnological industry,
where the mechanics of biological tissue [110] and its interaction with artificial appliances
were studied [21]. They are also required in aerial, textile, and automotive industries, and
are used, for example, in tires or various shock absorbers. It needs to be mentioned that
Poisson ratio close to the value of 0.5 for rubber-like materials may break the FEM solution
incremental processes (in both deterministic and probabilistic context) due to the negative
diagonal components within the stiffness matrix or a lack of numerical convergence.

Unlike in linear small strain elasticity, all the models provide their own set of assump-
tions that were prescribed during the derivation process and are not necessarily easily
interchangeable with others. This introduces challenges in the description of their stochas-
tic nature because the material parameters are not a good choice for overall stochastic
unknowns. Such a choice would bind the analysis to a specific model, which is highly
undesirable. Instead, some more generic parameters or variables should be preferred, for
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example, a defects volume fraction, which is unique for all models; random (effective)
material coefficients should instead be derived from other random sources.

Stochastic or probabilistic studies are quite well documented in the reversible elastic
regime of composites [111,112]. This is not true for the inelastic regime. One of the main
reasons is the abovementioned lack of generality of various laws and the complexity of their
numerical solution already given in the deterministic case. The stochastic hyper-elasticity or
visco-elasticity of composites is considered only in a limited number of studies; some exam-
ples include [113–116]. Much attention was focused on a certain hyper-elasticity potential,
for example, the Ogden [117–119], neo-Hookean [66,120], or van der Waals models [105];
some of these also compare the results of several potentials, as in [121], or propose a specific
solution technique [122]. However, there is a lack of studies concerning the composites
that include interface defects in the nonlinear regime. This is especially true for a joint
deterministic and stochastic analysis coupled with the verification of multiple hyper-elastic
potentials. Unlike the majority of the stochastic considerations, these analyses are addition-
ally based on the set of laboratory tests performed especially for the computational part,
for which the numerical response of the matrix is fitted with the use of the least squares
method. The proposed approach specifically tackles the problem of the lack of generality
of hyper-elastic laws via the introduction of a probabilistic homogenization algorithm for
probabilistic homogenization. It enables the computation of random effective material
parameters for an arbitrary linear hyper-elastic potential with a specified source of the
input uncertainty.

Please note that the engineering stress σi for the above models can be obtained for all
the principal directions i using the following formulae:

σi =
∂W
∂I1

∂I1

∂λi
− ∂W

∂I2

∂I2

∂λi
− 1
λi

p (97)

and thus, for uniaxial tension, σUT
1 = 2

(
∂W
∂I1

+ 1
λ

∂W
∂I2

)(
λ− 1

λ2

)
and σUT

2 = σUT
3 = 0; for pure

shear, σPS
1 = 2

(
∂W
∂I1

+ ∂W
∂I2

)(
λ− 1

λ3

)
, σPS

2 = 2
(

∂W
∂I1

+λ2 ∂W
∂I2

)(
λ− 1

λ2

)
, and σPS

3 = 0; and for equi-

biaxial tension, σBT
1 = 2

(
∂W
∂I1

+ 1
λ

∂W
∂I2

)(
λ− 1

λ5

)
and σBT

3 = 0.
Artificial neural networks emerged in constitutive model determination 30 years

ago [123]. Instead of first selecting its closed form and then the tuning parameters, they
propose a family of artificial neural networks and then learn its weight and parameters;
they may be physical, phenomenological, or mixed. Until recently, classical neural net-
works remained a black box in terms of the morphology of parameters and partially or
totally disregarded the kinematic, thermodynamic, and physical constraints. They also
bypassed constitutive modeling altogether. This raised well-posed concerns for their formu-
lation. These were covered recently via the direct inclusion of the physical and mechanical
constraints into the neural network [124–126].

A very interesting innovation in this regard constitutes artificial neural networks. They
take an a priori closed set of constitutive models whose distribution in the final formula
is defined during the learning process [127,128]; such a formulation overcomes the above
concerns. Such a trained network includes a sum-of-weighted closed-form models for each
loading scheme. Thus, it is not strictly a new model in itself but is rather a novel mixture of
already created ones; its successful utilization requires prior knowledge of classical models
and cannot work without them.

3. Probabilistic Methods

The structural behavior of materials and structures in civil and mechanical engineering
design is defined by models with specific assumptions. Traditionally they have a certain
set of parameters to fit them to the response of the material in well-known tests. These
parameters are always exposed to some scatter, which comes from various sources of
randomness, such as the morphology of the material, tolerances in manufacturing and



Materials 2022, 15, 8878 14 of 30

measurements, accuracy of conversions, or other unknown origins that are impossible to
quantify during measurement.

Probabilistic analysis is an approach that tackles this problem directly by augmenting
deterministic mathematical models with random parameters or variables that represent
sources of uncertainty. It allows for a much more precise estimation of the behavior of
the analyzed system. In addition to the mean, characteristic, or design values obtained in
most engineering calculations, it also outputs the expected value, coefficient of variation,
and other specific information about the uncertainty of the results. It further allows us to
directly compute and optimize the structural safety margin in certain load conditions. This
margin may be represented, for example, as a reliability index or probability of survivability.
Probabilistic analysis may be applied in almost all (and not only) structural analyses at
various levels of design, i.e., the level of material, structural element, or even the level
of the entire structure; recent examples include heat transfer [129,130], fatigue [131,132],
stiffness [133], failure [134–136], or system response under uncertainty [137].

The probabilistic approach encompasses all the methods based on probability calculus,
leading to the calculation of the material or structural response with input uncertainties.
This response is commonly represented as random moments or characteristics, such as
the expected value, coefficient of variation, skewness, or kurtosis [138]. The most precise
representation of statistical distribution is the probability density function (PDF), but it is
also the most demanding in terms of computational resources. This is why in most cases,
probabilistic characteristics are preferable, as in the study of hyper-elastic materials. The
most widespread methods that allow for probabilistic design are direct derivation methods,
simulation methods, spectral methods, and perturbation methods.

Direct derivation methods [14,138] use integral calculus to derive random character-
istics of the response with a known PDF of the input random variables. In its classical
form, this approach uses a direct relation between the structural response and the random
parameter; it is commonly called an analytical method (AM). In many cases, such a relation
is not known, cannot be derived analytically, or a symbolic solution for the known relation
simply does not exist. An approximation of this relation is obtained with various numerical
techniques that are commonly called a response function or a response surface. Such an
approach is called a semi-analytical method (SAM) [138,139] and is applied in the study of
hyper-elastic materials; alternatively, some approximate integration may be employed.

Computer simulation methods [140–145] substitute integration with a finite number
of deterministic realizations, which are then subjected to statistical estimation. Realizations
are made with sets of parameters obtained from random or pseudo-random generation ac-
cording to their predefined PDFs; these are all referred to as Monte Carlo simulation (MCS)
methods [140,146,147]. They have some advantages, i.e., ease of implementation and avoid-
ance of integration, but they all also have important disadvantages. The major drawback of
this approach is the vast number of realizations required to reach a satisfactory convergence
result, which is guaranteed only with their infinite number [140,148]. This problem is
partially covered in more modern approaches, such as importance sampling [149], stratified
sampling [150], or Latin hypercube sampling [151] techniques; all of these approaches
attempt to lower the required sampling number. A second disadvantage is poor scaling
for an increasing number of unknowns. The last and deciding disadvantage is that the
inherent discrete character of the MCS disables the retrieval of continuous probabilistic
characteristics or measures of reliability.

The spectral method [130,152–154] describes the Gaussian random field with the use
of the Karhunen–Loève expansion. The structural response is emulated by expansion into
polynomial chaos [155], but the biggest problem of this methodology is the number of
terms in the expansion series necessary to achieve satisfactory accuracy [156]. Because
of this, the result may be inadequate and quite far from the exact solution, especially
when a second-order polynomial is used (which is commonly done). For this expansion to
obtain satisfactory accuracy, a high number of elements may oftentimes be required. An
additional problem is connected to the Karhunen–Loève expansion itself, which does not
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have a solution for certain problems [157,158], with an especially important example being
a reliable calculation of higher-order probabilistic characteristics [159].

Perturbation methods [138,159,160] describe the structural response as spread around
its mean value with a given small perturbation. They expand the response function into a
Taylor series around the expected values of random variables. The order of this method
depends on the number of terms in the applied expansion, namely, one term in the first
order, two terms in the second order, etc. One of its issues is the convergence of the Taylor
series, which is not always guaranteed. This problem is even more complex when the
response function is not known and must be approximated, which is the case for the study of
hyper-elastic materials. The response function is selected from a set of polynomial functions,
where the theoretical convergence of specific Taylor series can be mathematically proven.
The major advantages of this method are swift execution, relative ease of implementation,
and continuous character of the results. It also substitutes integrals with derivatives and
overcomes the problem of the lack of an analytical solution. The biggest drawback is the
probabilistic convergence for certain types of functions and the requirement of a higher
order expansion to reach high accuracy for input random variables with a high coefficient
of variation. A relation between the result and the input random variable is usually
unknown before the probabilistic analysis. Its analytical derivation is available only for
relatively simple, well-known problems. In other cases, this relation is sought with the
use of numerical methods, such as the finite element method, boundary element method,
and finite difference method; joining their output with probabilistic analysis results in
the stochastic finite element method (SFEM) [153,161–164], stochastic boundary element
method (SBEM) [165,166], and stochastic finite difference method (SFDM) [138,167]. Such a
fusion creates a powerful tool for probabilistic design and stochastic computations but it
does not provide a new probabilistic method itself. This is because of the convenience of
solving the homogenization problem and the availability of software for FEM computations;
readers looking for a comprehensive introduction to the finite element method may refer
to [168].

4. Interphase and Interface Defects

An interphase is an additional phase of the composite formed during its manufacturing
process or exploitation. It is introduced (artificially in modeling or during manufacturing)
in between two phases of a composite, commonly between the matrix and the filler (rein-
forcement). Its mechanical [169], thermal, electrical, thermo-mechanical [170], and physical
characteristics differ from the ones of the two surrounding phases. Its volume is much lower
than the other phases, yet it highly influences the behavior of an entire composite. This is
because the interphase effectively encapsulates the filler and prevents a direct interaction
in between the composite constituents. As documented, an interphase significantly affects
the effective material properties of multiple isotropic, cubic, and anisotropic composites
in a deterministic [171–175] and also stochastic context [8,11,176,177]. It either decreases
them in the existence of defects [178] or increases when the two phases are chemically
bound [179–182]. Its influence is so high that considerable research attention has been put
toward its tuning and tweaking to improve key properties of composites or adjust their
performance for special purposes [183,184].

An interphase is extremely difficult to localize and further analyze in laboratory tests.
This is because its thickness is very small (in the order of micrometers) and its characteristics
differ for each particle or fiber in the same sample of the composite. Despite the existence
of multiple surface agents applied in the phases, the interphase around each filler particle
or fiber has unique thermo-electro-mechanical conditions in which it forms; this effectively
causes its geometry, thickness, and properties to be random (see [185]).

Interface defects encompass all the inclusions, voids, discontinuities, and inaccuracies
that exist in the transition of the two phases in a composite. They reflect frequent manu-
facturing imperfections, for instance, following significant residual thermal stresses, and
can be treated during a numerical simulation as geometrical imperfections in composite
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materials [186]. Their occurrence greatly affects the response and properties of the compos-
ite despite its extremely small volume, which is a fraction of the volume of the interphase.
Interface defects were shown to be crucial for many properties of a composite, including its
durability [187], reliability [188], thermal conductivity [189], and even failure [180,190–192].
The defects and inclusions also cause a high microscopic stress concentration [193]. Some
studies were devoted to the defects only [194].

An interphase with interface defects forms an imperfect interface. Its usage in the realis-
tic prediction of composites’ behavior dates back many years [195–199]. The analysis of com-
posites with imperfect interfaces is performed primarily with the use of three techniques:
(1) insertion of the interphase in between the main composite constituents [200–204], (2) us-
age of special contact finite elements [205,206], and (3) an application of a system of the
springs [207] that may also be supplemented with dumpers. Very interesting strategies
belonging to the first group are based upon a geometrical idealization of such defects,
e.g., with the use of semi-circular or semi-spherical shapes, which follows the well-known
cavitation phenomenon for a variety of matrices [190,208].

5. Multiscale Models and Numerical Simulation

Multiscale analysis represents some trends in current numerical modeling in which the
given heterogeneous system is described simultaneously by multiple models at different
scales of resolution. Models at each scale may originate from physical laws of different
natures, for example, continuum mechanics at the macroscale [209] and molecular dynamics
at the atomistic scale. They are required because certain phenomena visible at one scale
cannot be described accurately without supplementary information from a different scale
from which they originate. Some examples include (1) brittle failure of the reinforced
concrete beam, which is caused by micro-cracks in concrete microstructure in between the
cement and grains; (2) plastic elongation of steel caused by a slip between its grains; or
(3) macroscopic properties of composites affected by microstructural defects. Alternatively,
they are used because purely macroscale models are not accurate enough, while lower-scale
models offer too much information or require too high computational power to be executed.
The multiscale approach aims at achieving a compromise between accuracy and efficiency
and frequently provides solutions to problems that are otherwise unsolvable in a reasonable
period. The multiscale analysis comprises three major components: multiscale models,
multiscale analysis tools, and multiscale algorithms. Multiscale algorithms involve using
multiscale analysis tools to bridge the scales and connect different multiscale models at
different levels.

The most used scales depend mainly upon the dimensions and are the following:
macroscale, mesoscale (level of microstructure), atomistic scale, and electronic scale. Inter-
estingly, each of these scales falls into a different discipline, for example, the macroscale
falls into civil and mechanical engineering, the mesoscale falls into materials science, and
the electronic scale falls into physics. Thus, multiscale design frequently requires bridging
different disciplines to be solved. The connection between the models is either ensured
analytically or numerically [210–212] and bridging between different scales is either done
sequentially or concurrently. In the sequential approach, certain characteristics used in
macroscopic models are precomputed. Usually, only a limited number of the parameters
(or variables) is passed to a different scale, but in some sparse representations, even as
many as six variables can be passed effectively [213,214]. In the concurrent alternative,
the macroscale model variables are computed on the fly during simulation. Its major
advantage is that a much smaller domain of macroscopic variables must be computed
on a different scale. On the other hand, the complexity of numerical algorithm solving
macroscale increases. Concurrent methods are not especially well suited to problems in
which parameters are passed to the FEM-based code, where each element would potentially
require a separate set of parameters.

Traditional structural analysis preferred in civil engineering does not involve a mul-
tiscale approach because it tends to limit calculations to a linear range of material defor-
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mation, where simple empirical constitutive laws are sufficient. The additional margin
of a nonlinear structural response is frequently used as a safety margin. A good exam-
ple is the design of structures made from constructional steel, for which the engineering
codes, such as Eurocodes, prefer the usage of linear elastic models. Calculations become
much more involved (even for steel) when localized phenomena, such as strain localiza-
tion [215] or crystal plasticity [216], must be taken into consideration. For these phenomena,
a macroscale model must be supplemented or interchanged with a macroscopic structure.
Macroscopic stress in the FEM crash test is calculated with supplementary information
from the mesoscale (scale of crystals and phases), as well as lower scales, where defects
originate. Unlike in statics, in structural dynamics, a scale is not only defined for space, but
also for time. The smaller the scale, the lower the dimensions and the smaller the timespan.
In multiscale design, information may be passed from a higher scale into a lower scale
(top-down method) or from a lower to a higher scale (bottom-up method).

The process of crossing a certain scale is called scale-bridging; an example of top-
down bridging is passing boundary conditions for each element of the FEM analysis into
a mesoscale model, while a bottom-up bridging example involves intra-grain bonding
conditions coming from the atomistic scale. A multiscale approach is already used, albeit
indirectly, at the structural design level for reinforced concrete. Verification of the ultimate
limit state for this composite already requires some supplementary information apart
from the scale of the structural element. Specifically, precise information on steel rebar
positioning is required even when all the macroscopic properties of concrete and steel are
already known. These properties already depend on information coming from four lower
scales, i.e., C-S-H, cement paste, mortar, and concrete mesoscale scales [217].

There exist multiple methods and algorithms that allow for solving multiscale prob-
lems. They focus on algebraic, numerical, or hybrid solutions and are usually aimed at
certain problem domains. Their comprehensive review is available in [218]. Some examples
include the multi-grid methods aimed at solving a large system of algebraic equations [219]
with some alteration in the equation-free method [220] and a heterogeneous multiscale
method where a preconceived macroscale model with missing components is assembled
and missing data is found with the use of microscale models or matched asymptotics
approach [221–223]. Some other methods include averaging and tolerance-averaging meth-
ods [224,225], hydrodynamic limit methods [226], the Mori–Zwanzig formalism [227],
renormalization group methods [228], variational methods [229], and homogenization
methods [230–236]. The multiscale approach is very frequently used for the determi-
nation of the macroscopic (or effective) properties of composites, also in the stochastic
context [237,238]. Some introduction to their theory is available, for example, in [239,240].
The homogenization method is often chosen because of its relatively easy application in
FEM systems.

6. Homogenization Method and Effective Medium Response

The homogenization method is frequently referred to as a process of the replacement of
an equation with a highly oscillatory coefficient with one that has a homogenous coefficient.
Initially used in studying partial differential equations (PDEs) [230,241], this concept
was found to be efficient at solving a problem of the non-homogenous microstructure of
continua, such as composites. This is because the macroscale boundary conditions, such as
forcings, loadings, or supports, are much bigger than the length scale of the microstructure.
A classical boundary value problem is given in the following way:

∇·
(

C

(→
x
τ

)
∇uτ

)
= f (98)
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with τ being a very small parameter and C(
→
g ) being a periodic coefficient C = (

→
g +

→
e j) =

C(
→
g ), i = 1, . . . , n. It may be modified to the following form:

∇·(C∗∇u) = f (99)

where C∗ is the effective constitutive tensor with constant coefficients representing a
homogenized material. This property could be computed as

C∗ij =
∫
(0,1)n

C
(→

g
)(
∇wj

(→
g
)
+
→
e j

)
·→e idy1. . . dyn, i, j = 1, . . . , n (100)

where periodic wj satisfies ∇y(C(
→
g )∇wj) = −∇y · (C(

→
g )
→
e j). One equation may be

replaced by another if τ is small enough to satisfy uτ ≈ u and when uτ → u at τ→ 0 .
Regarding the continuum concept, an analog of the differential element is the representative
volume element (RVE) in 3D problems or the representative surface element (RSE) in 2D
problems. This should be selected in a way to contain all the relevant statistical information
about an inhomogeneous medium. With such an assumption, averaging over this element
results in an effective property of the medium defined as C∗ above. A key problem in
such a formulation is the assumption that such an RVE is solvable and contains as much
information about the microstructure as possible. This also holds for stochastic calculations
where, in addition to the RVE selection, uncertain parameters must also be selected in a
way to catch the best representation of the most important randomness sources and remain
simple enough to be solved.

In its early approaches, homogenization was used in a purely analytical [233,242] way,
and thus, the microstructure was very simple and the range of applications was limited.
This obstacle was overcome with the incorporation of the FEM, where the RVE was mod-
eled and solved. The rapid evolution of the academic and commercial FEM software that
started at the end of the twentieth century supported researchers in the discretization and
visualization of the RVE. A simultaneous revolution in the computational power of per-
sonal computers made solutions to more complex problems accessible. All of this allowed
homogenization to become one of the most widespread methods used to solve multiscale
problems in materials science, especially those connected to the meso- and microscale of
inhomogeneous materials (see, e.g., [243–245]). The topic of a correct RVE is so important
that some studies treat it as a research problem connected with its generation [246], size
or scale effect [247–251], and validity of applied random microstructure [252]. Some other
works reviewed existing stochastic boundary conditions and introduce new ones [253]
or propose a formulation of finite elements for the hyper-elastic case [254]. The FEM is
commonly included in approaches that are aimed at decreasing the problem size or compu-
tation time, which is done at the expense of accuracy. These propose the usage of artificial
neural networks and machine learning approaches [255–257], divide the heterogeneous
medium into several subdomains [117], use a manifold-learning method to reduce the
dimensions of microscopic strain fields [258], utilize orthogonal decomposition R3M [259],
or aim to apply a reduced database model [260], to name a few. The FEM is, of course, not
the only possibility. There also exist some alternative methods, such as mesh-free formula-
tions [261], a gradient approach [262], fast Fourier transform (FFT)-based methods [263],
a transformation field [264], or the discrete element method [265], which are perfect for
densely packed solids. Sometimes, a nonlinear response of the material is studied, for
which some approaches to homogenization exist, such as the ones in [266–269]. In many
cases, they include specific a priori assumptions related to the stress or strain fields (see,
e.g., [270–272]). Probabilistic homogenization adds yet one more level of abstraction to
homogenization. It introduces uncertain parameters and variables in the lower scale of
homogenization, usually in the material microstructure; some examples were presented
and discussed in [273–279]. Similarly to probabilistic analysis in macroscopic calculations,
it quantifies the influence of input uncertainty on the response of the medium. The dif-
ference is the source of uncertainty, which cannot be included at a macroscopic level, yet
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cause randomness in engineering structures. Common problems for which probabilistic
homogenization is applied include uncertain phase properties, interface defects, geometric
uncertainty, or inclusions. Uncertainty may be included in one phase or in in the various
characteristics of the RVE, for example, the reinforcement positioning. They all result in an
uncertain stiffness tensor or parameters leading to the material constitutive relation.

Probabilistic homogenization of composites is especially interesting when it is coupled
with the problem of interface defects. An analytical solution to this problem can only
be obtained for elastic composites and a simple RVE, which was proposed in [280]. A
more in-depth analysis of the stiffness tensor, even in an elastic regime, requires the usage
of numerical solvers. The author proposed such an approach [204], verified it with an
analytical solution, and studied a fully anisotropic response of the homogenized compos-
ite [11]. The results demonstrated that particle clustering and uneven particle distribution
affect the anisotropy of the composite and have a high influence on the components of
its stiffness tensor. In his other work [8], he verified a numerical solution of a composite
with an uncertain reinforcing particle radius with an analytical solution and studied an
influence of an uncertain aspect ratio on the effective stiffness tensor of a composite. One
may extend this model toward a hyper-elastic regime of the composite, where an uncertain
hyper-elastic response of a homogeneous medium can be taken into account [115], which
may be further extended toward the stochastic hyper-elastic response of composites with
hysteresis [99] and with stochastic interface defects [281,282].

As it is well-known, the effective response of a medium is a relation of the objective
function with uncertain parameters or variables. In structural design, the objective function
could be defined as a limit function. In homogenization, it usually is an effective property
of a medium, such as the stiffness tensor, bulk modulus, effective stress, or strain energy.
In the majority of homogenization problems (and also in most structural engineering
problems), such a relation cannot be analytically determined. This is a reason why the
objective function is commonly computed with the use of discrete numerical procedures.
In SPT, this is frequently done using a response function method (RFM) [138] or response
surface method (RSM) [283,284] when more variables are considered. An alternative to
the direct differentiation method (DDM) is rarely selected because it requires at least an
intervention into a source code of a discrete numerical solver or even the introduction of its
solver. This is because the deterministic values used by these programs must be substituted
with their stochastic counterparts.

The response function method and the response surface method both aim to approx-
imate the real relations of the objective function with the use of a surrogate model (also
called a meta-model [285,286]) with an uncertain variable. This is done based on a carefully
selected set of discrete numerical (or laboratory) experiments performed for different values
of input variables [287,288]. Their major advantage is the ease of application and discon-
nection of the metamodel fitting from the stochastic procedure, which allows for a simple
analysis of the fitting errors. Surrogate models are commonly applied from a subset of poly-
nomial functions and also their fractions or other rational functions [289,290]; a little less
common is an application of the B-spline, logarithmic, exponential, or hyperbolic functions.

Searching for the response functions or surfaces is an optimization problem and can
be solved using linear programming (LP), quadratic programming (QP), and nonlinear
programming (NP) methods. A class of linear programming problems is one where the
objective function and all of the constraints are linear functions of the decision variables.
It always has either (a) one or more equivalent globally optimal solutions, (b) has an
unbounded objective, or (c) no feasible solution. It is convex and has at most one feasible
region with “flat faces” (i.e., no curves) on its outer surface. Its optimal solution (if available)
lays at a “corner point” on this surface that is represented by constraints. A solver may
work pointwise and the solution is fast. Common solvers include families of the simplex
technique in its primal [291] or dual [292] version and the interior point technique [293],
where the fitting procedure is completed with a linear or (sometimes) nonlinear version of
the Least Squares Method.
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As it is well known, a quadratic programming problem has an objective function that
is a quadratic function of the design variables and constraints that are all linear functions of
the variables. They have only one feasible region with “flat faces” on its surface (due to the
linear constraints), but the optimal solution may be found anywhere within this region or
on its surface. As it is well known, an objective function may be convex or non-convex. The
convex functions have either positive definite or semi-definite Hessians, and non-convex
have an indefinite Hessian and a saddle shape, which is usually out of the scope of QP
solvers. Typical solvers include a simplex extension to the QP, active set and working set
method variations [294,295], interior point [296–298], or Newton barrier methods [299–302].
A nonlinear programming problem similar to the hyper-elastic stochastic analysis of com-
posites and their effective characteristics is no doubt one of the most difficult issues in
optimization theory. An objective function is generally a nonlinear function of the decision
variables and may have many locally optimal solutions. A global minimum is very diffi-
cult to be found [303], and common solvers include augmented Lagrange methods [304],
sequential quadratic programming [305,306], and reduced gradient methods [307,308].

7. Concluding Remarks

As demonstrated in this review work, an application of probabilistic and stochastic
methods in the analysis of hyper-elastic solids still attracts many researchers and has a large
audience. Such an approach is especially very convenient for engineering practice with
polymer-based composites, specifically elastomers. Experimental statistics included in new
theoretical and computer models allow for further optimization of such materials. This
may be crucial for the optimal design of structural dampers, whose reliability, durability,
and structural health monitoring may bring huge qualitative and quantitative savings.
Stochastic multiscale models, especially including the atomistic scale of the solid, are indeed
still very scarce, mainly since this scale uncertainty requires relatively expensive Monte
Carlo simulations to obtain reliable stochastic analyses. Time and computer power con-
sumption in this case is still slowly decreasing, but this is the main reason to continuously
look for some concurrent techniques. This is also why various homogenization methods
remain very attractive in materials engineering, especially those accounting for material
and geometrical imperfections of a random nature, and most probably will remain so in
the future.
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263. de Geus, T.; Vondřejc, J.; Zeman, J.; Peerlings, R.; Geers, M. Finite strain FFT-based non-linear solvers made simple. Comput.
Methods Appl. Mech. Eng. 2017, 318, 412–430. [CrossRef]

264. Michel, J.C.; Suquet, P. Computational analysis of nonlinear composite structure using the non-uniform transformation 3field
analysis. Comput. Methods Appl. Mech. Eng. 2004, 193, 5477–5502. [CrossRef]

265. Ehlers, W.; Bidier, S. From particle mechanics to micromorphic media. Part I: Homogenisation of discrete interactions towards
stress quantities. Int. J. Solids Struct. 2018, 187, 23–37. [CrossRef]

266. Huang, Z.P.; Wang, J. A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech. 2006, 182,
195–210. [CrossRef]

267. Jahanshahi, M.; Ahmadi, H.; Khoei, A. A hierarchical hyperelastic-based approach for multi-scale analysis of defective nano-
materials. Mech. Mater. 2019, 140, 103206. [CrossRef]

268. Masud, A.; Truster, T.J. A framework for residual-based stabilization of incompressible finite elasticity: Stabilized formulations
and F methods for linear triangles and tetrahedra. Comput. Methods Appl. Mech. Eng. 2013, 267, 359–399. [CrossRef]

269. Bisegna, P.; Luciano, R. Bounds on the overall properties of composites with debonded frictionless interfaces. Mech. Mater. 1998,
28, 23–32. [CrossRef]

270. Dai, M.; Schiavone, P.; Gao, C.-F. Neutral nano-inhomogeneities in hyperelastic materials with a hyperelastic interface model. Int.
J. Non-Linear Mech. 2016, 87, 38–42. [CrossRef]

271. Wang, X.; Schiavone, P. Harmonic three-phase circular inclusions in finite elasticity. Contin. Mech. Thermodyn. 2015, 27, 739–747.
[CrossRef]

272. Wang, X.; Schiavone, P. Neutral coated circular inclusions in finite plane elasticity of harmonic materials. Eur. J. Mech. A/Solids
2012, 33, 75–81. [CrossRef]

273. Ma, J.; Sahraeem, S.; Wriggers, P.; de Lorenzis, L. Stochastic multiscale homogenization analysis of heterogeneous materials under
finite deformations with full uncertainty in the microstructure. Comput. Mech. 2015, 55, 819–835. [CrossRef]

274. Sasikumar, P.; Suresh, R.; Gupta, S. Stochastic model order reduction in uncertainty quantification of composite structures.
Compos. Struct. 2015, 128, 21–34. [CrossRef]
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