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Abstract: This work is a comprehensive literature overview in the area of probabilistic methods 

related to composite materials with components exhibiting hyper-elastic constitutive behavior. A 

practical area of potential applications is seen to be rubber, rubber-like, or even rubber-based 

heterogeneous media, which have a huge importance in civil, mechanical, environmental, and 

aerospace engineering. The overview proposed and related discussion starts with some general 

introductory remarks and a general overview of the theories and methods of hyper-elastic material 

with a special emphasis on the recent progress. Further, a detailed review of the current trends in 

probabilistic methods is provided, which is followed by a literature perspective on the theoretical, 

experimental, and numerical treatments of interphase composites. The most important part of this 

work is a discussion of the up-to-date methods and works that used the homogenization method 

and effective medium analysis. There is a specific focus on random composites with and without 

any interface defects, but the approaches recalled here may also serve as well in sensitivity analysis 

and optimization studies. This discussion may be especially helpful in all engineering analyses and 

models related to the reliability of elastomers, whose applicability range, which includes energy 

absorbers, automotive details, sportswear, and the elements of water supply networks, is still 

increasing, as well as areas where a stochastic response is the basis of some limit functions that are 

fundamental for such composites in structural health monitoring. 

Keywords: composites; hyper-elasticity; homogenization; probabilistic methods; interface defects; 

rubber-like materials 

 

1. Introductory Remarks 

The computational analysis of materials is now standard and decisive for the design 

of contemporary appliances, mechanical parts, and bearing systems that are made of both 

homogeneous and heterogeneous (composite) materials. It is especially remarkable in the 

area of polymeric materials [1] that are reinforced or filled with some other specific micro-

injections or nano-particles [2–5]. Such materials modeling needs a specific approach that 

is most frequently based upon macro-modeling that is linked with a calculation of the 

overall properties [6]; nevertheless, it may demand precise experimentally verified 

knowledge concerning the nano-mechanics of the reinforcements [7]. There is no doubt 

that numerical simulation changed the entire design process by supplementing the 

traditional cycle of conceptualizing and laboratory testing with various modeling tools, 

including sensitivity analyses [8], stochastic models [9] that include various nonlinearities 

[10], accounting for the anisotropy of fillers [11], atomistic modeling [12], and multiscale 

approaches [13], finally leading to reliability assessments [14]. It cuts down the design 

time and provides tools for a very optimized or complex solution that is unavailable when 

using even a very advanced analytical approach. All computations are based on 

constitutive models of materials, which involves defining their behavior under different 
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mechanical, thermal [15], electrical [16], magnetic, and coupled [17] conditions. They are 

well-defined for relatively simple continua [18–20] but are still challenging for composites 

outside of the elastic region. In this review, the hyper-elastic response of a complex 

continuum is studied. It is highly useful for predicting the behavior of rubber-like 

composites with a polymeric matrix. Their main strengths include their ease of usage and 

calibration, computational efficiency, and flexibility of usage and accessibility in 

commercial codes. They could also be quite easily augmented to capture hysteresis in 

cyclic loading. Applications of various hyper-elastic constitutive models range from the 

tire industry to biological tissues, such as human arteries [21] and polymers, and include 

civil engineering, where such materials are applied as vibration dampers and protection. 

This review work consists of five sections, starting with a retrospective look into 

hyper-elastic materials and their constitutive models. Then, a relatively short description 

and literature overview are given related to the probabilistic methods that are available in 

modern engineering. The next part is devoted to the characterization of interphases and 

interface defects that are inherent in composite materials. Further, multiscale models of 

composite materials and the additional numerical simulations are briefly characterized, 

together with their recent advances. The key milestones and very recent ideas in the 

homogenization method end the entire review. 

2. Hyper-Elastic Materials 

An early motivation for the theoretical formulation of hyper-elastic materials was the 

lack of existence of large-strain models capturing deformations that accounted for their 

non-linearity above an infinitesimal level. Such materials can deform significantly and 

nonlinearly upon loading without breaking and then return to their initial configuration. 

Such rubber elasticity is achieved due to very flexible long-chain molecules and a three-

dimensional network structure that is formed via cross-linking or some entanglements 

between molecules. This behavior characterizes a wide range of continua, including 

rubber-like materials, polymers [22], and elastomers [23]. Its implementation in the finite 

element framework requires two important ingredients to solve the given boundary value 

problem. They are the stress tensor and the consistent fourth-order tangent operator; the 

latter is the result of linearization of the former rubber-like materials, which are generally 

modeled as homogeneous, isotropic, incompressible or nearly incompressible, 

geometrically and physically nonlinear, hyper- or visco-elastic solids [24–28] and visco-

plastic solids [29]. Their models are commonly supported by experimental data. The most 

common tests involve uniaxial tension, biaxial tension, and pure shear. Some models also 

consider aging [30,31], the Mullins effect [32–34], hysteresis [35], or the failure of rubber-

like materials [36,37]. Hyper-elastic models are reviewed in this work and their theoretical 

introduction is available, for example, in [38–41], whereas some numerical illustrations 

are contained in [42–45]. Let us recall the basic concepts for hyper-elastic constitutive 

models, which can be generally divided into three essentially different categories: 

phenomenological models [46,47], micromechanical approaches, and constitutive theories 

obtained with the use of the artificial neural networks (ANNs [48–52]). They are all 

presented graphically in Figures 1–4, respectively. 
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Figure 1. Different phenomenological models of hyper-elastic materials (part 1). 

 

Figure 2. Different phenomenological models of hyper-elastic materials (part 2). 
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Figure 3. Different micromechanical models of hyper-elastic materials. 

 

Figure 4. Different ANN (artificial neural networks) models of hyper-elastic materials. 

Phenomenological models are generally based on invariants, the stretch ratio, or 

both. Their parameters do not bear any physical interpretation. Invariant-based 

phenomenological models can be further divided into models that leverage a series 

function, including the limitation of chain extensibility, or are based on a logarithmic 

function, power law, or exponential function. They were developed in the mid- and late-

twentieth century and provide all analytical solutions for an isotropic single-phase 
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medium. The number of parameters included in their equations is small, which enables 

their analytical treatment of simple engineering problems. Contemporary models 

introduce more parameters that increase the flexibility and accuracy of calculations. The 

trade-off is a considerable increase in calibration and computation efforts that makes them 

preferable for large-scale computer simulations and not for analytical calculus. 

Micromechanical models are based on the analysis of networks of cross-linked long-

chain molecules. They could be subdivided into these based on a Gaussian or non-

Gaussian network model, or involve a mixture of the two. Artificial neural networks could 

be classical and bear no mechanical constraints, or constitutive and include such 

constraints in the network. A comparison of various constitutive models has been 

provided below and notation applied in the relevant formulas is the following one: W 

(with various upper superscripts) denotes a function of deformation energy density, σ11 

denotes the true Cauchy stress under uniaxial tension, μ is the shear modulus (the second 

Lame constant), ν is the Poisson ratio, λi denote principal stretches of the material (λ in 

uniaxial state) and J is their product. Moreover, I1 is the first invariant of the right Cauchy-

Green deformation tensor, F is the deformation gradient, λL is the first Lame constant, 

while Ci and Di as well as Ap, Bp, αp and βp are different material constants in the 

constitutive theories presented below. The Readers are encouraged to look into the given 

references to find a specific physical or mathematical explanation of some other 

parameters appearing below. 

The first proposed hyper-elastic models were invariant-based, specifically the series 

function ones. The first theoretical approach was done by Mooney and Rivlin [53,54]. The 

model includes the first two invariants in their first powers: 

WMR=C1(I1-3)+C2(I2-3) (1) 

σ11
MR= (2C1,MR

m +
2C2,MR

m

λ
) (λ2-

1

λ
) (2) 

This model was simplified to include only the first invariant; it is widely known as 

the neo-Hookean model [55–57]: 

WNH= C1(I1-3) (3) 

σ11
NH=2C1 (λ-

1

λ2
) (4) 

A third, second-power term was included by Isihara [58]: 

WI= C10(𝐼1-3) + C20(𝐼1-3)2+ C01(𝐼2-3) (5) 

σ11
I = C10 (λ-

1

λ2
) + (λ3+

C20

C01
- [1+

C20

C01
]

1

λ3
) (6) 

Next, a third term for the first invariant was added by Yeoh [59]: 

WY=C1(I1-3) + C2(I1-3)
2 (7) 

σ11
Y =2(C1 + 2C2(I1 - 3)+3C3(I1 - 3)2) (λ-

1

λ2
) (8) 

Carroll’s model drops the conventional (𝐼𝑖-3) form [60] to give 

WC=β
1
I1+β

2
I1
4+β

3
√I2 (9) 

σ11
C = [2β

1
 + 8β

2
(

2

λ
+λ2)

3

+β
3
(1+λ3)

-1/2
] [λ-

1

λ2
] (10) 

It violates the restriction introduced by Ogden and Treolar that U(I1,I2,I3)=0  in the 

reference configuration and the following modification was proposed to overcome this 

peculiarity: 



Materials 2022, 15, 8878 6 of 30 
 

 

WCM= β
1
(I1 - 3)+β

2
(I1

4 - 81) + β
3
(√I2-√3) (11) 

σ11
CM= [2β

1
 + 8β

2
(

2

λ
 + λ2)

3

+β
3
(1 + λ3)

-1/2
] [λ-

1

λ2
] (12) 

It is called a modified Carrol’s model and is presented here in the incompressible 

form [61]. The last series function model was introduced by Zhao [62]. It adds terms with 

mixed invariants in different powers governed by the same constant. This concept was 

also used before by Bahreman and Darijani. 

W𝑍=𝐶−1
1 (I2 - 3)+𝐶1

1(I1 - 3)+𝐶2
1(𝐼1

2 - 2I2 − 3)+𝐶2
1(𝐼1

2 - 2I2 − 3)2 (13) 

σ11
𝑍 = [2β

1
 + 8β

2
(

2

λ
 + λ2)

3

+β
3
(1+λ3)

-1/2
] [λ -

1

λ2
] (14) 

The second most common variants of phenomenological models are power, 

exponential, or logarithmic ones. The first one was proposed by Knowles [63]: 

WK=
μ

2b
((1 +

𝑏(𝐼1 − 3)

𝑛
)

𝑛

− 1) (15) 

σ11
S = (

1

2
∑ Ap (

I1

3
)

αp
N

p=1

+
1

2
∑ Bp

N

p=1

(
I1

3
)

β
p

)(λ -
1

λ2
) (16) 

The next one was proposed by Swanson [64]: 

WS=
3

2
∑

Ap

1+αp

N

p=1

(
I1

3
)

1+αp

+
3

2
∑

Bp

1+β
p

N

p=1

(
I1

3
)

1+β
p

 (17) 

σ11
S = (

1

2
∑ Ap (

I1

3
)

αp
N

p=1

+
1

2
∑ Bp

N

p=1

(
I1

3
)

β
p

)(λ -
1

λ2
) (18) 

The next model was proposed by Gregory [65]: 

WG=
A

2(1 - n/2)
(I1 - 3+C2)

1-n/2
+

B

2(1 - m/2)
(I1 - 3+C2)

1-m/2
 (19) 

σ11
G = [A(I1 - 3+C2)

n/2
+B(I1-3+N2)

m/2
] [λ-λ-2] (20) 

A further modification was invented recently by Hong et al. and it was called a 

modified Gregory model [47]: 

WMG=
A

1+α
(I1-3+M2)

1+α
+

B

1+β
(I1-3+N2)

1+β
 (21) 

σ11
MG=2 [A(I1-3+M2)

α
+B(I1-3+N2)

1+β
] [λ-λ-2] (22) 

Another variant of a power-law-based function was put forward by Lopez-Pamies 

[66], where 

WLP= ∑
31-αr

2αr

M

r=1

μ
r
[I ̅1

αr-3αr] (23) 

σ11
LP=

λ3-1

2λ+λ4
∑ 31-αr

M

r=1

μ
r
(λ2+

2

λ
)

αr

 (24) 

This type of function was also proposed by Yeoh in his modified form by adding an 

exponential term [67]: 
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WY=C1(I1-3)+C2(I1-3)2+C3(I1-3)3+
α

β
(1-e-β(I1-3)) (25) 

σ11
Y =2(C1+2C2(I1-3)+3C3(I1-3)2) (λ-

1

λ2
) (26) 

This was generalized in 2019 by Travis et al. to include arbitrary powers of all three 

terms. It was further called the generalized Yeoh model [68]. 

WGY=C1(I1-3)
m+C2(I1-3)

p (27) 

σ11
GY=2 (λ-

1

λ2
) mC1(I1-3)m-1+pC2(I1-3)p-1+qC3(I1-3)q-1 (28) 

Gent and Thomas moved away from using a power function and instead proposed a 

linear term combined with a relatively simple logarithmic term that allowed for a 

relatively easy stress formulation [69]: 

WGT= C1(I1-3)+C2ln [
I2

3
] (29) 

σ11
GT= (C1+

C2

λ
) (λ-

1

λ2
) (30) 

These logarithmic or (later) exponential terms are incorporated into their energy 

functions to allow for a better estimation of deformation in uniaxial tension and equi-

biaxial tension. 

The first proposal of a combined exponential and logarithmic function was put 

forward by Hart-Smith [70]: 

WHS= c10 ∫ exp(c1[I1̅-3]2) dI1̅+c01ln (
I2̅

3
) (31) 

σ11
HS=2 [c10exp(c1[I1-3]2)+

c01

λI2
] [λ-

1

λ2
] (32) 

Another variant of such a combination was proposed by Alexander [71]: 

WA=c1 ∫ exp(c3[I1̅-3]2)dI1̅+c2ln (
I2̅-3+c4

c4
) +c3[I1̅-3] (33) 

σ11
A =2 (c1exp(c3[I1-3]2)+

1

λ
[

c2c4

I2-3+c4
+c3]) (λ-λ-2) (34) 

Some other variations were put forward by Veronda and Westmann, Vito, 

Humphrey and Yin, and much later by Mansouri and Darijani. 

Another combination of such a phenomenological model was introduced by Hoss 

and Marczak [72]. It consists of three terms, namely, power, exponential, and logarithmic 

terms: 

WHM=
α

β
(1-e-β(I1-3))+

μ

2b
((1+

b(I1-3)

n
)

n

-1) +C2ln (
1

3
I2) (35) 

σ11
HM=2 (λ-

1

λ2
)(αe-β(I1-3)+

μ

2
(1+

b(I1-3)

n
)

n-1

+
1

λ

C2

I2
) (36) 

Next is the exponential-linear model [73], which instead of the summation of the 

logarithmic and linear terms, proposed their multiplication: 

WEL=A (
1

α
ea(I1-3)+b(I1-2)(1-ln(I1-2))-

1

a
-b) (37) 
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σ11
EL=

λ3-1

2λ+λ4
∑ 31-αr

M

r=1

μ
r
(λ2+

2

λ
)

αr

 (38) 

The most recent form of this type of model is the Anssari–Benam–Bucchi model [74]: 

WABB= μN (
1

6N
(I1-3)-ln (

I1-3N

3-3N
)) (39) 

σ11
ABB=2μ

9N-(λ2+2λ-1)

3N-(λ2+2λ-1)
(λ2-

1

λ
) (40) 

Another type of phenomenological model limits chain extensibility. This type 

introduces a limit for the stretch ratio for the macromolecular chain of rubber Im and 

provides other parameters for small strains. The first one was introduced by Warner [75]: 

WW=-
μ𝐼𝑚

2
𝑙𝑛 (1 −

𝐼1 − 3

𝐼𝑚 − 3
) (41) 

σ11
W= (

1

2
∑ Ap (

I1

3
)

αp
N

p=1

+
1

2
∑ Bp

N

p=1

(
I1

3
)

β
p

)(λ-
1

λ2
) (42) 

A further proposal with a much more elaborate logarithmic term was made by van 

der Waals [76]. It includes the limit stretch λm: 

WVW=-μ[λm-3][ln(1-θ)+θ]-
2

3
(

Ĩ-3

2
)

3

2
, θ=√

Î-3

λm
2 -3

 ,Î=βI1+(1-β)I2 (43) 

σ11
VW= ([β+λ-1-βλ-1] [

μ

1-η
-aμ (

Ĩ-3

2
)

1/2

]) (λ-λ-2) (44) 

A small difference in the quotient was then proposed by Gent [77]. It allowed for 

better accuracy for small stretches: 

WG= -
μJm

2
ln [1-

I1-3

Jm

] (45) 

σ11
G = (

μJm

Jm-I1+3
) (λ-

1

λ2), Jm=Im-3, I1=λ2+
2

λ
 (46) 

In the early 2000s, Pucci and Saccomandi [78] proposed a model with two logarithmic 

terms: 

WPS=-Jm

μ

2
ln (1-

I1̅-3

Jm

) +c2ln (
I2̅

3
) (47) 

σ11
PS= (

Jmμ

Jm-I1+3
+

2c2

λI2
) (λ-λ-2) (48) 

The last variant of this kind of phenomenological model was put forward by Horgan 

and Murphy [79]: 

WHM=
2μ(Im-3)

c2
ln (1-

λ1
c+λ2

c+λ3
c

Im-3
) (49) 

σ11
HS= (

Jmμ

Jm-I1+3
+

2c2

λI2
) (λ-λ-2) (50) 

Phenomenological models based on the stretch ratio are simple, yet could be used for 

large strain ratios, especially the famous Ogden variant. The first one was proposed by 

Valanis and Landel [80]: 
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WVL=2μ ∑(λiln(λi-1))

3

i=1

 (51) 

σ11
VL=I3

-1/2λi

∂W

∂λi
 (52) 

Its compressible form and additional proofs and its experimental validation is also 

provided in [81]. Further proposals were prepared by Ogden [14]: 

WO= ∑
μ

r

αr

M

r=1

[λ1
αr+λ2

αr+λ3
αr-3] (53) 

σ11
O =2

μ
r

αr
λαr-

1

√λ

αr

 (54) 

• Shariff [13]: 

WS=ω(λ1)+ω(λ2)+ω(λ3) = 𝐸 ∑ αjφj
(λi)

𝑛

𝑗=0

 (55) 

σ11
S =

E

λ
[
 
 
 
lnλ+α1ϑ1+α2ϑ1

+α3 [
ϑ2

λ3.6
-

ϑ3

λ-1.8
]

+α4[ϑ2-ϑ3] ]
 
 
 

 

ϑ1= [e1-λ-e1-λ
1
2+λ-λ-

1
2] , ϑ2=(λ-1)3,ϑ3= (λ-

1
2-1)

3

 

(56) 

• Attard and Hunt [25]: 

WAH= ∑
Ar

2r
tr(C̅

r
-I)+

Br

2r

M
r=1 tr(C̅

r
-I), tr(C̅

r
-I)= [λ̅1

2r
+λ̅2

2r
+λ̅3

2r
-3] (57) 

σ11
AH= ∑ Ar[λ

2r-1-λ-r-1]+Br[λ
r-1-λ-2r-1]

M

r=1

 (58) 

• and Arman and Narooei [82]: 

WAN= ∑ 𝐴𝑝(𝑒𝑥𝑝[𝑚𝑝(λ1

𝛼𝑝 + λ2

𝛼𝑝 + λ3

𝛼𝑝 − 3)] − 1)

𝑁

𝑝=1

+ ∑ 𝐵𝑞 (𝑒𝑥𝑝 [𝑛𝑞 (λ1

−𝛽𝑞 + λ2

−𝛽𝑞 + λ3

−𝛽𝑞 − 3)] − 1)

𝑁

𝑞=1

 (59) 

σ11
AN=

E

λ
[
 
 
 
lnλ+α1ϑ1+α2ϑ1

+α3 [
ϑ2

λ3.6
-

ϑ3

λ-1.8
]

+α4[ϑ2-ϑ3] ]
 
 
 

 (60) 

Mixed phenomenological models use invariants and stretch ratios that can capture 

small and high strains well. They emerged in the early 2000s. Some examples are the 

continuum hybrid model [83]: 

WCH=K1(I1-3)+K2ln
I2

3
+

μ

α
(λ1

α+λ2
α+λ3

α-3) (61) 

σ11
CH=I3

-1/2λi

∂U

∂λi
 (62) 

and the WFB model [84]: 

WWFB= ∫ (F(λ1)A(λ1e-BI1)+C(λ1I1
-D)) (λ1

2-
1

λ1
) dλ1

Lf

1

 (63) 
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σ11
WFB=I3

-1/2λi

∂U

∂λi
 (64) 

Micromechanical network models aim to determine the microstructural mechanisms 

of the material that relate to their mechanical properties. They can be categorized by the 

presence of a Gaussian character in the chain network. Gaussian chain network models 

characterize small and moderate stretches well but are not as accurate for large ones with 

hardening. The first Gaussian model was proposed by Treloar [85]: 

WG=
1

2
𝑁𝑘𝑇(λ1

2+λ2
2+λ3

2-3) (65) 

σ11
G =I3

-1/2λi

∂U

∂λi
 (66) 

Some other variants include the slip-link model [86]: 

WSL=
1

2
G

e
∑(

(1 + 𝜂)(1 − 𝛼2)𝜆𝑖
2

(1 + 𝜂𝜆𝑖
2)(1 − 𝛼2 ∑ 𝜆𝑖

23
𝑖=1 )

+ 𝑙𝑛 (1 + 𝜂 ∑𝜆𝑖
2

3

𝑖=1

))

3

i=1

 (67) 

σ11
SL=μ

c
(λ-λ-2)+

2μ
e

β
(λ

β
2-1-λ-β-1) (68) 

and also the tube [43] model. The tube model potential consists of two parts that 

characterize chain cross-linkings WT,c and chain entanglements WT,e such that 

WT=WT,c+WT,e= ∑
μ

c

2
(λ̅i

2
-1) +

2μ
e

β2 (λ̅i
-β
-1)

3

i=1

 (69) 

σ11
T =μ

c
(λ-λ-2)+

2μ
e

β
(λ

β
2-1-λ-β-1) (70) 

The most recent Gaussian-type model is a nonaffine tube model [87] characterized as 

WNT=Wph+Went=Gc ∑
λi

2

2
+

3

i=1

Ge ∑(λi+
1

λi
)

3

i=1

 (71) 

σ11
NT=μ

c
(λ-λ-2)+

2μ
e

β
(λ

β
2-1-λ-β-1) (72) 

Non-Gaussian chain network models apply the mechanical property of a non-

Gaussian single chain to the molecular chains of the rubber network. The first three-chain 

model assumed a distribution of molecular chains along principal directions and was 

efficient only for small stretches. This limitation was overcome by Arruda and Boyce by 

introducing limited chain extensibility. Furthermore, a more general distribution of 

molecular chains was allowed in further theories that also introduced chain entanglement 

and cross-linking. 

The three-chain model is defined in the following manner [88]: 

W3C=
μN

3
∑(γ̅

i
λ̅r,i+ln (

γ̅
i

sinhγ̅
i

))

3

i=1

 (73) 

σ11
3C=

μ

3λ
(λ2 [

3N-λ2

N-λ2
] -

1

λ
[
3N-λ-1

N-λ-1
]) (74) 

The well-known and frequently used Arruda–Boyce model is presented next [89]: 
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WAB=C1

(

 
 

(
1

2
I1 − 3) +

1

20(λA)2
+

1

1050(λA)4
(I1

3 − 27)+

19

7000(λA)6
(I1

4 − 81)+
519

673750(λA)8
(I1

5 − 243)
)

 
 

 

=C1 ∑ αiβ̂
i-1

(I1
i − 3i)

5

i=1

 

(75) 

σ11
AB=2C1 (λ-

1

λ2
)

(

 
 

1

2
+

2

20(λA)2
(I1 -9)+

3

1050(λA)4
(I1

2-27)+

4∙19

7000(λA)6
(I1

3 -81)+
5∙519

673750(λA)8
(I1

4 -243)
)

 
 

 (76) 

• The eight-chain model is as follows [90]: 

W8C=
μN

3
(γ̅λ̅r+ln (

γ̅

sinhγ̅
i

)) (77) 

σ11
8C=

μ

3
([

3N-λcu
2

N-λcu
2 ]) (λ-λ-2), λcu=√

1

3
(λ+

2

λ
) (78) 

A systematical consideration of the affine, three-chain, eight-chain, and micro-sphere 

models is provided in [91]. 

The Flory–Erman approach, which is an extension of the nonaffine-tube model and 

consists of the phantom energy WFE,pe function and micromechanics of chain molecules 

WFE,ce, is provided in the following way [92]: 

WFE=WFE,pe+WFE,ce= ∑
μ

2
([1-

1

ϕ
] [λ̅i

2
-1] +[Bi+Di-ln(Bi+1)-ln(Di+1)])

3

i=1

 

ξ= [1-
1

ϕ
] n, μ= nKθ, Bi=κ2 (λ̅i

2
-1) (λ̅i

2
+κ)

-2
, Di=λ̅i

2
κ-1Bi 

(79) 

σ11
FE=μ (1-

2

ϕ
) (λ-λ-2)+

∂UFE,ce
m

∂λi
 (80) 

The Gaussian nature of the phantom part of this model causes a deviation at high 

strains. This is overcome in its modified version proposed by Boyce and Arruda. It 

replaces the neo-Hookean part with an eight-chain model such that  

WFE,m=W8C+WFE,ce=μN (γ̅λ̅r+ln (
γ̅

sinhγ̅
i

)) + ∑
μ

2
([Bi+Di-ln(Bi+1)-ln(Di+1)])

3

i=1

 (81) 

σ11
FE,m=σ11

8C+
∂WFE,ce

∂λi
 (82) 

In its simplified version, the micro-sphere model [93] is given as  

WMS=μ (λrL
-1(λr)+ln (

γ

sinh(γ)
)) (83) 

σ11
MS=μ

c
(λ-λ-2)+

2μ
e

β
(λ

β
2-1-λ-β-1) (84) 

One of the modern formulations of a hyper-elastic material is the extended tube 

model [94], which includes five parameters. It focuses on the molecular–statistical 

approach for polymer networks and it is based on the following formulae:  
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WET=
μ

c

2
(
(1-δ2)(I1̅-3)

1-δ2(I1̅-3)
+ln (1-δ2(I1̅-3))) + ∑

2μ
e

β2 (λ̅i
-β
-1)

3

i=1

 (85) 

σ11
ET=μ

c
(λ-λ-2)(

1-δ2

(1-δ2(I1-3))
2
-

δ2

1-δ2(I1-3)
) +

2μ
e

β
(λ

β
2-1-λ-β-1) (86) 

• Network averaging tube [95]: 

WNA=μ
c
κn ln

(

 
 

sin (
Π

√n
) (

I1
3)

q/2

sin (
Π

√n
(
I1
3)

q/2

)
)

 
 

 (87) 

σ11
NA=

μ

3
([

3N-λcu
2

N-λcu
2

]) (λ-λ-2) (88) 

• SpT [96]: 

WSpT=𝐺𝑐Nln(
3𝑁 +

1
2

𝐼1

3𝑁 − 𝐼1
)+𝐺𝑒 ∑𝜆𝑖

𝑖

 (89) 

σ11
SpT

=
μ

3
([

3N-λcu
2

N-λcu
2

]) (λ-λ-2) (90) 

• Wu-Giessen or full-network [97]: 

WFN=W3C(1-ρ)+ρW8C (91) 

σ11
FN=σ11

3C(1-ρ)+ρσ11
8C (92) 

• Lim [98]: 

W𝐿=𝑊𝐺(1 − 𝑓)+f𝑊8𝐶 (93) 

σ11
S = (

1

2
∑ Ap (

I1

3
)

αp
N

p=1

+
1

2
∑ Bp

N

p=1

(
I1

3
)

β
p

)(λ-
1

λ2
) (94) 

• Bechir and Chavalier [99]: 

WWG=
3

2
∑

Ap

1+αp

N

p=1

(
I1

3
)

1+αp

+
3

2
∑

Bp

1+β
p

N

p=1

(
I1

3
)

1+β
p

 (95) 

σ11
S = (

1

2
∑ Ap (

I1

3
)

αp
N

p=1

+
1

2
∑ Bp

N

p=1

(
I1

3
)

β
p

)(λ-
1

λ2
) (96) 

Only recently have some efforts been made to define the hyper-elastic behavior of 

multi-phase materials. This was because of the high complexity of numerical simulations 

and the unavailability of analytical solutions. These problems were overcome by a rapid 

increase in computational resources, allowing for an iterative solution. Some examples of 

contemporary studies include [100–108], as well as [109] for the visco-elastic regime. 

Demand for advanced hyper-elastic models is stimulated by the biotechnological 

industry, where the mechanics of biological tissue [110] and its interaction with artificial 

appliances were studied [21]. They are also required in aerial, textile, and automotive 

industries, and are used, for example, in tires or various shock absorbers. It needs to be 

mentioned that Poisson ratio close to the value of 0.5 for rubber-like materials may break 
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the FEM solution incremental processes (in both deterministic and probabilistic context) 

due to the negative diagonal components within the stiffness matrix or a lack of numerical 

convergence.   

Unlike in linear small strain elasticity, all the models provide their own set of 

assumptions that were prescribed during the derivation process and are not necessarily 

easily interchangeable with others. This introduces challenges in the description of their 

stochastic nature because the material parameters are not a good choice for overall 

stochastic unknowns. Such a choice would bind the analysis to a specific model, which is 

highly undesirable. Instead, some more generic parameters or variables should be 

preferred, for example, a defects volume fraction, which is unique for all models; random 

(effective) material coefficients should instead be derived from other random sources. 

Stochastic or probabilistic studies are quite well documented in the reversible elastic 

regime of composites [111,112]. This is not true for the inelastic regime. One of the main 

reasons is the abovementioned lack of generality of various laws and the complexity of 

their numerical solution already given in the deterministic case. The stochastic hyper-

elasticity or visco-elasticity of composites is considered only in a limited number of 

studies; some examples include [113–116]. Much attention was focused on a certain hyper-

elasticity potential, for example, the Ogden [117–119], neo-Hookean [66,120], or van der 

Waals models [105]; some of these also compare the results of several potentials, as in 

[121], or propose a specific solution technique [122]. However, there is a lack of studies 

concerning the composites that include interface defects in the nonlinear regime. This is 

especially true for a joint deterministic and stochastic analysis coupled with the 

verification of multiple hyper-elastic potentials. Unlike the majority of the stochastic 

considerations, these analyses are additionally based on the set of laboratory tests 

performed especially for the computational part, for which the numerical response of the 

matrix is fitted with the use of the least squares method. The proposed approach 

specifically tackles the problem of the lack of generality of hyper-elastic laws via the 

introduction of a probabilistic homogenization algorithm for probabilistic 

homogenization. It enables the computation of random effective material parameters for 

an arbitrary linear hyper-elastic potential with a specified source of the input uncertainty. 

Please note that the engineering stress σi for the above models can be obtained for 

all the principal directions i using the following formulae: 

σi=
∂W

∂I1

∂I1

∂λi
-
∂W

∂I2

∂I2

∂λi
-

1

λi
p (97) 

and thus, for uniaxial tension, σ1
UT=2 (

∂W

∂I1
+

1

λ

∂W

∂I2
) (λ-

1

λ2) and σ2
UT=σ3

UT=0; for pure shear, 

σ1
PS=2 (

∂W

∂I1
+

∂W

∂I2
) (λ-

1

λ3), σ2
PS=2 (

∂W

∂I1
+λ2 ∂W

∂I2
) (λ-

1

λ2), and σ3
PS=0; and for equi-biaxial tension, 

σ1
BT=2 (

∂W

∂I1
+

1

λ

∂W

∂I2
) (λ-

1

λ5) and σ3
BT=0. 

Artificial neural networks emerged in constitutive model determination 30 years ago 

[123]. Instead of first selecting its closed form and then the tuning parameters, they 

propose a family of artificial neural networks and then learn its weight and parameters; 

they may be physical, phenomenological, or mixed. Until recently, classical neural 

networks remained a black box in terms of the morphology of parameters and partially 

or totally disregarded the kinematic, thermodynamic, and physical constraints. They also 

bypassed constitutive modeling altogether. This raised well-posed concerns for their 

formulation. These were covered recently via the direct inclusion of the physical and 

mechanical constraints into the neural network [124–126]. 

A very interesting innovation in this regard constitutes artificial neural networks. 

They take an a priori closed set of constitutive models whose distribution in the final 

formula is defined during the learning process [127,128]; such a formulation overcomes 

the above concerns. Such a trained network includes a sum-of-weighted closed-form 

models for each loading scheme. Thus, it is not strictly a new model in itself but is rather 
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a novel mixture of already created ones; its successful utilization requires prior knowledge 

of classical models and cannot work without them.  

3. Probabilistic Methods 

The structural behavior of materials and structures in civil and mechanical 

engineering design is defined by models with specific assumptions. Traditionally they 

have a certain set of parameters to fit them to the response of the material in well-known 

tests. These parameters are always exposed to some scatter, which comes from various 

sources of randomness, such as the morphology of the material, tolerances in 

manufacturing and measurements, accuracy of conversions, or other unknown origins 

that are impossible to quantify during measurement. 

Probabilistic analysis is an approach that tackles this problem directly by augmenting 

deterministic mathematical models with random parameters or variables that represent 

sources of uncertainty. It allows for a much more precise estimation of the behavior of the 

analyzed system. In addition to the mean, characteristic, or design values obtained in most 

engineering calculations, it also outputs the expected value, coefficient of variation, and 

other specific information about the uncertainty of the results. It further allows us to 

directly compute and optimize the structural safety margin in certain load conditions. 

This margin may be represented, for example, as a reliability index or probability of 

survivability. Probabilistic analysis may be applied in almost all (and not only) structural 

analyses at various levels of design, i.e., the level of material, structural element, or even 

the level of the entire structure; recent examples include heat transfer [129,130], fatigue 

[131,132], stiffness [133], failure [134–136], or system response under uncertainty [137]. 

The probabilistic approach encompasses all the methods based on probability 

calculus, leading to the calculation of the material or structural response with input 

uncertainties. This response is commonly represented as random moments or 

characteristics, such as the expected value, coefficient of variation, skewness, or kurtosis 

[138]. The most precise representation of statistical distribution is the probability density 

function (PDF), but it is also the most demanding in terms of computational resources. 

This is why in most cases, probabilistic characteristics are preferable, as in the study of 

hyper-elastic materials. The most widespread methods that allow for probabilistic design 

are direct derivation methods, simulation methods, spectral methods, and perturbation 

methods. 

Direct derivation methods [14,138] use integral calculus to derive random 

characteristics of the response with a known PDF of the input random variables. In its 

classical form, this approach uses a direct relation between the structural response and 

the random parameter; it is commonly called an analytical method (AM). In many cases, 

such a relation is not known, cannot be derived analytically, or a symbolic solution for the 

known relation simply does not exist. An approximation of this relation is obtained with 

various numerical techniques that are commonly called a response function or a response 

surface. Such an approach is called a semi-analytical method (SAM) [138,139] and is 

applied in the study of hyper-elastic materials; alternatively, some approximate 

integration may be employed. 

Computer simulation methods [140–145] substitute integration with a finite number 

of deterministic realizations, which are then subjected to statistical estimation. 

Realizations are made with sets of parameters obtained from random or pseudo-random 

generation according to their predefined PDFs; these are all referred to as Monte Carlo 

simulation (MCS) methods [140,146,147]. They have some advantages, i.e., ease of 

implementation and avoidance of integration, but they all also have important 

disadvantages. The major drawback of this approach is the vast number of realizations 

required to reach a satisfactory convergence result, which is guaranteed only with their 

infinite number [140,148]. This problem is partially covered in more modern approaches, 

such as importance sampling [149], stratified sampling [150], or Latin hypercube sampling 

[151] techniques; all of these approaches attempt to lower the required sampling number. 
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A second disadvantage is poor scaling for an increasing number of unknowns. The last 

and deciding disadvantage is that the inherent discrete character of the MCS disables the 

retrieval of continuous probabilistic characteristics or measures of reliability. 

The spectral method [130,152–154] describes the Gaussian random field with the use 

of the Karhunen–Loève expansion. The structural response is emulated by expansion into 

polynomial chaos [155], but the biggest problem of this methodology is the number of 

terms in the expansion series necessary to achieve satisfactory accuracy [156]. Because of 

this, the result may be inadequate and quite far from the exact solution, especially when 

a second-order polynomial is used (which is commonly done). For this expansion to 

obtain satisfactory accuracy, a high number of elements may oftentimes be required. An 

additional problem is connected to the Karhunen–Loève expansion itself, which does not 

have a solution for certain problems [157,158], with an especially important example being 

a reliable calculation of higher-order probabilistic characteristics [159]. 

Perturbation methods [138,159,160] describe the structural response as spread 

around its mean value with a given small perturbation. They expand the response 

function into a Taylor series around the expected values of random variables. The order 

of this method depends on the number of terms in the applied expansion, namely, one 

term in the first order, two terms in the second order, etc. One of its issues is the 

convergence of the Taylor series, which is not always guaranteed. This problem is even 

more complex when the response function is not known and must be approximated, 

which is the case for the study of hyper-elastic materials. The response function is selected 

from a set of polynomial functions, where the theoretical convergence of specific Taylor 

series can be mathematically proven. The major advantages of this method are swift 

execution, relative ease of implementation, and continuous character of the results. It also 

substitutes integrals with derivatives and overcomes the problem of the lack of an 

analytical solution. The biggest drawback is the probabilistic convergence for certain 

types of functions and the requirement of a higher order expansion to reach high accuracy 

for input random variables with a high coefficient of variation. A relation between the 

result and the input random variable is usually unknown before the probabilistic analysis. 

Its analytical derivation is available only for relatively simple, well-known problems. In 

other cases, this relation is sought with the use of numerical methods, such as the finite 

element method, boundary element method, and finite difference method; joining their 

output with probabilistic analysis results in the stochastic finite element method (SFEM) 

[153,161–164], stochastic boundary element method (SBEM) [165,166], and stochastic finite 

difference method (SFDM) [138,167]. Such a fusion creates a powerful tool for probabilistic 

design and stochastic computations but it does not provide a new probabilistic method 

itself. This is because of the convenience of solving the homogenization problem and the 

availability of software for FEM computations; readers looking for a comprehensive 

introduction to the finite element method may refer to [168]. 

4. Interphase and Interface Defects 

An interphase is an additional phase of the composite formed during its 

manufacturing process or exploitation. It is introduced (artificially in modeling or during 

manufacturing) in between two phases of a composite, commonly between the matrix and 

the filler (reinforcement). Its mechanical [169], thermal, electrical, thermo-mechanical 

[170], and physical characteristics differ from the ones of the two surrounding phases. Its 

volume is much lower than the other phases, yet it highly influences the behavior of an 

entire composite. This is because the interphase effectively encapsulates the filler and 

prevents a direct interaction in between the composite constituents. As documented, an 

interphase significantly affects the effective material properties of multiple isotropic, 

cubic, and anisotropic composites in a deterministic [171–175] and also stochastic context 

[8,11,176,177]. It either decreases them in the existence of defects [178] or increases when 

the two phases are chemically bound [179–182]. Its influence is so high that considerable 
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research attention has been put toward its tuning and tweaking to improve key properties 

of composites or adjust their performance for special purposes [183,184]. 

An interphase is extremely difficult to localize and further analyze in laboratory tests. 

This is because its thickness is very small (in the order of micrometers) and its 

characteristics differ for each particle or fiber in the same sample of the composite. Despite 

the existence of multiple surface agents applied in the phases, the interphase around each 

filler particle or fiber has unique thermo-electro-mechanical conditions in which it forms; 

this effectively causes its geometry, thickness, and properties to be random (see [185]). 

Interface defects encompass all the inclusions, voids, discontinuities, and 

inaccuracies that exist in the transition of the two phases in a composite. They reflect 

frequent manufacturing imperfections, for instance, following significant residual thermal 

stresses, and can be treated during a numerical simulation as geometrical imperfections 

in composite materials [186]. Their occurrence greatly affects the response and properties 

of the composite despite its extremely small volume, which is a fraction of the volume of 

the interphase. Interface defects were shown to be crucial for many properties of a 

composite, including its durability [187], reliability [188], thermal conductivity [189], and 

even failure [180,190–192]. The defects and inclusions also cause a high microscopic stress 

concentration [193]. Some studies were devoted to the defects only [194]. 

An interphase with interface defects forms an imperfect interface. Its usage in the 

realistic prediction of composites’ behavior dates back many years [195–199]. The analysis 

of composites with imperfect interfaces is performed primarily with the use of three 

techniques: (1) insertion of the interphase in between the main composite constituents 

[200–204], (2) usage of special contact finite elements [205,206], and (3) an application of a 

system of the springs [207] that may also be supplemented with dumpers. Very interesting 

strategies belonging to the first group are based upon a geometrical idealization of such 

defects, e.g., with the use of semi-circular or semi-spherical shapes, which follows the 

well-known cavitation phenomenon for a variety of matrices [190,208]. 

5. Multiscale Models and Numerical Simulation 

Multiscale analysis represents some trends in current numerical modeling in which 

the given heterogeneous system is described simultaneously by multiple models at 

different scales of resolution. Models at each scale may originate from physical laws of 

different natures, for example, continuum mechanics at the macroscale [209] and 

molecular dynamics at the atomistic scale. They are required because certain phenomena 

visible at one scale cannot be described accurately without supplementary information 

from a different scale from which they originate. Some examples include (1) brittle failure 

of the reinforced concrete beam, which is caused by micro-cracks in concrete 

microstructure in between the cement and grains; (2) plastic elongation of steel caused by 

a slip between its grains; or (3) macroscopic properties of composites affected by 

microstructural defects. Alternatively, they are used because purely macroscale models 

are not accurate enough, while lower-scale models offer too much information or require 

too high computational power to be executed. The multiscale approach aims at achieving 

a compromise between accuracy and efficiency and frequently provides solutions to 

problems that are otherwise unsolvable in a reasonable period. The multiscale analysis 

comprises three major components: multiscale models, multiscale analysis tools, and 

multiscale algorithms. Multiscale algorithms involve using multiscale analysis tools to 

bridge the scales and connect different multiscale models at different levels. 

The most used scales depend mainly upon the dimensions and are the following: 

macroscale, mesoscale (level of microstructure), atomistic scale, and electronic scale. 

Interestingly, each of these scales falls into a different discipline, for example, the 

macroscale falls into civil and mechanical engineering, the mesoscale falls into materials 

science, and the electronic scale falls into physics. Thus, multiscale design frequently 

requires bridging different disciplines to be solved. The connection between the models 

is either ensured analytically or numerically [210–212] and bridging between different 
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scales is either done sequentially or concurrently. In the sequential approach, certain 

characteristics used in macroscopic models are precomputed. Usually, only a limited 

number of the parameters (or variables) is passed to a different scale, but in some sparse 

representations, even as many as six variables can be passed effectively [213,214]. In the 

concurrent alternative, the macroscale model variables are computed on the fly during 

simulation. Its major advantage is that a much smaller domain of macroscopic variables 

must be computed on a different scale. On the other hand, the complexity of numerical 

algorithm solving macroscale increases. Concurrent methods are not especially well 

suited to problems in which parameters are passed to the FEM-based code, where each 

element would potentially require a separate set of parameters. 

Traditional structural analysis preferred in civil engineering does not involve a 

multiscale approach because it tends to limit calculations to a linear range of material 

deformation, where simple empirical constitutive laws are sufficient. The additional 

margin of a nonlinear structural response is frequently used as a safety margin. A good 

example is the design of structures made from constructional steel, for which the 

engineering codes, such as Eurocodes, prefer the usage of linear elastic models. 

Calculations become much more involved (even for steel) when localized phenomena, 

such as strain localization [215] or crystal plasticity [216], must be taken into consideration. 

For these phenomena, a macroscale model must be supplemented or interchanged with a 

macroscopic structure. Macroscopic stress in the FEM crash test is calculated with 

supplementary information from the mesoscale (scale of crystals and phases), as well as 

lower scales, where defects originate. Unlike in statics, in structural dynamics, a scale is 

not only defined for space, but also for time. The smaller the scale, the lower the 

dimensions and the smaller the timespan. In multiscale design, information may be 

passed from a higher scale into a lower scale (top-down method) or from a lower to a 

higher scale (bottom-up method). 
The process of crossing a certain scale is called scale-bridging; an example of top-

down bridging is passing boundary conditions for each element of the FEM analysis into 

a mesoscale model, while a bottom-up bridging example involves intra-grain bonding 

conditions coming from the atomistic scale. A multiscale approach is already used, albeit 

indirectly, at the structural design level for reinforced concrete. Verification of the ultimate 

limit state for this composite already requires some supplementary information apart 

from the scale of the structural element. Specifically, precise information on steel rebar 

positioning is required even when all the macroscopic properties of concrete and steel are 

already known. These properties already depend on information coming from four lower 

scales, i.e., C-S-H, cement paste, mortar, and concrete mesoscale scales [217]. 

There exist multiple methods and algorithms that allow for solving multiscale 

problems. They focus on algebraic, numerical, or hybrid solutions and are usually aimed 

at certain problem domains. Their comprehensive review is available in [218]. Some 

examples include the multi-grid methods aimed at solving a large system of algebraic 

equations [219] with some alteration in the equation-free method [220] and a 

heterogeneous multiscale method where a preconceived macroscale model with missing 

components is assembled and missing data is found with the use of microscale models or 

matched asymptotics approach [221–223]. Some other methods include averaging and 

tolerance-averaging methods [224,225], hydrodynamic limit methods [226], the Mori–

Zwanzig formalism [227], renormalization group methods [228], variational methods 

[229], and homogenization methods [230–236]. The multiscale approach is very frequently 

used for the determination of the macroscopic (or effective) properties of composites, also 

in the stochastic context [237,238]. Some introduction to their theory is available, for 

example, in [239,240]. The homogenization method is often chosen because of its relatively 

easy application in FEM systems. 
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6. Homogenization Method and Effective Medium Response 

The homogenization method is frequently referred to as a process of the replacement 

of an equation with a highly oscillatory coefficient with one that has a homogenous 

coefficient. Initially used in studying partial differential equations (PDEs) [230,241], this 

concept was found to be efficient at solving a problem of the non-homogenous 

microstructure of continua, such as composites. This is because the macroscale boundary 

conditions, such as forcings, loadings, or supports, are much bigger than the length scale 

of the microstructure. A classical boundary value problem is given in the following way: 

∇∙ (C (
x⃗ 

τ
)∇uτ) =f (98) 

with 𝜏  being a very small parameter and C(g⃗ )  being a periodic coefficient 

C(g⃗ +e⃗ i)=C(g⃗ ), i=1, …, n. It may be modified to the following form: 

∇∙(C*∇u)=f (99) 

where 𝐶∗  is the effective constitutive tensor with constant coefficients representing a 

homogenized material. This property could be computed as 

C*
ij= ∫ C(g⃗ )(∇wj(g⃗ )+e⃗ j)

(0,1)n
∙e⃗ idy

1
…dy

n
,       i,j=1, …,n (100) 

where periodic wj satisfies ∇y∙(C(g⃗ )∇wj)=-∇y∙(C(g⃗ )e⃗ j). One equation may be replaced 

by another if τ is small enough to satisfy uτ≈u and when uτ→u at τ→0. Regarding the 

continuum concept, an analog of the differential element is the representative volume 

element (RVE) in 3D problems or the representative surface element (RSE) in 2D 

problems. This should be selected in a way to contain all the relevant statistical 

information about an inhomogeneous medium. With such an assumption, averaging over 

this element results in an effective property of the medium defined as C* above. A key 

problem in such a formulation is the assumption that such an RVE is solvable and contains 

as much information about the microstructure as possible. This also holds for stochastic 

calculations where, in addition to the RVE selection, uncertain parameters must also be 

selected in a way to catch the best representation of the most important randomness 

sources and remain simple enough to be solved. 

In its early approaches, homogenization was used in a purely analytical [233,242] 

way, and thus, the microstructure was very simple and the range of applications was 

limited. This obstacle was overcome with the incorporation of the FEM, where the RVE 

was modeled and solved. The rapid evolution of the academic and commercial FEM 

software that started at the end of the twentieth century supported researchers in the 

discretization and visualization of the RVE. A simultaneous revolution in the 

computational power of personal computers made solutions to more complex problems 

accessible. All of this allowed homogenization to become one of the most widespread 

methods used to solve multiscale problems in materials science, especially those 

connected to the meso- and microscale of inhomogeneous materials (see, e.g., [243–245]). 

The topic of a correct RVE is so important that some studies treat it as a research problem 

connected with its generation [246], size or scale effect [247–251], and validity of applied 

random microstructure [252]. Some other works reviewed existing stochastic boundary 

conditions and introduce new ones [253] or propose a formulation of finite elements for 

the hyper-elastic case [254]. The FEM is commonly included in approaches that are aimed 

at decreasing the problem size or computation time, which is done at the expense of 

accuracy. These propose the usage of artificial neural networks and machine learning 

approaches [255–257], divide the heterogeneous medium into several subdomains [117], 

use a manifold-learning method to reduce the dimensions of microscopic strain fields 

[258], utilize orthogonal decomposition R3M [259], or aim to apply a reduced database 

model [260], to name a few. The FEM is, of course, not the only possibility. There also exist 
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some alternative methods, such as mesh-free formulations [261], a gradient approach 

[262], fast Fourier transform (FFT)-based methods [263], a transformation field [264], or 

the discrete element method [265], which are perfect for densely packed solids. 

Sometimes, a nonlinear response of the material is studied, for which some approaches to 

homogenization exist, such as the ones in [266–269]. In many cases, they include specific 

a priori assumptions related to the stress or strain fields (see, e.g., [270–272]). Probabilistic 

homogenization adds yet one more level of abstraction to homogenization. It introduces 

uncertain parameters and variables in the lower scale of homogenization, usually in the 

material microstructure; some examples were presented and discussed in [273–279]. 

Similarly to probabilistic analysis in macroscopic calculations, it quantifies the influence 

of input uncertainty on the response of the medium. The difference is the source of 

uncertainty, which cannot be included at a macroscopic level, yet cause randomness in 

engineering structures. Common problems for which probabilistic homogenization is 

applied include uncertain phase properties, interface defects, geometric uncertainty, or 

inclusions. Uncertainty may be included in one phase or in in the various characteristics 

of the RVE, for example, the reinforcement positioning. They all result in an uncertain 

stiffness tensor or parameters leading to the material constitutive relation. 

Probabilistic homogenization of composites is especially interesting when it is 

coupled with the problem of interface defects. An analytical solution to this problem can 

only be obtained for elastic composites and a simple RVE, which was proposed in [280]. 

A more in-depth analysis of the stiffness tensor, even in an elastic regime, requires the 

usage of numerical solvers. The author proposed such an approach [204], verified it with 

an analytical solution, and studied a fully anisotropic response of the homogenized 

composite [11]. The results demonstrated that particle clustering and uneven particle 

distribution affect the anisotropy of the composite and have a high influence on the 

components of its stiffness tensor. In his other work [8], he verified a numerical solution 

of a composite with an uncertain reinforcing particle radius with an analytical solution 

and studied an influence of an uncertain aspect ratio on the effective stiffness tensor of a 

composite. One may extend this model toward a hyper-elastic regime of the composite, 

where an uncertain hyper-elastic response of a homogeneous medium can be taken into 

account [115], which may be further extended toward the stochastic hyper-elastic 

response of composites with hysteresis [99] and with stochastic interface defects [281,282]. 

As it is well-known, the effective response of a medium is a relation of the objective 

function with uncertain parameters or variables. In structural design, the objective 

function could be defined as a limit function. In homogenization, it usually is an effective 

property of a medium, such as the stiffness tensor, bulk modulus, effective stress, or strain 

energy. In the majority of homogenization problems (and also in most structural 

engineering problems), such a relation cannot be analytically determined. This is a reason 

why the objective function is commonly computed with the use of discrete numerical 

procedures. In SPT, this is frequently done using a response function method (RFM) [138] 

or response surface method (RSM) [283,284] when more variables are considered. An 

alternative to the direct differentiation method (DDM) is rarely selected because it 

requires at least an intervention into a source code of a discrete numerical solver or even 

the introduction of its solver. This is because the deterministic values used by these 

programs must be substituted with their stochastic counterparts. 

The response function method and the response surface method both aim to 

approximate the real relations of the objective function with the use of a surrogate model 

(also called a meta-model [285,286]) with an uncertain variable. This is done based on a 

carefully selected set of discrete numerical (or laboratory) experiments performed for 

different values of input variables [287,288]. Their major advantage is the ease of 

application and disconnection of the metamodel fitting from the stochastic procedure, 

which allows for a simple analysis of the fitting errors. Surrogate models are commonly 

applied from a subset of polynomial functions and also their fractions or other rational 
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functions [289,290]; a little less common is an application of the B-spline, logarithmic, 

exponential, or hyperbolic functions. 

Searching for the response functions or surfaces is an optimization problem and can 

be solved using linear programming (LP), quadratic programming (QP), and nonlinear 

programming (NP) methods. A class of linear programming problems is one where the 

objective function and all of the constraints are linear functions of the decision variables. 

It always has either (a) one or more equivalent globally optimal solutions, (b) has an 

unbounded objective, or (c) no feasible solution. It is convex and has at most one feasible 

region with “flat faces” (i.e., no curves) on its outer surface. Its optimal solution (if 

available) lays at a “corner point” on this surface that is represented by constraints. A 

solver may work pointwise and the solution is fast. Common solvers include families of 

the simplex technique in its primal [291] or dual [292] version and the interior point 

technique [293], where the fitting procedure is completed with a linear or (sometimes) 

nonlinear version of the Least Squares Method. 

As it is well known, a quadratic programming problem has an objective function that 

is a quadratic function of the design variables and constraints that are all linear functions 

of the variables. They have only one feasible region with “flat faces” on its surface (due to 

the linear constraints), but the optimal solution may be found anywhere within this region 

or on its surface. As it is well known, an objective function may be convex or non-convex. 

The convex functions have either positive definite or semi-definite Hessians, and non-

convex have an indefinite Hessian and a saddle shape, which is usually out of the scope 

of QP solvers. Typical solvers include a simplex extension to the QP, active set and 

working set method variations [294,295], interior point [296–298], or Newton barrier 

methods [299–302]. A nonlinear programming problem similar to the hyper-elastic 

stochastic analysis of composites and their effective characteristics is no doubt one of the 

most difficult issues in optimization theory. An objective function is generally a nonlinear 

function of the decision variables and may have many locally optimal solutions. A global 

minimum is very difficult to be found [303], and common solvers include augmented 

Lagrange methods [304], sequential quadratic programming [305,306], and reduced 

gradient methods [307,308]. 

7. Concluding Remarks 

As demonstrated in this review work, an application of probabilistic and stochastic 

methods in the analysis of hyper-elastic solids still attracts many researchers and has a 

large audience. Such an approach is especially very convenient for engineering practice 

with polymer-based composites, specifically elastomers. Experimental statistics included 

in new theoretical and computer models allow for further optimization of such materials. 

This may be crucial for the optimal design of structural dampers, whose reliability, 

durability, and structural health monitoring may bring huge qualitative and quantitative 

savings. Stochastic multiscale models, especially including the atomistic scale of the solid, 

are indeed still very scarce, mainly since this scale uncertainty requires relatively 

expensive Monte Carlo simulations to obtain reliable stochastic analyses. Time and 

computer power consumption in this case is still slowly decreasing, but this is the main 

reason to continuously look for some concurrent techniques. This is also why various 

homogenization methods remain very attractive in materials engineering, especially those 

accounting for material and geometrical imperfections of a random nature, and most 

probably will remain so in the future. 
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