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Abstract: The increasing volume of waste and the requirements of sustainable development are
the reasons for the research on new waste management concepts. The research results presented
in this paper show the effect of recycled aggregate on the selected properties of cement concrete.
The aggregates obtained from three types of wastes are tested: recycled concrete paving, crushed
ceramic bricks, and burnt sewage sludges. The recycled aggregates replaced 25% and 50% of the
volume of the fine aggregate. The tested aggregates worsen the concrete mixes’ consistency and
decrease, to some extent, the compressive strength of the concrete. However, the tensile splitting
strength of the concrete with recycled aggregates is similar to that of the reference concrete. Using
recycled aggregates worsens the tightness of the concrete, which manifests itself by increasing water
penetration depth. The thermal properties of concrete are slightly affected by the type and content of
the recycled aggregate. Considering the expected improvement in recycled aggregate processing,
they can be an alternative to natural aggregates. Using recycled aggregates in cement concrete
requires extensive studies to search for ways to increase their possible content without worsening
concrete performance.

Keywords: concrete; crushed bricks; crushed concrete; recycled aggregate; sewage sludge

1. Introduction

The volume of produced industrial and vegetable wastes is continuously rising. The
increasing pressure on activity in line with the sustainable development rules leads to
research on using various industrial wastes in the construction and building materials in-
dustry [1]. Construction produces many wastes during the building structures’ demolition.
Concrete, the main construction material, is manufactured from natural aggregates, cement
and water, which makes it a relatively cheap and easy-to-produce material. Ordinary con-
crete contains about 75–80% aggregate. Therefore, numerous studies are recently focused
on limiting the use of natural aggregate in concrete by replacing it with various industrial
wastes [2,3]. Construction utilizes mainly industrial by-products. These wastes are usually
stored in dumps. Such materials as silica fumes, fly ashes, and blast-furnace slag are used
in construction on an industrial scale.

The separate group of industrial wastes are the sludges, which are the materials
remaining from the industrial sewage or their treatment process. The term sludge can also
concern the precipitated suspension formed during conventional water purification and
many other industrial processes [4]. The wastes can be contaminated by toxic substances [5].
An increasingly common solution is burning the sewage sludges, which causes sanitization
and reduces their volume. However, the burning method generates another type of
waste, which can also be used in construction. Besides the increased content of heavy
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metals, the ashes have a chemical composition similar to the Portland cement clinker. They
also show some pozzolanic activity, which suggests their potential usefulness as cement
additives [6,7].

The other type of waste is the construction waste generated when constructing a
new structure or renovating or demolishing an existing building. Most of the wastes
mentioned above are such materials as timber, plasterboards, building ceramics, reinforcing
steel, concrete, plastic, glass, and cardboard. Waste concrete is the basic raw material for
producing recycled aggregate [8,9].

Agricultural wastes form another category. They are biodegradable with time, but
they must first be stored in particular places (composting plants, silos). For utilization, they
are often burnt, and the created powder can be used as a fine aggregate or filler for concrete
and mortar [10–12].

All the above wastes can be utilized for manufacturing cement composites. However,
only some are used on an industrial scale, particularly in cement production. The increasing
volume of waste and the requirements of sustainable development are the reasons for
the research on new waste management concepts. The conducted studies should make it
possible to utilize the various wastes as raw materials in the building materials industry [13].
Concerning cement composites, most investigations are aimed at utilizing the wastes as an
aggregate replacement, which is mostly justified from an economic point of view. However,
the possibilities of using wastes as substitutes for the aggregate in cement concrete or
mortar, without significantly worsening their performance, usually oscillate around 10%
of the total aggregate mass. Such a low degree of substitution is not profitable in most
industrial production cases [14]. The cleaning and preparation of the waste material
(crushing, grinding, heating, etc.) generate substantial costs, often not considered within
scientific research.

In Japan, the USA, and most EU countries, using aggregates made of construction
wastes for cement concrete is standardized [9,15,16]. Considering the economics of the pro-
duction process, concrete with processed waste aggregates can be an alternative to natural
aggregate concrete if the lower cost of the recycled aggregate at least compensates for the
necessary concrete strength correction costs. In Poland, recycled aggregates are successfully
used in road construction [17]. Utilizing recycled aggregates in cement concrete production
is less common. One reason is the lack of practical guidelines for such use [18]. Therefore,
investigations of the various waste materials used for cement composite manufacturing
are fundamental.

The recycled aggregates utilized as a substitute for the fine aggregate in concrete have
high porosity, which means high water absorbability and weak interfacial transition zone
between aggregate grains and cement matrix [19–21]. The consequence is a decrease in
compressive strength [22,23]. The fine aggregate from concrete recycling is usually limited
to non-structural applications, such as filling material for soil stabilization, geosynthetic
structures, or substrates in road construction [24,25]. The porosity and water absorption of
the fine aggregate from wall recycling, containing ceramic bricks, mortar, and plaster, is even
higher [26–29]. Therefore, it is used more often in cement mortars than concrete [30–33]. The
aggregate made from organic or inorganic wastes requires additional tests for its usability.
The specific surface area, particles’ morphology, and chemical composition of the recycled
aggregates can affect the mechanical performance and durability of concrete. However,
despite these limitations, the shortening of natural aggregate resources enforces the search
for new material solutions.

The subject of the studies presented in the paper was determining the relation between
the type of recycled aggregate and selected properties of the concrete mix and hardened con-
crete. The aggregates obtained from three types of wastes with the established composition
were tested:

• The aggregate from recycling the concrete paving;
• The aggregate from crushing the wastes created by ceramic brick production;
• The aggregate from burning the sewage sludges in the municipal water treatment plant.
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It was assumed that the recycled aggregates will replace 25% and 50% of the volume
of the fine aggregate (river sand). The aggregate replacement was not accurate regarding
grain size distribution, which differs from the previous studies reported in the literature
discussed in this section. In the investigation described in this paper, the volume of the
individual fractions of the recycled aggregates was selected to minimize the strength
decrease. The sand with a grain size of 0–2 mm was substituted with the recycled aggregate
with a grain size of 0.5–4 mm, which made it possible to obtain the concrete with high
content of the recycled fine aggregate (up to 50%) without significant worsening of the
mechanical performance.

The presented research covered determining the chemical composition of the recycled
aggregates regarding the possibility of their use in concrete and the influence of these
aggregates on the performance of the concrete. Determining the technological parameters
of the concrete mix, the mechanical performance, thermal properties, and tightness of the
hardened concrete made it possible to thoroughly assess the modified concrete’s usability.
The sewage sludges are produced in large volumes and are challenging to utilize. Therefore,
the possibility of their use as a substitute for the fine aggregate in cement concrete is
important and worth evaluating, yet there is little research on this topic. However, the most
promising results were achieved for aggregate made of ceramic bricks wastes.

2. Materials and Methods
2.1. Materials

Reference concrete specimens CR0 were prepared using Portland cement CEM I 42.5R
with a specific density of 3.1 g/cm3, 0–2 mm natural sand, 2–8 mm and 8–16 mm gravel,
and tap water. The grain size distribution of sand and gravel is presented in Figure 1.
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Figure 1. The grain size distribution curves of sand and gravel.

Because recycled aggregate usually causes a worsening of concrete mix workabil-
ity [34], the CR0 concrete mix consistency was designed as S5 according to the European
Standard EN-12350-2 [35]. The polycarboxylic superplasticizer (SP), with a density of
1.06 g/cm3, was used for this aim. The content of the superplasticizer was 1.5% of the
cement mass.

In the subsequent concrete mixes, 25% and 50% of the sand volume was replaced by:

• Aggregate from concrete paving recycling; the paving was initially crushed, and the
fractions larger than 2 mm were sifted on the construction sieves (Figure 2a). The
concrete mixes containing this aggregate are marked CC25 and CC50. The bulk density
of this aggregate was 0.75 g/cm3 and after compaction 0.93 g/cm3;
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• Aggregate from the wastes created during ceramic bricks production (Figure 2b). The
fractions of 1–4 mm dominated in this aggregate. The concrete mixes containing
this aggregate are marked CB25 and CB50. The bulk density of this aggregate was
1.12 g/cm3 and after compaction 1.21 g/cm3;

• Aggregate from Pomorzany Water Treatment Plant (Szczecin, Poland) in the form of
slag (SS), created during thermal deactivation of the sewage sludges (Figure 2c). The
slag is manufactured by drying in the contact dryer and burning in the moving grate
boiler [36]. The material is porous with a significant content of open pores [37]; thus, it
has low mechanical strength and high water absorbability, which was demonstrated
by the worsening of the consistency of the tested concrete mixes. The slag fractions of
0.5–2 mm were selected for preparing concrete mixes. The concrete mixes containing
this aggregate are marked CSS25 and CSS50. The bulk density of this aggregate was
0.54 g/cm3 and after compaction 0.64 g/cm3.
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(c) burnt sewage sludges.

The images of the used recycled aggregates are presented in Figure 2.
The grain size distribution of the recycled aggregates is presented in Figure 3.

2.2. Preparation of Concrete Mixes and Concrete Specimens

Seven concrete mixes were designed. Designing the concrete mixes was based on
the previous experience of the authors. It was assumed that the reference concrete mix
should demonstrate high fluidity so that the worsening of its workability caused by the
introduction of the recycled fine aggregate is as tiny as possible. The composition of the
reference mix CR0 is presented in Table 1. The following concrete mixes contained three
types of recycled aggregate as volumetric substitutes for the sand (FA). The content of
recycled aggregates was 25% and 50% of the fine aggregate. The remaining components
were not changed. The compositions of the tested concrete mixes are presented in Table 1.

After mixing the components in the laboratory mixer, the concrete mixes were tested.
Then, the specimens for hardened concrete testing were prepared. The strength and thermal
conductivity were determined on the cubic specimens of 100 mm × 100 mm × 100 mm.
The specimens, after preparation, were stored in the molds for 24 h. After demolding, the
specimens were placed in the container filled with water at 20 ± 2 ◦C until testing.
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Table 1. The compositions of concrete mixes.

Concrete
Designation

Cement Water Sand
0/2 mm

Crushed
Concrete

Crushed
Bricks

Sewage
Sludge

Gravel
2/8 mm

Gravel
8/16 mm SP

[kg/m3]

CR0 320 176 580 0 0 0 708 560 4.8
CC25 320 176 448 98 0 0 708 560 4.8
CC50 320 176 299 196 0 0 708 560 4.8
CB25 320 176 448 0 63 0 708 560 4.8
CB50 320 176 299 0 126 0 708 560 4.8
CSS25 320 176 448 0 0 36 708 560 4.8
CSS50 320 176 299 0 0 72 708 560 4.8

2.3. Test Methods

In the initial testing range, the recycled aggregates’ chemical analysis was performed
using the Bruker Quantax EDS X-ray energy-dispersive spectrometer.

The consistency of the concrete mixes was determined by the slump method according
to the European Standard EN 12350-2 [35]. The concrete mixes were tested immediately
after mixing the components. The thermal conductivity of concrete was determined on the
cubic specimens of 100 mm × 100 mm × 100 mm, described in Section 2.2. The concrete
specimens were stored in dry laboratory conditions until their masses stabilized. After
cutting the specimens in half, the tests were conducted on the exposed concrete cores. The
non-stationary technique was employed for thermal conductivity measurement using the
Isomet 2104 apparatus. All measurements were performed on the central cross-sections
of the specimens. Eight measurements were performed for each concrete. The values of
thermal conductivity, λ, volumetric specific heat, cv, and thermal diffusivity coefficient,
a, were determined.

Compressive strength was determined after 7 and 28 days of curing. The tests were
carried out according to the European Standard EN 12390-3 [38], using the Toni Technik
strength machine (Berlin, Germany) with a maximum load of 5000 kN. The strength of each
concrete was determined on six specimens and was measured with an accuracy of 0.1 MPa.

Tensile splitting strength was determined on the cubic specimens of 100 mm × 100 mm
× 100 mm according to the European Standard EN 12390-5 [39], after 28 days of curing, on
the wet specimens. The Toni Technik strength machine (Germany) with a maximum load
of 100 kN was used. Six specimens were tested for each concrete.
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Additionally, the apparent density of concrete in the dry state and depth of water
penetration under pressure according to the European Standard EN 12390-8 [40] were
tested. The tests were conducted on the cube specimens 100 mm × 100 mm × 100 mm.
After demolding the specimens, the surfaces the water could penetrate were ground. The
tests started after 28 days of curing. The water pressure of 0.5 MPa was applied and kept
for 72 h. Then, the specimens were split in half in the strength machine perpendicular to
the penetrated surface. After splitting, the range of water penetration was measured with
an accuracy of 1 mm. Three specimens were tested for each concrete.

3. Results and Discussion
3.1. Chemical Composition of the Tested Aggregates

The EDS analysis was performed for the identification of the chemical elements in the
recycled aggregates. No heavy metals nor chlorides, which would exclude the material as
a substitute for the sand in concrete, were found in the aggregate from concrete recycling
(Figure 4). The total content of sulfur was less than 0.1%, which is far below the threshold
value of 1% according to the European Standard EN 12620 [41].
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The chemical composition of the aggregate from ceramic bricks recycling is presented
in Figure 5. No heavy metals nor sulfur were found.
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Figure 6 presents the chemical composition of the aggregate from the burnt sewage sludge.
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The investigations of the ashes and slags from the thermal conversion of the sewage
sludges are focused on their potential application in the production of building materials,
such as glass ceramics [42–44], bricks [44,45], and cement mortar and concrete [46–48].
These additives are used as direct substitutes for clay, cement, or sand [44,49–52]. The
EDS analysis showed no chlorides in the tested specimens. In the case of burnt sewage
sludges, other researchers also confirm the lack of chlorides [48,53]. According to the Polish
regulations [54], ashes and slags created during the sewage sludge burning can be used for
preparing the mixes for construction purposes, excluding, however, the use in buildings
destined for the permanent residence of people or animals and the buildings with food
processing. They also do not fulfill standard requirements for concrete and cement [55,56].

3.2. Consistency and Apparent Density of Concrete Mixes

The results of consistency testing are presented in Figure 7. The biggest worsening
of consistency was caused by the aggregate from the sewage sludge; for the CSS50 mix, it
was more than 50% in relation to the reference mix CR0. The reason for this consistency
downfall is the high porosity of the slag from sewage sludge. In the case of the recycled
aggregates made by crushing and grinding, the increased water demand is also caused
by a high content of dust fractions. The slag is additionally crushed while mixing the
dry components. The behavior of the aggregate from the crushed concrete was similar.
However, plastic consistency was achieved for the concrete mixes CC and CB.
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The available studies results [48,57] show that due to the porosity of the recycled
aggregates, their use requires the particular procedure of adjusting the amount of water
dosed to the concrete mix. Figure 8 presents the SEM image of the slag grains with
open pores.
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Obtaining a desirable consistency of the concrete mix requires that the total water
covers the water necessary for the cement hydration and the additional water absorbed
by the aggregate. The water absorbed by the aggregate grains is then released. It can
help cement hydration in the interfacial transition zone (ITZ) between the aggregate and
hardened cement paste, thus improving the ITZ properties, including strength. However,
the excess water, not used during hydration, evaporates and can leave the micropores
weakening the composite’s structure. Therefore, designing the concrete mix with recycled
aggregates always needs special experimental verification.

The average apparent densities of the concrete mixes were: 2370 kg/m3 and 2340 kg/m3

for CC25 and CC50, respectively; 2380 kg/m3 and 2350 kg/m3 for CB25 and CB50, respec-
tively; 2375 kg/m3 and 2335 kg/m3 for CSS25 and CSS50, respectively.

3.3. Mechanical Performance of Concrete
3.3.1. Compressive Strength

The compressive strength testing results of concrete after 7 and 28 days of curing are
presented in Table 2 and Figure 9.

Table 2. Test results of concrete compressive strength.

Concrete
Designation

Compressive Strength [MPa]

After 7 Days After 28 Days

CR0 43.7 ± 1.3 49.9 ± 1.8
CC25 37.4 ± 1.4 45.3 ± 2.3
CC50 36.5 ± 2.1 44.4 ± 1.9
CB25 39.1 ± 1.6 46.6 ± 1.4
CB50 42.1 ± 1.3 51.7 ± 1.8
CSS25 36.2 ± 1.6 44.9 ± 2.6

CCSS50 33.8 ± 1.8 43.4 ± 2.8
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Figure 9. The test results of concrete compressive strength.

Every concrete with recycled aggregate showed decreased compressive strength com-
pared to the reference concrete RC0. Except for the concrete containing the aggregate from
the crushed bricks; the concrete CB50, after 28 days of curing, demonstrated slightly higher
compressive strength (rise by 3.6%). The concrete CB25 had slightly lower compressive
strength after 7 days of curing (a decrease of 3.7%). Generally, the CB concrete’s compres-
sive strength was similar to that of the reference concrete CR0 within the range of 5%.
These results were caused by the grain size distribution of the crushed bricks. The recycled
aggregate made of crushed bricks comprised 80% of the grains with a size of 1–4 mm. Such
a grain size distribution made it possible to achieve compressive strength close to reference
concrete despite lower density.

The recycled aggregate made of sewage sludge had a grain distribution similar to that
of the aggregate from the crushed bricks. However, due to its porous structure and low
crushing resistance [57], concrete with this aggregate demonstrated the lowest compressive
strength. The compressive strength of the concrete CSS25 after 7 days of curing was 17.2%
lower, and after 28 days of curing by 10% lower, compared to the reference concrete. The
compressive strength of the concrete CSS50 was lower by 22.6% and 13% after 7 and 28 days
of curing, respectively. As it was demonstrated in [48], the compressive strength of the
cement concrete and mortar containing burnt sewage sludges rises with curing time and,
after 56 or 90 days, can be close to that of the reference concrete.

In most cases, the aggregate made by grinding and crushing the concrete from demo-
lition or ceramic bricks and the aggregate from sewage sludge ash shows higher water
absorption and lower apparent density [9,19,26–29,57]. The majority of reported studies
demonstrate the downfall of compressive strength with increasing recycled aggregate
content [9,22,26,34]. The research presented in [58,59] shows that using recycled aggregate
with a larger grain size could make it possible to obtain compressive strength close to the
concrete with natural aggregate. However, a significant decrease in strength was observed
when the recycled aggregate content was 50% or higher. In the investigation described in
this paper, the content of the aggregate fraction below 0.5 mm was substantially limited.
As a result, the 28-day compressive strength of the concrete with 50% of the aggregate from
waste bricks (CB50) was even higher compared to the reference concrete CR0.

The studies on using sewage sludge (SS) in cement concrete are mainly focused on
utilizing this waste as a partial substitute for cement [36,47,50,60]. In the case of using SS for
replacing the fine aggregate, tests are usually performed on the cement mortars [48,49,61].
Few works dealing with using SS as a substitute for the fine aggregate in cement concrete
confirm that compressive strength decreases with increasing content of the sewage sludge
in the concrete. In [62], the accepted content of SS in the total fine aggregate is suggested
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as 25% when the strength downfall did not exceed 5%. The study presented in this
paper shows that the 25% content of sewage sludge (CSS25) leads to a 10% downfall in
compressive strength. The downfall of the compressive strength at 50% content of SS
(CSS50) was even more significant (Figure 9). Therefore, from the compressive strength
point of view, 25% of sewage sludge ash in the fine aggregate seems to be the limiting value.

3.3.2. Tensile Strength

The tensile splitting strength testing results of concrete after 28 days of curing are
presented in Figure 10.
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The highest tensile strength was observed, as in the case of the compressive strength,
for the concrete CB50. The concrete CC50 and CSS50 demonstrated significantly lower
tensile strength than the reference concrete CR0 (17% and 15%, respectively). The tensile
strength of the remaining composites was close to that of the concrete CR0. The good tensile
strength is a consequence of the porous structure of the aggregate grains’ surface [63]. The
research presented in [58,59] confirms that the small content of the aggregate from the
recycled bricks can lead to improvement in the tensile strength due to the more developed
surface of the recycled aggregate grains compared to the natural non-broken aggregates.

3.4. Depth of Water Penetration

The results of testing water penetration depth (WPD) are presented in Figure 11.
Figure 12 presents fractured concrete specimens after testing WDP.

Using recycled aggregates obtained by crushing or grinding the wastes often worsens
the concrete tightness. This worsening is caused by increased porosity of the aggregates
after crushing. Such a situation has also been observed for the tested materials. The poorest
tightness was observed for the composites containing the aggregate from sewage sludges,
CSS25 and CSS50. Due to the WPD above 50 mm, the latter can only be used in the concrete
structures exploited in the exposed class X0 or XC1. As described in Section 3.2, the burnt
sewage sludge has a very porous structure with many open pores, leading to the poor
tightness observed in the tests.

Limiting the sewage sludge content in the fine aggregate to 25% is appropriate because
of the compressive strength, consistency, and tightness. The water penetration depth under
pressure exceeded 50 mm for the concrete with 50% of sewage sludge (CSS50). The poor
tightness of the concrete containing 50% and more SS has also been confirmed in [48].
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3.5. Thermal Conductivity

Figure 13 presents the average values of the tested composites’ thermal conductivity
coefficients, λ. The recycled aggregates slightly decreased the thermal conductivity propor-
tionally to their volumetric content. No evident influence of the aggregate type on λ values
was found.
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Even more minor was the influence of the recycled aggregate on the specific heat
(Figure 14). Only at 50% content of the recycled aggregate in the sand was a decrease in cv
observed (concretes CC50, CB50, and CSS50).
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The highest thermal diffusivity, a, has been registered for the reference concrete CR0,
where the average value of a was 1.19 × 10−6 m2/s, which is higher by 10% than in the
case of the concrete CSS50, having the lowest a value (Figure 15). The type and content of
the recycled aggregate only slightly affected the thermal diffusivity of concrete.
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4. Conclusions

The presented research results show the effect of recycled aggregate on the selected
properties of cement concrete. The used aggregates were obtained from recycling concrete
and ceramic bricks, and from burnt sewage sludges. All these aggregates were introduced
into the concrete mix as partial substitutes for the fine aggregate. The following conclusions
can be formulated:

1. The presence of chlorides or heavy metals, which could exclude the recycled aggregate
as a building material component, was not detected.

2. The recycled aggregates worsen the concrete mixes’ consistency. The reason for this
phenomenon is high porosity and, in the case of the aggregates made by crushing and
grinding, high content of the dust fractions. The downfall of the consistency can be
limited by the initial saturation of the recycled aggregate with water before mixing the
dry components [48,63].

3. The recycled aggregates, due to their porous structure, cause a decrease in the com-
pressive strength of the concrete. The only exception was the concrete containing the
crushed bricks, which, after 28 days, demonstrated slightly higher (by 3.6%) com-
pressive strength compared to the reference concrete. The downfall of compressive
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strength is decreased with time, and after 56 or 90 days of curing, the compressive
strength can be close to the reference concrete, as demonstrated in [48].

4. The tensile splitting strength is the highest for concrete with crushed bricks as a
recycled aggregate. Using the other tested aggregates led to a tensile strength similar
to the reference concrete.

5. Using the recycled aggregates worsens the tightness of the concrete, which manifests
itself by increasing water penetration depth.

6. The thermal properties of concrete are slightly affected by the type and content of the
recycled aggregate. The thermal conductivity is slightly decreased, while the specific
heat and thermal diffusivity are not significantly influenced.

7. The obtained test results and the analysis of the available literature data show that
considering the concrete mix’s and hardened concrete’s performance, the sewage
sludge’s content in the fine aggregate should not exceed 25%.

The material modification of concrete requires, besides the control of the strength,
the control of properties affecting the durability, such as tightness, frost resistance, and
chemical resistance [64,65]. The introduction of recycled aggregate can worsen certain
technical properties of the concrete, such as compressive strength and tightness. Never-
theless, adequately produced and controlled recycled aggregates can be an alternative to
natural aggregates.

Despite numerous research works, utilizing recycled aggregate for cement concrete
production still needs extensive studies. The volume of industrial wastes is growing;
therefore, further investigations should mainly concern the limited contents of various
types of recycled aggregates and possible ways to increase these contents.
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54. Rozporządzenie Ministra Rozwoju z Dnia 21 Stycznia 2016 r. W Sprawie Wymagań Dotyczących Prowadzenia Procesu
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