
Citation: Yenigun, B.; Gkouti, E.;

Barbaraci, G.; Czekanski, A.

Identification of Hyperelastic Material

Parameters of Elastomers by Reverse

Engineering Approach. Materials 2022,

15, 8810. https://doi.org/

10.3390/ma15248810

Academic Editor: Jean-Benoît

Le Cam

Received: 7 October 2022

Accepted: 5 December 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Identification of Hyperelastic Material Parameters of
Elastomers by Reverse Engineering Approach
Burak Yenigun * , Elli Gkouti , Gabriele Barbaraci and Aleksander Czekanski *

Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada
* Correspondence: byenigun@yorku.ca (B.Y.); alex.czekanski@lassonde.yorku.ca (A.C.)

Abstract: Simulating the mechanical behavior of rubbers is widely performed with hyperelastic
material models by determining their parameters. Traditionally, several loading modes, namely
uniaxial tensile, planar equibiaxial, and volumetric, are considered to identify hyperelastic material
models. This procedure is mainly used to determine hyperelastic material parameters accurately. On
the contrary, using reverse engineering approaches, iterative finite element analyses, artificial neural
networks, and virtual field methods to identify hyperelastic material parameters can provide accurate
results that require no coupon material testing. In the current study, hyperelastic material parameters
of selected rubbers (neoprene, silicone, and natural rubbers) were determined using an artificial
neural network (ANN) model. Finite element analyses of O-ring tension and O-ring compression
were simulated to create a data set to train the ANN model. Then, the ANN model was employed
to identify the hyperelastic material parameters of the selected rubbers. Our study demonstrated
that hyperelastic material parameters of any rubbers could be obtained directly from component
experimental data without performing coupon tests.

Keywords: reverse engineering; artificial neural network; hyperelasticity; rubber

1. Introduction

Elastomers, also known as rubbers, are widely preferred due to their complex mechan-
ical behavior and long-term resistance to extreme conditions such as large deformation,
various strain rates, and high temperatures [1,2]. They are mainly used in additive manu-
facturing, electronics, construction, and biomedical fields. Selecting a suitable elastomer
is a complex procedure that requires the characterization of mechanical response to de-
formation under specific environmental conditions. Hence, it is necessary to incorporate
conditions that simulate the application-specific behavior.

Rubbers are considered materials that exhibit nonlinear hyperelastic and viscoelastic
behavior [3–8]. Several experimental tests are required to characterize their mechanical
behavior, which can be categorized into two groups: applying loading/unloading and
holding constant deformation for a specific period (input). Elastomers’ response to those
conditions is increasing/decreasing deformation and stress relaxation, respectively (output).
Several hyperelastic models (e.g., Ogden, Neo-Hookean, Mooney–Rivlin, Arruda Boyce)
have been developed for the first group, where a specimen is subjected to loading or
unloading, and their parameters are required to be determined [9–12]. Appropriate model
selection based on strain energy density functions depends on the selected rubber, the
deformation range, and the environmental conditions (e.g., temperature) [13–15]. Their
stress–strain curves provided by experimental data ensure the best fitting. For the second
group, stress relaxation can be modeled using the Prony series for multiple terms, where
parameters must be determined [16,17].

Other factors determining the hyperelastic material model include the selected model’s
stability for an application representative deformation range and the friction force. Evaluat-
ing and choosing stable model(s) can be determined by Drucker’s stability criteria [18,19].
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Considering all those factors, selecting the appropriate application-specific rubber to sim-
ulate multiple conditions accurately is possible. However, the experimental setup’s com-
plexity and additional labor requirements to perform tests are some limitations of the
hyperelastic material modeling and avoid including friction coefficients. Moreover, obtain-
ing a perfect model to fit experimental data is challenging since the analytical procedure of
determining material parameters involves solving a set of equations.

Thus, the traditional procedure [10,20–22] mentioned above is time- and money-
consuming as it requires many experiments that might need to be repeated if the selected
rubber is not adequate for application. Third-party software or modules based on a curve-
fitting principle are often used to identify hyperelastic material parameters. On the other
hand, in recent decades, a reverse engineering approach using commercial software for
various applications has been widely embraced [23–33]. The iterative finite element model
(FEM), machine learning, and virtual fields method (VFM) are the most known reverse
engineering approaches [34]. The iterative FEM approach is based on finding the minimum
error between experimental and predicted data by performing iterative finite element
analysis (FEA) using estimated initial material parameters. FEA is simulated by chang-
ing the initial material parameters in each iteration according to a chosen optimization
technique, and iteration continues until it reaches minimum error. For example, there is a
study using this approach in which visco-hyperelastic parameters of brain white matter
were predicted [25]. Iterative compression FEA was simulated to obtain the optimal consti-
tutive model parameters, and a genetic algorithm was used to match the error between
the experimental and FEA results. Another study used an optimization loop designed
in commercial software (Isight) to identify the viscoelastic material parameters of filled
rubber compounds [27]. Material parameters were determined by calibrating the data from
uniaxial stress–strain tensile, volumetric, and stress relaxation tests. In another example,
nonlinear visco-hyperelastic material parameters of homo-polymer were determined using
the parallel rheological framework (PRF) model in software [30]. However, a custom
optimization script or third-party software is required for optimization in this approach.
Moreover, choosing the wrong optimization technique may cause finding a local minimum
point instead of a global minimum point, or optimization may take longer since FEA is
simulated in each iteration [35].

To overcome this considerable drawback, an artificial neural network (ANN) can be
employed to characterize elastomers, which involves an educated guess-and-check process.
ANN is a powerful tool for analyzing data and creating complex relationships between
variables [36–38]. Therefore, some researchers used an ANN model to accelerate or predict
material properties [33,39–46]. This indirect approach creates an ANN model from the
FEA dataset to accelerate optimization instead of using FEA in each iteration. FEA is
performed by generating a dataset from random material parameters to build the ANN
model. There are several attempts in relation to the ANN approach. For example, the
hyperelastic parameter of silicone rubber was identified using the approach mentioned
above [26]. Uniaxial tensile FEA using predefined parameters was simulated to create a
database for the general regression neural network (GRNN) model. Once the GRNN model
was created, the hyperelastic material parameters of silicone rubber were predicted using a
GRNN model and optimization technique. Another study estimated different hyperelastic
material parameters of Neodymium Butadiene rubber (NdBR), Ogden-3, Neo-Hooken,
and Mooney–Rivlin using neural networks [47]. In their study, strain invariants were used
to train an ANN model, and hyperelastic material parameters validation was performed
through uniaxial and equibiaxial testing. It is worth mentioning that there are some
challenges in employing the ANN technique. For example, if data sets are created with a
complete factorial method in this approach, it causes problems such as overfitting in the
ANN model and poor nonlinear relationships between data

The virtual fields method (VFM) consists of an analytical solution of a constitutive
model, digital image correlation, and optimization method. Virtual fields, which can
be strain or displacement, are predicted by solving a constitutive analytical model with
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guess parameters. Then, the virtual prediction is compared to digital image correlation
measurements through a cost function to be minimized [48,49]. This approach is applied
to determine the hyperelastic material parameters of rubber specimens with a cruciform
shape [34,50–52]. Similar to the previously described approaches, the selection of the
initial parameters and optimization techniques directly affects the quality of the prediction
in this approach. Moreover, these indirect approaches are material-dependent, and the
procedure must be repeated for another material. The current study identifies different
rubbers’ responses for application-specific component geometry that provides O-ring
shapes applying a direct material-independent reverse engineering approach. Our goal is to
determine the hyperelastic material parameters that will fulfill the application requirements
and lead to a suitable selection of rubber. Specifically, we aim to identify the hyperelastic
material parameters of different rubbers (silicon, neoprene, and natural rubber) from the
developed ANN model without performing experimental coupon tests.

Therefore, this study aims to eliminate the requirement of performing numerous experi-
mental tests, optimizing errors and solving analytical equations for each selected rubber by (a)
developing an ANN model, (b) identifying the hyperelastic material parameters as well as
friction coefficients, and (c) validating the predictions. Compared to the previous studies in
developing relevant models for material parameter identification, we develop an ANN model
to determine the hyperelastic material parameters of any rubber for any temperature or surface
conditions by eliminating iterative FEA simulations or optimization methods. The ANN
model is based on application geometry that specifically gains accurate results. Nevertheless,
our study can be employed in other geometry-specific cases and any hyperelastic material
model (other than Ogden-2). The flow chart of this study is shown in Figure 1.
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Figure 1. Flow charts: (a) ANN-subroutine, (b) parameter identification, and (c) validation steps.

2. Experimental Study
2.1. Samples Configurations
2.1.1. Component Test Configurations

Neoprene rubber, natural rubber, and silicone rubber batches with thicknesses of
25.4 mm, 3.175 mm, and 1.5875 mm supplied from McMaster-Carr were used in this study.
Rubbers batches with a thickness of 25.4 mm, were cut with a water jet to outer/inner di-
ameters of Ø127/Ø101.6 mm, Ø101.6/Ø50.8 mm, and Ø50.8/Ø25.4 mm for O-ring tension,
O-ring compression, and O-ring multi-contact tests, respectively. Neoprene rubber samples
for O-ring tests are shown in Figures 2 and 3.
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Figure 3. Component tests sample used to validate material parameters: O-ring multi-contact test.

2.1.2. Coupon Test Configurations for Validation Study

Rubber batches with a thickness of 3.175 mm for uniaxial and equibiaxial tests and
rubber batches with a thickness of 1.5875 mm for planar tests were cut with a die. Silicone
rubber coupon test samples are shown in Figure 4. Coupon test sample dimensions can be
found in our previous study [53].
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Figure 4. Silicone rubber coupon tests samples for validation study: (a) uniaxial test, (b) planar test,
and (c) equibiaxial test.

2.2. Experimental Setup
2.2.1. Experimental Component Testing for Material Predictions and Validation Study

The selected components were cut in O-ring shapes, as shown in Figure 2, and sub-
jected to tension and compression, as shown in Figure 5. We performed quasi-static tension
and compression with the crosshead moving at 1 mm/s speed with a sampling rate of
1 Hz using a universal MTS Criterion 43 machine. The component tests were performed
three times for consistency. Experimental component results of O-ring tension and O-ring
compression were used to predict hyperelastic material parameters from the developed
ANN model. Additionally, the O-ring compression test contributed to estimating the fric-
tion coefficient more accurately. The O-ring multi-contact component test results, shown in
Figure 6, were used to validate the ANN-predicted hyperelastic material parameters.
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To demonstrate the accuracy of the developed ANN approach, we simulated different
conditions. Thus, we aimed to predict the behavior of neoprene’s component when subjected
to O-ring multi-contact tests at various environmental conditions (not only the ambient).
To compare the outcomes of the ANN approach, actual test data were required; hence, we
performed O-ring tension and O-ring compression of the neoprene test (Figure 2) with the
setup shown in Figure 5. We repeated the same experimental procedure at the elevated
temperatures of 50 ◦C and 80 ◦C and compared them with the corresponding FEA results.

2.2.2. Experimental Coupon Testing for The Validation Study

Rubbers exhibit a hyperelastic response to an applied deformation; their behavior
can be modeled using their energy density function. Many numerical models have been
defined previously, requiring the determination of their material parameters, which is
feasible by performing experimental tests. Rubbers’ response must be tested under various
deformation directions; hence, uniaxial, planar, and equibiaxial tests are usually required.
The curve fitting procedure is followed to determine the materials parameters of the selected
hyperelastic model. The material parameters defined by the procedure mentioned above
can be used as an input for FEA, which is considered a “traditional approach” to simulating
rubbers’ behavior.

In our study, uniaxial, planar, and equibiaxial coupon tests were carried out at a
quasi-static loading rate with a crosshead moving at 1 mm/s with a sampling rate of 1 Hz
at room temperature using a universal MTS Criterion 43 machine. An MTS LX500 laser
extensometer was used to measure strain during the tests. A 500 N load cell was used for
all tests except equibiaxial coupon tests. Since equibiaxial coupon tests require more than a
500 N load cell, a 10,000 N load cell was used for equibiaxial coupon tests. All experiments
were repeated three times to ensure consistency. The experimental coupon testing setups
are shown in Figure 7.
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3. Numerical Modelling
3.1. Traditional Approach to Determining Hyperelastic Material Parameter

The commonly used procedure of simulating the mechanical behavior of rubbers in
different conditions is running an FEA based on coupon experimental test data. Namely, the
hyperelastic model was built based on experimental data (uniaxial, planar, and equibiaxial).
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In our study, we used this approach (from now on, mentioned as a “traditional approach”)
to predict rubber-specific and application-specific applications. Specifically, we determined
the material parameters of the Ogden-2 hyperelastic model by performing coupon testing of
uniaxial, planar, and equibiaxial experiments as described previously (Figure 7). Following
the curve fitting procedure for the obtained test data results, we determined the material
parameters (mu1, alpha1, mu2, and alpha2) using Abaqus as input for our FEA simulations.

3.2. ANN Approach to Determine Hyperelastic Material Parameter

In addition to the previous ways to gain the mechanical response of rubbers to de-
formation, we decided to include A.I. benefits in our study by creating an ANN path. In
addition to the previous (traditional) approach, the ANN approach requires no experi-
mental coupon tests to determine the hyperelastic material parameters. Since we created
virtual data sets of 100 different cases of coefficients, we used them as input to train an
ANN model, which was then used for FEA validation simulations. It must be mentioned
that the build ANN model corresponds to geometry-specific applications, which for our
study refers to O-ring tension and O-ring compression deformation of rubbers.

3.2.1. Data Derivation

Apart from the traditional approach of determining hyperelastic material parameters,
we decided to follow another path by creating virtual data sets. Initially, we selected the
most accurate model for O-ring shapes, the Ogden hyperelastic model, with two terms
(noted as Ogden-2) including four parameters: alpha1, mu1, alpha2, and mu2 [54–56].
Regarding the Ogden material model, the strain energy density is expressed in Equation (1)
in terms of the principal stretches λ1, λ2, and λ3 [57].

W =
N

∑
i=1

2 ∗ µi

α2
i

∗ (λαi
1 + λ

αi
2 + λ

αi
3 − 3), (1)

where, µi and ai are material parameters.
Based on this model, we run FEA using commercial software (ABAQUS/Standard-2019)

for the geometry-specific cases of O-ring shapes. Specifically, O-ring tension and O-ring
compression FEA models were simulated by applying 75 mm and 15 mm displacements,
respectively. O-ring tension and O-ring compression FEA models are shown in Figure 8.
An 8-node linear brick, hybrid, constant pressure, reduced integration, hourglass control,
C3D8RH, was selected as the element type. Mesh sizes for O-ring tension and O-ring
compression were selected as 1.25 and 0.625, respectively.
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O-ring FEA simulations were repeated 100 times using 100 randomly generated data
sets. With this method, we also included the virtual friction parameter of rubbers, which
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is only possible experimentally by performing additional testing. The randomly created
hyperelastic material parameters and friction coefficients for 100 cases are shown in Table 1.

Table 1. Randomly generated material parameters.

Data Number Alpha1 Mu1 Alpha2 Mu2 Friction

1 1.5540 2.1625 2.9479 −4.1510 1.8134
2 1.5422 4.3829 5.8699 −5.9271 0.0443
3 1.4168 3.5313 4.7432 −6.0336 1.1834
. . . . . .
. . . . . .
. . . . . .

50 0.814 5.747 7.757 −6.404 0.889
51 0.553 9.692 4.545 4.358 0.950
. . . . . .
. . . . . .
. . . . . .

99 0.9865 8.1362 7.2496 1.5037 1.0994
100 0.2656 5.5092 4.5852 2.8785 1.0216

In order to guarantee that the resulting material parameters provide stable models,
we created Abaqus scripts for evaluating the randomly created parameters (Table 1). The
outcomes showed stability for all cases according to Drucker’s stability criteria. The
corresponding virtual curves of force and displacement obtained from the O-ring tension
and O-ring compression FEA simulations are shown in Figure 9. It must be noted that these
virtual data sets correspond to the geometry-specific application (O-ring tension and O-ring
compression) but are material-independent; namely, they can be used for any rubber, as
will be proved in the following sections.
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3.2.2. ANN Model Development

The force-displacement curves of the virtual data sets (100 cases) corresponding to
the geometry-specific simulation, shown in Figure 9, were used to build the ANN in
the commercial software of MATLAB 2021a. Specifically, the force values obtained from
the O-ring tension and O-ring compression FEA simulations were selected as inputs,
and Ogden-2 hyperelastic material parameters were selected as outputs. The same data
quantities were taken from the O-ring tension and O-ring compression FEA simulations to
prevent overfitting and obtain uniform distribution in the ANN model. The force values at
each 15 mm displacement in the virtual O-ring tension FEA results and the force values at
each 3 mm displacement in the virtual O-ring compression FEA results were used for the
ANN training database. The ANN structure is shown in Figure 10.
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Figure 10. ANN structure with two hidden layers.

Since it is not intended to determine the friction coefficient of rubbers in this study
experimentally, it was added as an output parameter to the ANN model, assuming it is
equal for both O-ring tension and O-ring compression tests. The developed ANN model
contains fully connected layers: one input layer, two hidden layers, and one output layer.
Levenberg–Marquardt’s backpropagation algorithm was selected as the training function,
and the hyperbolic tangent sigmoid transfer function, tansig, was selected as the activation
function. The properties of the ANN model are provided in Table 2.

Table 2. ANN model properties.

Parameter Value

Input layer size 10
Hidden layer1 size 15
Hidden layer2 size 20
Output layer size 5

Activation function tansig
Backpropagation algorithm Levenberg–Marquardt

Data ratio %70 training, %15 validation, %15 testing

4. Results
4.1. ANN Material Predictions

Ogden-2 hyperelastic material parameters of natural, silicone, and neoprene rubbers
were predicted by the ANN model and determined by the “traditional approach” in Table 3.
The friction coefficients of the rubbers were predicted in line with the literature by the ANN
model and used for calculating friction force [58–60].

Table 3. Ogden-2 hyperelastic material parameters based on coupon tests (traditional) and component
tests (ANN).

Parameters
Natural Rubber Silicone Rubber Neoprene Rubber

Traditional ANN Traditional ANN Traditional ANN

alpha1 0.2526 0.2422 0.6793 0.3701 0.0292 0.2427
mu1 3.8250 4.9068 1.1441 2.0343 1.4824 3.6534

alpha2 0.4098 0.4102 0.1117 0.5590 0.4833 0.2913
mu2 −0.3865 4.8452 1.1440 2.0467 1.4970 0.6877

friction - 0.7465 - 0.8534 - 0.7538
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For the case of neoprene rubber’s deformation at 50 ◦C and 80 ◦C, we only included
ANN-predicted hyperelastic material parameters, shown in Table 4. These coefficients were
used to validate neoprene rubber O-ring test results at 50 ◦C and 80 ◦C.

Table 4. ANN predicted Ogden-2 hyperelastic material parameters at 50 ◦C and 80 ◦C.

Parameters ANN 50 ◦C ANN 80 ◦C

alpha1 0.2913 0.2940
mu1 3.5942 3.7996

alpha2 0.1430 0.1159
mu2 −0.0340 −0.4132

friction 0.7513 0.8013

4.2. Testing of Ogden-2 Hyperelastic Material Parameters

The FEA results of O-ring tension and O-ring compression tests, using the ANN-predicted
and ‘traditional approach’ determined by hyperelastic material parameters, are plotted with
experimental results in Figure 11 for rubbers (neoprene rubber, natural rubber, and silicone
rubber). It is evident that the FEA results, simulated by Ogden-2 hyperelastic material pa-
rameters from both methods, exhibit no significant difference for O-ring tension and O-ring
compression experimental results. This observation is common for all rubbers. Additionally,
FEA results, simulated by ANN-predicted hyperelastic material parameters, demonstrated
high accuracy with experimental results for all rubbers.
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Figure 11. Comparison of experimental and FEA results: (a) neoprene rubber O-ring tension test,
(b) natural rubber O-ring tension test, (c) silicone rubber O-ring tension test, (d) neoprene rubber
O-ring compression test, (e) natural rubber O-ring compression test, and (f) silicone rubber O-ring
compression test.
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4.3. Validation of Ogden-2 Hyperelastic Material Parameters
4.3.1. Validation of Component Test: O-Ring Multi-Contact

ANN-predicted Ogden-2 hyperelastic material parameters of neoprene rubber, natural
rubber, and silicone rubber were validated using the O-ring multi-contact component test.
Validation of the O-ring multi-contact results for the selected rubbers is shown in Figure 12.
The developed-ANN model provided accurate estimates for all selected rubbers.
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4.3.2. Validation of Coupon Test

FEA coupon (uniaxial, planar, and equibiaxial) test simulations were also used to
validate selected rubbers’ ANN-predicted Ogden-2 hyperelastic material parameters. The
FEA results, using hyperelastic material parameters predicted by the ANN model and
determined with the traditional approach, were compared with the experimental coupon
test results of these rubbers in Figure 13. Figure 13 presents the accuracy of the Ogden-2
model for selected rubbers, and it can be claimed that Ogden hyperelastic material model
was successfully applied to the analysis of O-rings.

4.4. Case Study

To evaluate the ability of the developed ANN model to predict the hyperelastic
material parameters at different temperatures, we selected neoprene rubber components
to be tested and simulated when subjected to O-ring multi-contact deformation at 50 ◦C
and 80 ◦C. Figure 14 shows the results of neoprene subjected to O-ring tension, O-ring
compression, and O-ring multi-contact experimental tests compared to FEA predictions
at those temperatures. It must be noted that O-ring tension and O-ring compression
FEA database results are independent of temperature variations (e.g., 50 ◦C and 80 ◦C).
ANN-predicted hyperelastic material parameters provide high accuracy, similar to the
corresponding O-ring tension and O-ring compression experimental results.
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Figure 13. Comparison of experimental and FEA results of coupon tests: (a) neoprene rubber uniaxial
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(h) silicone rubber planar test, and (i) silicone rubber equibiaxial test.
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5. Conclusions

We developed an ANN model to identify hyperelastic material parameters in the
current study. The developed ANN model was applied for geometry-specific case studies
(at the component level); thus, it is material-independent as it allows the prediction of
hyperelastic materials parameters for any rubber. The ANN model was initially built using
O-ring tension and O-ring compression FEA data sets. Our approach was validated on
two levels: by comparing ANN predictions with (i) component-level: O-ring multi-contact
component tests and (ii) coupon-level: uniaxial, equibiaxial, and planar coupon tests.

It is worth noting that the ANN model is able to predict rubbers’ hyperelastic behavior
at any temperature conditions. To validate the feasibility of this characteristic, we compared
the developed ANN model with the experimental results of neoprene’s O-ring components
subjected to different temperature levels. The results showed that the predictions have
adequate accuracy.

In conclusion, the advantage of using the ANN model to predict rubbers’ hyper-
elastic behavior is that it can be obtained directly from experimental component tests
without performing material coupon tests. Moreover, the developed ANN is a material and
temperature-independent model, as it provided accurate predictions of the hyperelastic
behavior of any selected rubber exposed at different elevated temperatures. At the same
time, it allows determining rubbers’ surface properties (friction) without performing extra
experimental tests, which are both time- and money-consuming and challenging to achieve.
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