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Abstract: Improving the toughness of diamond composites has become an industrial demand. In
this work, Co50Ni40Fe10 multi-element alloy was designed as binder for diamond-based composites
prepared by high temperature and high pressure (HTHP). Two methods of mixing-sintering and
infiltration-sintering were used to prepare diamond-based composites with different diamond con-
tents. The phase diagrams of Co-C and Co50Ni40Fe10-C at 6 GPa were calculated by Thermo-Calc.
The results show that Co50Ni40Fe10 multi-element alloy promotes the sintering of diamond powder
than element Co. The transverse rupture strength (TRS) of sintered diamond with Co50Ni40Fe10

(Co50Ni40Fe10-75 vol% diamond) is higher than that of Co-Comp (Co-75 vol% diamond). The TRS of
polycrystalline diamond (PCD) with Co50Ni40Fe10 alloy binder is up to 1360.3 MPa, which is 19.2%
higher than Co-PCD. Compared with Co, using Co50Ni40Fe10 as binder results in a less metal residue
in PCD, while the metal cluster area is smaller and the metal distribution is more uniform.

Keywords: multi-element alloy; PCD; HTHP; diamond skeleton; thermodynamic

1. Introduction

Diamond has the highest hardness and thermal conductivity, good semiconductor
properties and excellent corrosion resistance [1–3]. Synthesis of high-performance diamond
has been widely studied. Tian et al. [4–6] used onion carbon nanoparticles as the precursor
to synthesize nano-twin diamonds with an average twin thickness of ~5 nm at superhigh
temperature and pressure. The nano-twin diamonds have higher hardness and oxidation
resistance than natural diamonds. Liu et al. [7] explored the temperature-pressure reaction
of amorphous carbon formed by heating fullerenes at pressure close to the cage collapse
boundary (about 20–37 GPa). Millimeter scale nearly full sp3 amorphous carbon block
materials with high hardness, elastic modulus and thermal conductivity were success-
fully synthesized. The studies provide new ideas for the artificial synthesis of superhard
materials, but it is difficult to be commercially applied in a short time due to the harsh
synthesis conditions.

Diamond is being widely used in cutting tools, drilling tools and abrasive tools for
processing and drilling industries [8–11]. However, the inherent brittleness of diamond se-
riously restricts the service life of diamond tools. The toughness of polycrystalline diamond
(PCD) is better than that of single crystal diamond [12], but it may not be able to meet the
requirements of complex working conditions in some industrial applications. Traditional
PCD is prepared from a layer of diamond powder on cemented carbide billet at high
temperature and high temperature (HTHP). Co in cemented carbide melts and infiltrates
into the diamond powder layer, catalyzes the formation of covalent bond between dia-
mond particles, and finally polycrystalline diamond was bonded together with cemented
carbide [13]. The polycrystalline diamond layer and the cemented carbide substrate are
collectively called polycrystalline diamond compact (PDC). There are some studies on
improving the performance of diamond based composite products. Li et al. [14] directly
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synthesized polycrystalline diamond at 16 GPa and 2573 K without catalyst, which shows
extremely high hardness and wear resistance. Although the material harder than natural
diamond can be synthesized at ultra-high pressure, the high equipment cost hinders its
commercial application. How to synthesize polycrystalline diamond with better mechan-
ical properties at relatively low pressure and temperature is of more significance for the
industrial applications.

At the pressure of 5–7 GPa, the rate of covalent bond formation between diamond
particles is very slow [15,16]. Elements in Group VIII play an important role in trans-
porting C atoms and catalyzing the formation of sp3 bonds between C atoms in the
sintering process [17,18]. Therefore, it is of great significance to design new binders to
improve the bonding strength of diamond skeleton in PCD. Meanwhile, the binder (usually
Co) may also catalyze the conversion of diamond to graphite at low pressure and high
temperature [19,20]. Similarly, diamond tools cannot be used to machine ferrous metals.
Removing Co from PCD is a good method to improve the service life of products [21].
Jia et al. [22] prepared PDC at HTHP with Fe55Ni29Co16 alloy as the sintering solvent. It
was found that the residual stress of PCD layer is smaller due to the low viscosity and high
soakage capability of the binder. This shows that the distribution of binder in PCD has an
important influence on the mechanical properties of the composite [23,24].

Taken together, the binder metal plays an important role in the synthesis and the
application of PCD. The composition and properties of Co based multi-element alloys
can be regulated and controlled in a wide range [25], with a lower melting point, higher
strength and toughness than pure Co. In this work, Co50Ni40Fe10 multi-element alloy was
designed as the binder to prepare diamond-based composites at HTHP. The thermody-
namics of Co-C and Co50Ni40Fe10-C at 6 GPa were studied. The binder in PCD with high
diamond content is trapped inside, and it is difficult to completely remove the binder.
Therefore, two methods of mixing-sintering and infiltration-sintering were used to prepare
diamond-based composites with different diamond contents. Metals in composites with
low diamond contents are easy to remove due to the interconnection of the binders. In
addition, it is convenient to study the strength of the diamond skeleton. Therefore, the
microstructures and mechanical properties of diamond-based composites and diamond
skeleton were studied.

2. Materials and Methods

Two particle sizes of diamond powder were used in this work, 62~75 µm and 7~15 µm,
respectively. Meanwhile, Co50Ni40Fe10 (at%) alloy powder with a particle size of ~15 µm
and Co powder with a particle size of 1~2 µm were used. Composites with 75 vol% diamond
(62~75 µm) were prepared by mixing-sintering method (Figure 1a). Low content of rough
diamond is convenient to the binder removal. It is possible to obtain the diamond skeleton
with completely removed binder. The preparation process of the mixing-sintering method
included: mechanically mixing 25 vol% metal powder and 75 vol% diamond powder for
20 h, and then sintered at 5.0~5.5 GPa and 1573~1673 K for 16.5 min to obtain diamond
composites. Co50Ni40Fe10-75 vol% diamond and Co-75 vol% diamond composites are
named Co50Ni40Fe10-Comp and Co-Comp, respectively. The infiltration-sintering method
(Figure 1b) was used to prepare PCD with high diamond contents. In order to obtain
high-performance PCD, finer diamond powder (7~15 µm) was used, and the synthesis
pressure was also increased. In this method, a layer of metal powder was laid on the
diamond powder and assembled in the synthesis device, and then sintered at 6.0~6.5 GPa
and 1573~1673 K for 16.5 min. The polycrystalline diamonds with Co50Ni40Fe10 and Co
as binders are named Co50Ni40Fe10-PCD and Co-PCD, respectively. The HTHP synthesis
process was to increase the pressure first, and then the temperature. After synthesis, the
pressure was reduced when the temperature dropped below 573 K.
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Figure 1. Schematic of powder assembly: (a) mixing-sintering method; (b) infiltration-sintering method.

The scanning electron microscope (Quanta FEG 250, FEI Company, Hillsboro, OR, USA)
equipped with Energy Dispersive Spectroscopy (EDS) was used to observe the microstruc-
tures and analyze the composition of the composites. The energy spectrum analyses were
carried out at least three times to obtain the average value. The D/max 2550 X-ray diffrac-
tometer (Rigaku Corporation, Akishima, Japan) was used for phase analysis (voltage: 40 kV,
current: 450 mA, target material: Cu, step size: 0.02◦, scanning speed: 8◦/min). A laser
was used to cut the composites to obtain a sample size of 16.5 mm × 5.0 mm × 4.0 mm.
Aqua regia was used to remove the metal binder in composites to obtain diamond skeleton.
The transverse fracture strength (TRS) of composites and diamond skeletons was mea-
sured by electronic testing machine (Type 3369, Instron Corporation, Norwood, MA, USA),
with a span of 13.0 mm and a loading speed of 1.0 mm/min. Three valid samples were
tested for each material. The melting point of Co50Ni40Fe10 alloy was measured in argon
atmosphere by high temperature differential scanning calorimeter (DSC 404 F3 Pegasus,
Netzsch, Selb, Germany), and the heating rate was 20 ◦C/min. The phase diagrams of
Co-C and Co50Ni40Fe10-C at 6 GPa were calculated by Thermo-Calc 3.0.1, and TCFE7 was
selected as the database.

3. Results and Discussion
3.1. Microstructures

The microstructures and elemental distributions of Co50Ni40Fe10-Comp and Co-Comp
are shown in Figure 2. The black phase is diamond, and the gray phase is metal binder
(Co50Ni40Fe10 alloy or Co). The binder is distributed uniformly among diamond particles.
EDS results show that Co, Ni, Fe elements in the alloy are uniformly distributed without
segregation. The carbon concentrations in Co50Ni40Fe10 alloy (Spot 2) and Co (Spot 4) are
11.26 and 9.08 at%, respectively. Although the content of C cannot be accurately measured
by EDS, it indicates that the alloy has higher solubility of C to some extent. The binder
and diamond are well combined, and the interface is free of cracks. Co, Ni and Fe are
not strong carbide forming elements, and no carbide that will damage the mechanical
properties is detected at the interface. The microstructure of diamond composites prepared
by Co50Ni40Fe10 alloy and Co as binder is almost the same.

Figure 3 shows the microstructures and elemental distributions of PCD with Co50Ni40Fe10
alloy and Co as binders. It can be seen that the original diamond particles of the two PCDs
have been well combined. In the process of HTHP, the alloy melt infiltrates into the gap
of diamond particles and catalyzes the formation of C-C bond (sp3). With the progress
of sintering, the original diamond gradually forms polycrystals, and the alloy melt is
discharged from the gap. The nanoscale metal residues in Figure 3b,d show the interface of
original diamond particles, representing a good combination between diamond particles.
The micron-sized metal residues between original diamond particles is considered harmful
to the performance of PCD. The thermal expansion coefficient of metal is one order of
magnitude larger than that of diamond. In the process of cutting or drilling, polycrystalline
diamond products generate heat by friction. The micro-sized metal residues will generate
high thermal stress and lead to failure. Therefore, the area of metal residues in Figure 3a,c
was calculated by Image J. According to the statistics shown in Figure 4, there are 3 island
shaped metallic clusters of more than 25 µm2 in the Co-PCD, and no such island in the
Co50Ni40Fe10-PCD. The number of metallic clusters above 10 µm2 is 13 in Co-PCD and
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6 in Co50Ni40Fe10-PCD. The statistical results of the proportion of diamond phase area
in Figure 3a,c show that diamond accounts for 84.27% in Co50Ni40Fe10-PCD and 79.68%
in Co-PCD. This shows that compared with Co, Co50Ni40Fe10 alloy has less residue in
PCD, and the area of residual metallic cluster is smaller and the distribution of binder is
more uniform.
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3.2. Phase Analyses

The XRD patterns of diamond composites and PCD are displayed in Figure 5a. Peaks
of Co50Ni40Fe10 alloy and diamond were detected in Co50Ni40Fe10-Comp and Co50Ni40Fe10-
PCD. Diamond and Co50Ni40Fe10 alloy are of FCC structures, and the diffraction peaks
of (111), (220) and (311) lattice planes are very close. So, the multi-peaks around 44◦ were
fitted, and the results are shown in Figure 5b. The slight difference in the position and
width of diamond (111) peak in PCD and composites may be caused by the difference in
raw materials. Due to the large specific surface area of fine diamond it is easy to adsorb
impurities, resulting in (111) peak shifting to the left and widening. Raman spectrums
of diamond in Co50Ni40Fe10-Comp and Co50Ni40Fe10-PCD are shown in Figure 5c. The
characteristic peak of diamond is located at 1332 cm−1, and the fluorescence peak near
1420 cm−1 is caused by N element doped in diamond. The spectral noise of diamond in
PCD is higher because the composite made of fine diamond has more impurities.

In PCD and composites prepared with Co as binder, the crystal structure of Co shows
difference. In Co-Comp, it is detected that Co exists in the form of HCP structure, while
in Co-PCD, it exists in the form of FCC structure. This is due to the different thermal
conductivity of PCD and composites. Diamond exhibits the highest thermal conductivity
in nature, while the thermal conductivity of metal is one order of magnitude lower than
diamond. The diamond content of the composites (75 vol%) is far lower than that of
PCD. It means that the thermal conductivity of the composites is much lower than that
of PCD. Therefore, after synthesis, PCD will be cooled at a faster rate, and Co is easier
to retain its FCC structure at high temperature. On the contrary, the cooling rate of Co-
Comp is relatively slow, and Co is transformed into low-temperature HCP structure. The
thermal conductivity can also reflect the covalent bonding of diamond particles. PCD with
good covalent bonding has higher thermal conductivity, because there is limited interface
hindering the heat conduction. The PCD retained the high temperature FCC structure of
Co, reflecting a good covalent bonding between diamond particles.
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3.3. Mechanical Properties

The values of TRS of diamond composites, diamond skeleton and PCD are shown in
Figure 6a. The metallic content in the cross section of diamond skeleton was measured
by EDS. The results show that it was lower than 0.5 at%, indicating that the metal binder
was almost completely removed. The TRS of Co50Ni40Fe10-Comp (345.5 MPa) is 19.8%
higher than Co-Comp (288.4 MPa), and the TRS of diamond skeleton of Co50Ni40Fe10-Comp
(80.4 MPa) is 37.9% higher than that of Co-Comp (58.3 MPa). The covalent bonding between
diamond grains directly determines the TRS of the diamond skeleton. This illustrates that
Co50Ni40Fe10 alloy has better ability to promote the formation of diamond skeleton than
Co. For the composites, the diamond content accounts for 75 vol%, its TRS is mainly
controlled by the strength of the diamond skeleton. Since the TRS of diamond skeleton
of Co50Ni40Fe10-Comp is higher, the TRS of Co50Ni40Fe10-Comp is also higher than that
of Co-Comp.
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The metal binder in PCD is not connected, so the removal of metal becomes difficult.
Long time treatment with aqua regia can only remove the metal on the surface of PCD but
cannot remove the metal inside. Therefore, only the mechanical properties of PCD were
tested. Due to the high diamond content in PCD, the TRS of PCD is more determined by the
bonding strength of diamond skeleton. At the same time, due to the difference in modulus
between diamond and metal binder, the large area of metal binder cluster will damage the
mechanical properties of PCD. The TRS of Co50Ni40Fe10-PCD is up to 1360.3 MPa, which is
19.2% higher than Co-PCD (1140.7 MPa). The higher TRS of Co50Ni40Fe10-PCD is attributed
to the better ability of the alloy to promote the formation of the diamond skeleton, and the
uniform distribution of metal binder. The comparisons of TRS between the composites in
this work and those in the literature [26–33] are shown in Figure 6b. The diamond content
of composites synthesized by HTHP is about 80–95 vol%, and the binders are mainly Co,
carbides and ceramics. The TRS of diamond-based composites increased with diamond
content. The TRS of PCD prepared by cemented carbide infiltration (commercial products)
is about 1000~1100 MPa. The TRS of Co-PCD prepared in this work is a little higher than
that of commercial products. At the same time, the TRS of Co50Ni40Fe10-PCD prepared in
this work is about 300 MPa higher than that of commercial products.
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3.4. Fracture Morphologies

The fracture morphologies of Co50Ni40Fe10-Comp and Co-Comp are shown in Figure 7.
Due to the poor conductivity of diamond, the morphologies of diamond and metal binder
are improved in the backscattered electron image. Both composites exhibit a brittle trans-
granular fracture manner. The metal binder shows some deformation. It is worth noting
that on the surface where the diamond grains contact the binder, micron-sized small
particles were found. The semi quantitative analyses of EDS show that these particles are
the mixtures of metal elements and C.
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The synthesis process of polycrystalline diamond at HTHP is similar to that of con-
ventional powder metallurgy sintering. The binder has two functions in the sintering
process, one is to “transport” C atoms, and the other to catalyze the formation of sp3

bonds. Therefore, elements in Group VIII can be used as binders, which have both catalytic
capacity and solubility for C. The catalytic ability is considered to be closely related to
the vacancy numbers of d-orbitals. The number of micron-sized particles in Figure 7c,d
reflects the solubility of C in the binder. In the process of high temperature and high
pressure sintering, C atoms migrate by dissolution and precipitate in the binder melt. After
the sintering process, the material cools rapidly. With the decrease in temperature, the
supersaturated C in binder precipitates on the surface of original diamond particles and
nucleates heterogeneously to form new diamonds. There are more pits left by secondary
precipitation diamond particles in the binder of Co50Ni40Fe10-Comp, reflecting a greater
solubility of C in the binder.

Fracture morphologies of Co50Ni40Fe10-PCD and Co-PCD are shown in Figure 8. The
diamond shows cleavage fracture, and the metal binder shows plastic deformation. It
shows that the diamond particles formed a good covalent bond connection. Otherwise,
the fracture form of polycrystalline diamond should be intergranular fracture. The metal
binder and diamond grains are well combined, and there is no crack at the interface. From
the backscattered electron image it can be seen that the distribution of metal binder in
Co50Ni40Fe10-PCD is more uniform and the cluster area is smaller. The bulk modulus of
diamond (443 GPa) is more than twice that of Co, Ni and other metals (about 180–200 GPa).
It means that when under loading, the diamond around the large area of metal binder
cluster will produce greater stress concentration, eventually leading to failure. Therefore,
PCD with less metallic residues and more uniform distribution of metal binder should
have higher mechanical properties.
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3.5. Thermodynamics at HTHP

DSC curve of Co50Ni40Fe10 alloy is shown in Figure 9. It can be seen that the heat
flux curve of the alloy is stable during the heating and cooling process, and there are only
obvious endothermic and exothermic peaks at the melting point. Combined with XRD
analysis, it can be determined that Co50Ni40Fe10 alloy is a homogeneous single-phase FCC
structure from room temperature to melting point. The melting point of the alloy measured
by DSC is 1746.8 K, which is about 21 K lower than that of Co (1768 K). Phase diagram of
Co-C and Co50Ni40Fe10-C at 6 GPa calculated by thermo-calc is shown in Figure 10. The
results show that the eutectic point of Co50Ni40Fe10-C is 1507.7 K, which is lower than that
of Co-C (1519.8 K). The migration rate of atoms in liquid phase sintering is much higher
than that in solid phase sintering. The lower eutectic point indicates that the material
system can approach the liquid phase sintering stage earlier, and the sintering is more
sufficient at the same conditions.
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Sintering process at HTHP can be further determined by phase diagram. In the sinter-
ing stage there are alloy liquid phase and diamond phase in the material system. The C
atoms in the original diamond particles migrate to the junctions of the particles to form
polycrystals driven by the surface energy. The migration of C atoms is carried out by the
dissolution and precipitation in liquid phase. At the cooling stage after sintering, super-
saturated C atoms in the liquid phase precipitate and transform into diamond. When the
temperature drops below the liquidus, the liquid phase of the alloy in the system changes
into a solid phase. With the continuous decrease in the temperature, the supersaturated C
atoms in the solid alloy are precipitated and transformed into diamond particles of micron
size. The calculated results also show that the transition temperature of Co at 6 GPa from
FCC structure to HCP structure is 695.2 K. The Co binder in Co-Comp is HCP structure,
which exists at low temperature (<695 K). While Co in the PCD prepared in this work is FCC
structure, which means that the material retains the phase structure at high temperatures.
This illustrates that the PCD has high thermal conductivity, representing a good covalent
bond connection between diamond grains. On the other hand, FCC structure has more
slip systems than HCP structure, so the plasticity of FCC structured Co is better than that
of HCP structure. Better plasticity of binder is beneficial to coordinate deformation and
reduce stress concentration.
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4. Conclusions

Co50Ni40Fe10 multi-element alloy was used as binder in fabricated diamond-based
composites at HTHP. The microstructures, mechanical properties and thermodynamics of
Co50Ni40Fe10-diamond and Co-diamond composites were investigated. The main findings
are summarized as follows:

(1) Co50Ni40Fe10 multi-element alloy promotes the sintering of diamond powder better
than element Co, because the melting point of Co50Ni40Fe10 alloy is lower than that of Co;

(2) The TRS of Co50Ni40Fe10-Comp is 19.8% higher than Co-Comp, and the TRS of
diamond skeleton of Co50Ni40Fe10-Comp is 37.9% higher than that of Co-Comp, due to the
better ability of Co50Ni40Fe10 alloy to promote the formation of diamond-diamond bonding;

(3) The TRS of Co50Ni40Fe10-PCD prepared by the infiltration-sintering method is up
to 1360.3 MPa, which is 19.2% higher than Co-PCD. This is attributed to the better ability of
Co50Ni40Fe10 alloy to promote diamond sintering by forming diamond-diamond bonding
and the uniform distribution of metal binder in the material.
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