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Abstract: The accurate and rapid estimation of the state of charge (SOC) is important and difficult
in lithium battery management systems. In this paper, an adaptive infinite Kalman filter (AUKF)
was used to estimate the state of charge for a 18650 LiNiMnCoO2/graphite lithium-ion battery, and
its performance was systematically evaluated under large initial errors, wide temperature ranges,
and different drive cycles. In addition, three other Kalman filter algorithms on the predicted SOC
of LIB were compared under different work conditions, and the accuracy and convergence time
of different models were compared. The results showed that the convergence time of the AUKF
algorithms was one order of magnitude smaller than that of the other three methods, and the mean
absolute error was only less than 50% of the other methods. The present work can be used to help
other researchers select an appropriate strategy for the SOC online estimation of lithium-ion cells
under different applicable conditions.

Keywords: lithium battery; state of charge; adaptive; Kalman filter algorithms

1. Introduction

Since the 1990s, lithium batteries have become one of the best choices for current
consumer-grade electric vehicle power batteries due to their good stability and high energy
density. To ensure the safety and reliability of electric vehicles (EVS), the battery man-
agement system (BMS) must provide real-time and accurate information about the usage
status of the on-board power battery pack. The SOC (state of charge) is one of the most
important states tracked in a battery to optimize the performance and extend the lifetime of
batteries, so its estimation is an important task for battery management [1,2]. The accurate
estimation of the SOC involves many nonlinear effects such as open circuit voltage (OCV),
instantaneous current, charge and discharge rate, ambient temperature, battery tempera-
ture, parking time, self-discharge rate, Coulomb efficiency, resistance characteristics, SOC
initial value, depth of discharge (DOD), etc. [3]. These factors are affected by different
materials and processes, and they also interact with each other, so the SOC calculation of
power batteries is complex and difficult, which is a challenge that has not been overcome
for many years [4].

In recent years, ternary lithium-ion batteries have been considered as power batteries
with great application prospects and market competitiveness due to their outstanding
specific capacity, good rate performance, and high working voltage [5]. In order to allow
the ternary lithium-ion battery to perform better, it is necessary to use appropriate methods
to evaluate its SOC. The estimation methods of the SOC are mainly divided into the
following categories [6]. (1) The ampere-hour integration method [7], which obtains the
battery SOC by integrating the current during the charge and discharge processes in the
dimension of time. This method is simple, but it is sensitive to the initial SOC value and
is prone to error accumulation. (2) The open-circuit voltage (OCV) method [8], which
establishes the relationship between the OCV and SOC based on the off-line open-circuit
voltage test [9]. The advantage of this method is its high estimation accuracy, which requires
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a long standing time to eliminate the influence of the polarization voltage. Therefore, the
OVC method is suitable for battery SOC estimation under static equilibrium conditions, [10]
but it is difficult to use for online SOC estimation. (3) The machine learning method [11]
includes fuzzy logic [12], support vector machines [13], neural networks, [14], and a genetic
algorithm [15]. The use of machine learning methods to estimate SOC is worthwhile, but
its interpretation is poor, and it usually requires large-scale tests and high experimental
costs. (4) The model-based method [16] such as the Kalman filter (KF) [17], particle filter
(PF) [18], H-infinity filter [19], and nonlinear observer [20]. Among them, the Kalman filter
method is an online algorithm with closed-loop feedback, which has the characteristics of a
small calculation amount and easy realization. Its accuracy is greatly improved compared
with the ampere-hour method and voltage method, and the calculation cost and time are
much lower than that of the machine learning method. Therefore, the Kalman filtering
method is more popular than the other three methods and more appropriate for battery
management in real-time and BEVS/HEVS control [21]. Therefore, the Kalman filtering
method was used to estimate the SOC of ternary lithium-ion batteries in this paper.

Kalman filtering (KF) is an algorithm that uses the linear system state equation to
estimate the optimal state of the system of which the inputs are the current and temperature
of the cell, and the output is the terminal voltage. For the traditional Kalman filter algorithm,
there are usually some problems in the SOC index such as offset, drift, and long-term state
divergence, etc. Hence, an extended Kalman filter (EKF) is proposed to counter these
problems [22]. The EKF uses the first-order partial derivative of the nonlinear function
Taylor expansion (ignoring higher-order terms) to linearize the nonlinear system model
to use the KF algorithm for filter estimation [23]. Therefore, if the assumption of local
linearity is violated, linearization would cause the filter to be highly unstable. In order
to improve the shortcoming of this method, an unscented Kalman filter (UKF) is used to
estimate the SOC [24]. Unlike the EKF, the UKF designs a small number of σ points, and
calculates the propagation of the first- and second-order statistical characteristics of random
vectors by propagating the σ points through the nonlinear functions [25]. Therefore, it
can better approximate the nonlinear characteristics of the state equation than the EKF,
and thus has higher estimation accuracy than the EKF [26]. However, in the EKF and the
UKF, the process noise covariance and measurement noise covariance are set to constant
values, which are usually determined in advance by the trial and error method. The
disadvantage of these two algorithms is that the trial and error time is too long and error-
prone [27]. To solve this problem, an adaptive extended Kalman filter (AEKF) [28] and
adaptive unscented Kalman filter (AUKF) [29,30] were proposed to update the process
noise covariance and the measurement noise covariance in an adaptive manner to improve
the SOC estimation accuracy.

As a suitable SOC estimation method, it not only requires high precision, a fast
response, and low computing cost, but can also adapt to different practical application
environments. Recently, some new Kalman filtering algorithms have been proposed such
as an adaptive dual Kalman filter (ADKF) [31–33], a dual extended Kalman filter algorithm
(DEKF) [34], a dual unscented Kalman filter algorithm (DUKF) [35], and a multiscale
parameter adaptive dual Kalman filter algorithm [36]. The proposed dual-filter algorithms
provide a new research method for lithium-ion battery SOC estimation, but they cannot
significantly improve the accuracy; the calculation time is also significantly increased, so it
is difficult for it to be used for online SOC estimation. Shrivastava [37] et al. proposed a
dual forgetting factor-based adaptive extended Kalman filter to solving the shortcomings of
the battery model parameter deviation from the true value affecting the estimation accuracy
in the dual Kalman filter algorithm. Then, they estimated the battery parameters and SOC
using the multi-time scale DEKF to improve the computational efficiency [38]. Xing and
Wu [39] presented an improved adaptive unscented Kalman filter that could improve the
SOC estimation stability and improve the SOC estimation accuracy by estimating and
correcting the system noise statistics adaptively. Aside from Kalman filter algorithms,
other methods have also been proposed. Wen [40] et al. provided a multi-state control
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strategy that could effectively manage the SOC while improving the system frequency
stability. A dual-input neural network combining gated recurring unit (GRU) layers and
fully connected layers (acronymized as a DIGF network) was developed by taking both
the time-series voltage and current measurements and the battery’s SOH as inputs [41].
The present works in the literature have focused more on the accuracy and speed of the
algorithms, with less emphasis on the usage environment, which has important effects for
successful estimation.

In this paper, considering the actual working environments of an electric vehicle,
response speed, and calculation cost, the AUKF was used to estimate their SOC under
large initial errors, wide temperature ranges, and different drive cycles. The results were
compared with the EKF, UKF, and AEKF to provide a suitable SOC algorithm for designers.

2. Establishment of Battery Model
2.1. Subjects

The single battery selected in this paper was a 18,650 LiNiMnCoO2, graphite lithium-
ion cell, and its main parameters are shown in Table 1.

Table 1. Basic specifications of the test samples.

Types Positive and
Negative

Rated
Voltage

Rated
Capacity

Up/Down Cutoff
Voltage

Maximum
Current

18,650 LiNiMnCoO2/
Graphite 3.6 V 2.0 Ah 2.5 V/4.2 V 22 A (25 Celsius)

2.2. Model Structure

An accurate estimation of the SOC of a battery is strongly dependent on the appropri-
ate battery model. There are three types of commonly used battery models: electrochemical
models, black-box models, and equivalent circuit models (ECMs) [42]. Among these mod-
els, the ECMs can be analyzed and expressed by a mathematical model, which has a clear
physical meaning, in addition to a simple and flexible intuitive structure. The main ad-
vantage lies in the convenience of online calculation and computer simulation analysis.
Therefore, an equivalent circuit model was used in this paper.

The ECMs use traditional circuit elements such as resistance, capacitance, and a
constant voltage source to describe the external characteristics of power batteries, which is
convenient for battery characteristic analysis and model parameter identification [43]. The
higher the equivalent circuit order, the better the data fitting effect and the more complex
the model. According to the trade-off between the structural complexity and the model
prediction accuracy, a second-order model was selected, as shown in Figure 1.
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Uocv is equal to the open circuit voltage (OCV) of the battery which is related to the
SOC; R0 represents the contact resistance between the active material, the current collector,
the lead electrode, and the active material/current collector. The dynamic characteristics of
the power battery are described by the polarization resistance, Rpi, and the polarization
capacitance, Cpi, including the polarization characteristics and the diffusion effect, where
i = 1, 2; I is the charge and discharge current, of which the charge is negative, and the
discharge is positive; and U0 is the terminal voltage of the battery.

In the second-order RC battery model shown in Figure 1, the voltages V1 and V2
at both ends of the capacitors Cp1 and Cp2 and the SOC are the state variables; I is the
input variable; and U0 is the output variable. Combined with the ampere-hour integration
method [44], the discredited state space model shown in Equation (1) can be obtained.
Based on this model, the AUKF was used to estimate the battery SOC. V1(k+1)

V2(k+1)
SOC(k + 1)

 =

RP1(1− exp(− ∆t
RP1CP1

))

RP2(1− exp(− ∆t
RP2CP2

))

− η∆t
CN

I(k) +

exp(− ∆t
RP1CP1

) 0 0
0 exp(− ∆t

RP2CP2
) 0

0 0 1


 V1(k)

V2(k)
SOC(k)

 (1)

where ∆t is the sampling interval, taken as ∆t = 1 s; V1(k), V2(k), and SOC(k) refer to the
voltage across the capacitors Cp1, Cp2, and SOC at k sampling time; V1(k+1), V2(k+1), and
SOC(k+1) refer to the voltage across the capacitors, Cp1 and Cp2, and the SOC at k + 1
sampling time; η is the Coulomb efficiency; CN is the total capacity of the battery; and Uocv
is the open circuit voltage of the battery, which is a function of the SOC.

2.3. Introduction of Experimental Platform

The experimental platform is shown in Figure 2, which was used to obtain the terminal
voltage and current of the battery. The PC sends commands to an Arbin BT2000 battery
test system to simulate the battery working conditions as well as to charge or discharge the
battery. The battery test system transmits the collected voltage and current data to the PC
in real-time.
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2.4. Measurement of the Relationship Curve between OCV and SOC

Obtaining the OCV of the battery is critical because it can be used for resistance-
capacitance parameter identification and the SOC estimation. The OCV is a single-valued
function of the SOC; therefore, the corresponding OCV can be obtained through the rela-
tionship curve between the OCV and SOC. The low-current OCV test and the incremental
the OCV test are two common methods for observing the OCV–SOC relationship, while
the latter has high tracking accuracy and anti-interference ability [45]; therefore, this paper
used the latter to obtain the relationship curve between the OCV and SOC.

The incremental OCV test is shown in Figure 3. First, the cell was discharged until its
SOC became 0%. Then, the cell was charged by using a positive pulse current (i.e., C/20)
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with a width corresponding to a certain amount of charge (i.e., 10% SOC). In the relaxation
period, the SOC was allowed to stand for 2 h to eliminate the polarization effects inside
the cell. When the terminal voltage rose to the upper cutoff voltage, it entered into the
constant voltage charging stage. In this stage, when the charging current dropped below
C/20, the charging was completed. Finally, an averaging step and a linear interpolation
step were applied to obtain the OCV–SOC curve. The OCV–SOC curve obtained by the
linear interpolation method is shown in Figure 4. The curve was fitted into a fifth-order
OCV–SOC function using MATLAB, and its OCV–SOC equation is:

f (x) = 17.31x5 − 50.64x4 + 55.47x3 − 27.15x2 + 6.16x + 3.029 (2)
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2.5. Identification of the Resistance-Capacitance Parameters of the Battery Model
2.5.1. Model Parameter Identification Test

In this paper, the first half of the data of the dynamic stress test (DST) was used to
identify the model parameters on the test samples. The DST was specified in the USABC
(American Advanced Battery Association) test programs as collecting data, simulating the
dynamic discharge state, and can be reduced to the utmost required quantity according
to the specified performance of the test sample. Figure 5a shows the current section of
the DST. Although the DST consists of sorts of current steps with different amplitudes
and lengths, and takes into account regenerative charging, it is still a simplification from
the actual loading conditions of the battery. Thus, the DST was performed on the test
battery to determine the model parameters in this study. In order to evaluate the SOC
estimation results (such as the accuracy and robustness), not only the DST, but a more
complex dynamic current profile, the federal urban driving schedule (FUDS), was used.
Similar to the DST, the current sequence of the FUDS was also transmitted from the time-
speed profile of industry standard vehicles. The corresponding current profile is shown in
Figure 5b.
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2.5.2. Model Parameter Identification Method

The exponential fitting method is used to fit the response curve of the battery terminal
voltage to the pulse current, and then the parameters in the battery model can be obtained.
The equation of discharge current and output voltage in the circuit model shown in Figure 1
can be expressed as:

U0 = UOCV − IR0 − IRp1

(
1− exp

(
− t

Rp1Cp1

))
− IRp2

(
1− exp

(
− t

Rp2Cp2

))
(3)

The MATLAB exponential fitting expression used was:

U = c0 + c1 exp(−λ1t) + c2 exp(−λ2t) (4)

where c0, c1, and c2 are constants. Comparing Equations (3) and (4), we obtain:

Rp1 = c1
I , Rp2 = c2

I ;
Cp1 = 1

λ1Rp1
, Cp2 = 1

λ2Rp2
;

R0 = (UOCV − c0 − c1 − c2)/I
(5)

Since the OCV changes little with the SOC in the platform voltage region, resulting in
a large error, the following method can be used to obtain R0:

For Equation (3), lim
t→0

(1 − exp(− τ
RP1CP1

)) = 0, and lim
t→0

(1 − exp(− τ
RP2CP2

)) = 0;

therefore, when t approaches 0, Equation (3) can be simplified to
U = UOCV− IR0, dU = (UOCV −U)|instant = IR. Applying it to the actual circuit as shown
in Figure 1, the following equation is obtained:

R0 =
U1 −U2

I
(6)

where U2 and U1 are the cell terminal voltages of two consecutive sampling points before
and after the current suddenly drops to zero (the data used were from 2000 to 2200 corre-
sponding to the abscissa of Figure 5a). Using this method, the terminal voltage response
curve when the current suddenly reaches 0 can be obtained, as shown in Figure 6.
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Figure 6. Terminal voltage response curve when the current suddenly reaches 0.

Referring to the “Freedom CAR Battery Experiment Manual”, without considering
the charging situation, the model parameters as shown in Table 2 were obtained by using
Equations (3)–(6) via the discharge method.

Table 2. The battery model parameters.

R0 (Ω) Rp1 (Ω) Cp1 (F) Rp2 (Ω) Cp2 (F)

0.07898 0.009617 455.2766 0.012407 5573.927

3. AUKF Algorithm for SOC Estimation

For the Kalman filter algorithms, it must be assumed that the noise is Gaussian white
noise. However, the statistical characteristics of noise in the actual BMS during data
acquisition are unknown. Adopting the adaptive Kalman filter method, the state variables
can be dynamically estimated from the measurement data, and the statistical characteristics
of noise can be continuously estimated and corrected, so the SOC of the battery can be
accurately estimated. The estimation process of the SOC using the AUKF is shown in
Figure 7.
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Figure 7. Flowchart of the adaptive unscented Kalman filter algorithm.
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The AUKF algorithm for SOC estimation mainly includes four steps, as shown below.

3.1. Algorithm Initialization

Initial state estimation:

X0 =

[
0 0

∧
S0

]T

where
∧

S0 is the initial SOC value;
Initial posterior error covariance: P0;
Initial process noise covariance: Q0;
Initial measurement noise covariance: V0;
Window size for covariance matching: L.

3.2. Prediction
3.2.1. Sigma Points (UT Transform) Are Generated at the k−1 Moment

Sigma data point sequence is constructed by using a series of sampling points. The
sigma point generated at k−1 step can be expressed as:

→
X
(0)

k−1 =
∧
Xk−1 (7)

→
X
(i)

k−1 =
∧
Xk−1 +

√
(N + λ)Pk−1 i = 1, 2, · · ·N (8)

→
X
(i)

k−1 =
∧
Xk−1 −

√
(N + λ)Pk−1 i = N + 1, · · · 2N (9)

where λ = 3α2− 1 is a scale parameter, which can be adjusted to improve the approximation
accuracy; α is the scaling coefficient, which determines the distribution of sigma points
and is generally set to a very small positive value; and N is the dimension of the extended
state variable.

3.2.2. Time Update

Update the sample point:

X(i)
k|k−1 = f (

→
Xk−1) + Qk−1(i = 0, ..., 2N) (10)

The prior estimation is obtained:

∧
Xk|k−1 =

2N

∑
i=0

W(i)
m X(i)

k|k−1 (11)

where x̂K|K−1 is the predicted value of the sigma points at the k|k−1 moment and W(i)
m is

the weight used to calculate the mean value, which is determined by the following formula:

W(0)
m =

λ

λ + N
(12)

W(i)
m =

1
2(λ + N)

(i = 1, 2, · · · 2N) (13)

The prior error covariance of the system state is obtained:

Pk|k−1 =
2N

∑
i=0

W(i)
c (X(i)

k|k−1 −
∧
Xk|k−1)(X(i)

k|k−1 −
∧
Xk|k−1)

T
+ Qk−1 (14)
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where W(i)
c is the weight used to calculate the covariance, which is determined by the

following formula:

W(0)
c =

λ

λ + N
+ (1− α2 + β) (15)

W(i)
c =

1
2(λ + N)

(i = 1, 2, · · · 2N) (16)

where the constant β is generally determined by experience, and for the Gaussian distribu-
tion, it is generally taken as β = 2.

3.3. Survey Update
3.3.1. Generating Sigma Points at the k|k−1 Moment

The sigma point generated at k|k−1 step can be expressed as:

→
X
(0)

k|k−1 =
∧
Xk|k−1 (17)

→
X
(i)

k|k−1 =
∧
Xk|k−1 +

√
(N + λ)Pk|k−1 i = 1, 2, · · ·N (18)

→
X
(i)

k|k−1 =
∧
Xk|k−1 −

√
(N + λ)Pk|k−1 i = N + 1, · · · 2N (19)

3.3.2. Calculating the Predicted Output Voltage and Covariance

The predicted output voltage for the sigma points at k|k−1 step U(i)
K|K−1

is calculated by:

U(i)
k|k−1 = K0

→
S
(i)

k|k−1

5

+ K1
→
S
(i)

k|k−1

4

+ K2
→
S
(i)

k|k−1

3

+ K3
→
S
(i)

k|k−1

2

+K4
→
S
(i)

k|k−1 + K5 −V1 −V2 − RI(i = 0.1, · · · , 2N)

(20)

Ûk|k−1 =
2N

∑
i=0

W(i)
m U(i)

k|k−1 (21)

The predicted output voltage covariance at the k|k−1 moment Dk can be expressed as:

Dk =
2N

∑
i=0

W(i)
c (U(i)

k|k−1 − Ûk|k−1)(U
(i)
k|k−1 − Ûk|k−1)

T
+ Vk−1 (22)

3.3.3. Modifying System State Estimation

The cross-covariance of the state variables and output variables at the k|k−1 moment
is calculated by:

Ek =
2N

∑
i=0

W(i)
c (
→
X
(i)

k|k−1 −
∧
Xk|k−1)(U

(i)
k|k−1 − Ûk|k−1)

T
(23)

where Uk is the measurement of the battery voltage at the k moment.
The Kalman gain Gk is calculated by:

Gk = EkD−1
k (24)

State estimation correction:

∧
Xk =

∧
Xk|k−1 + Gk(Uk − Ûk|k−1) (25)
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State covariance correction:

Pk = Pk|k−1 − GkDkGk
T (26)

3.4. Adjustment of Q and V

In this brief, the adaptive estimation of the process noise covariance Q and measure-
ment noise covariance V on the basis of the voltage residual of the battery model and the
covariance of the voltage residual were considered. Therefore, Q and V were estimated
and updated iteratively from the following

µk = Uk −
[

K0Ŝk
5 + K1Ŝk

4 + K2Ŝk
3 + K3Ŝk

2

+K4Ŝk + K5 −V1 −V2 − RI

]
(27)

Fk ≈
∑k

n=k−L+1 µnµn
T

L
(28)

Vk = Fk +
2N

∑
i=0

W(i)
c (U(i)

k|k−1 −Uk + µk)
(

U(i)
k|k−1 −Uk + µk

)T
(29)

Qk = GkFkGk
T (30)

where µk is the voltage residual of the battery model at the k moment, and Fk is the
approximation to the covariance of the voltage residual at the k moment.

Through the iteration of the above steps 2~4, the AUKF is established. The accu-
racy of the SOC estimation is improved by adaptive adjustment of the process noise and
measurement noise.

4. Experimental Results and Analysis
4.1. Simulation with Different Initial Errors

In this paper, a FUDS cycle was used to test the samples, the temperature was set
to 25 ◦C, and the initial SOC value of the experiment was arbitrarily set to 50%. For
verification and comparison, the initial SOC value, S0, in the simulation was set to 80% and
20%, respectively (the initial error is ±30%). The estimation results based on the AUKF
are shown in Figures 8 and 9 in which the reference value of the SOC is calculated by
the ampere-hour method. The results show that the AUKF can quickly compensate for
the initial SOC error and accurately track the experimental SOC values under different
initial values. After correcting the initial error, the difference between the two results was
almost indistinguishable. Figures 8b and 9b show that the estimation error was large in
the early stage due to inaccurate initial values, but after a certain convergence time, the
estimation error was stable, within 2%. In order to evaluate and compare the performance
of the algorithm from the two aspects of estimation accuracy and robustness, the mean
absolute error (MAE) and convergence rate were used in this paper. The MAE of SOC can
be calculated by using the following formula:

MAE =
1
n

n

∑
k=1

∣∣∣∣Sk −
∧
Sk

∣∣∣∣ (31)

where Sk is the experimental SOC at time k. The convergence rate is the corresponding time
when the error converges below 2%
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Figure 8. Estimation results by the AUKF at an initial SOC value of 80%. (a) SOC estimation
comparison curve; (b) SOC estimation error.
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Figure 9. Estimation results by the AUKF at an initial SOC value of 20%. (a) SOC estimation
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Table 3 shows the MAE and convergence rate under two different SOC initial values.
The AUKF corrects the SOC prediction via the real-time online prediction and estimation
of noise, quickly adjusts the influence of inaccurate initial values, and causes its estimated
value to converge to the actual SOC; therefore, it has good robustness.

Table 3. MAE and convergence rate at 25 ◦C.

Initial Value MAE Convergence Rate (s)

80% 0.0054 49
20% 0.0071 48
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4.2. Simulation at Different Temperatures

In order to evaluate the performance of the AUKF at different temperatures,
Figures 10 and 11 show the estimation results and errors when the temperature is 0 ◦C and
the initial value error is ±10%, respectively. Compared with the results at 25 ◦C, the initial
errors can also be compensated for quickly, but the differences between the stable value
and the actual SOC were relatively larger than those at 25 ◦C. The MAE was 0.0132 and
0.0136, respectively, as shown in Table 4. This indicates that the AUKF exhibited excellent
performance at low temperature.
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Table 4. MAE and convergence rate at 0 ◦C.

Initial Value MAE

40% 0.0132
60% 0.0136

Figures 12 and 13 are the estimation results and errors when the temperature was
45 ◦C and the initial value error was also ±10%, respectively. We can see that the initial
errors can be compensated for quickly, and both of the MAE were 0.0091, as shown in
Table 5. This result further shows that the AUKF has good temperature characteristics.
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Table 5. MAE and convergence rate at 45 ◦C.

Initial Value MAE

40% 0.0091
60% 0.0091

4.3. Simulation Comparison of Different Algorithms

In order to further evaluate the performance of the AUKF, it was compared with the
AEKF, EKF, and UKF algorithms in this paper. In the AEKF, the adaptive adjustment was
realized via the covariance matching of residual voltage. The EKF and UKF use constant
value of Qk and Vk to estimate the SOC, and also use the trial and error method to determine
the parameters. Figures 14 and 15 show the estimation results and errors based on the four
different Kalman filtering algorithms at an initial SOC of 80% and 20% under the FUDS
cycle, respectively. In order to make the results more readable, the statistical table of the
MAE and convergence time is shown in Table 6. Compared with the three other algorithms,
the MAE value of the AUKF algorithm could be reduced by about one order of magnitude,
and the convergence speed could be increased by an order of magnitude; therefore, it could
estimate the SOC more quickly and accurately. Meanwhile, it could also be seen that the
accuracy of the AUKF and AEKF was higher than that of the EKF and UKF. The results
show that adaptive adjustment of the covariance difference between the process noise and
the measurement noise can improve the estimation accuracy of the SOC. In addition, the
UKF had better performance compared with the EKF. The comprehensive performance
ranking of the four calculation methods was AUKF > AEKF > UKF > EKF.
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Table 6. Comparison results of the four calculation methods via the FUDS.

Algorithm Initial Value MAE Convergence Time

EKF 80% 0.0134 489
EKF 20% 0.0212 725
UKF 80% 0.0075 55
UKF 20% 0.0081 140

AEKF 80% 0.0101 303
AEKF 20% 0.0123 169
AUKF 80% 0.0054 49
AUKF 20% 0.0071 48

To further compare the performance of the four Kalman filter algorithms, the above
four algorithms were applied to a DST cycle. Figures 16 and 17 show the estimation results
and errors based on different Kalman filtering algorithms with an initial SOC of 80% and
20%, respectively. Table 7 is the statistical table of the MAE and convergence time. From the
results, one can see that the AUKF had the fastest convergence speed and the smallest MAE,
which further confirms the superiority of AUKF. In addition, we also found that the EKF
had the worst performance, while the UKF and AEKF had their own advantages. The UKF
needed less calculation time but a larger mean absolute error, while the AEKF showed the
opposite. This is different from the above result of the FUDS cycle. Nevertheless, the results
further show that the idea of adaptive adjustment and nonlinear functions can improve
computational accuracy.
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Table 7. Comparison results of the four calculation methods via the DST.

Algorithm Initial Value MAE Convergence Time

EKF 80% 0.0183 519
EKF 20% 0.0282 603
UKF 80% 0.0124 103
UKF 20% 0.0130 110

AEKF 80% 0.0151 167
AEKF 20% 0.0186 240
AUKF 80% 0.0056 36
AUKF 20% 0.0065 45

5. Conclusions

In this paper, the AUKF was used to estimate the SOC of lithium-ion cells online, and
its performance was evaluated systematically under large initial errors, wide temperature
ranges, and different drive cycles. The results show that the estimation error was stable
within 2%, and that the convergence speed was less than 50 s, which illustrates the excellent
performance of the AUKF. Moreover, compared with the AEKF, EKF, and UKF, the AUKF
was one order of magnitude smaller than that of the other three methods under the same
initial value, and its mean absolute error was only 50% of that of the other methods. This
is mainly because the AUKF not only has the advantage that UKF is better than EKF, but
also extends the idea of covariance matching based on an output voltage residual sequence
model to the UKF to realize adaptive regulation. In the process of the SOC estimation, the
current SOC was continuously modified according to the mean and variance estimation
results of each step of noise, which can correct the initial value error. Therefore, the AUKF
had a better accuracy and a faster convergence speed than the other three algorithms, and
can estimate the battery SOC more accurately and quickly.

Considering the identification accuracy and calculation time, this paper adopted the
off-line exponential fitting method to identify the model parameters. If the identification
accuracy needs to be further improved, the online identification method can be used to
identify the battery model parameters in future work.
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