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Abstract: This paper will provide a brief overview of the unique multiferroic material Bismuth ferrite
(BFO). Considering that Bismuth ferrite is a unique material which possesses both ferroelectric and
magnetic properties at room temperature, the uniqueness of Bismuth ferrite material will be discussed.
Fundamental properties of the material including electrical and ferromagnetic properties also will be
mentioned in this paper. Electrical properties include characterization of basic parameters considering
the electrical resistivity and leakage current. Ferromagnetic properties involve the description of
magnetic hysteresis characterization. Bismuth ferrite can be fabricated in a different form. The
common forms will be mentioned and include powder, thin films and nanostructures. The most
popular method of producing thin films based on BFO materials will be described and compared.
Finally, the perspectives and potential applications of the material will be highlighted.

Keywords: Bismuth ferrite; multiferroic; thin film; ferroelectric; magnetic; PDL; ALD; leakage
current; hysteresis

1. Introduction

The current trends require more minimalistic technologies and higher energy efficiency
which leads to an increasing interest of developing new types of materials. Recent trends
of material science require invention of new materials which would effectively combine
multiple properties together with temperature and chemical stability. New and popular
trends of designing modern devices involve control of both magnetic and electrical parts,
thus creating multifunctional devices with a combination of ferroelectric and ferromagnetic
effects. This combination offers perspective opportunities of designing new and complex
microelectronic systems. The materials, which combine both ferroelectric and magnetic
properties, are extremely rare and vital for solving a wide variety of problems and are
implemented in many applications.

Multiferroic materials stand out, since their electrical and magnetic properties can
be changed by the electromagnetic field. Multiferroic materials aim to solve the problem
related to creating more energy–efficient microelectronics and applications with faster
speed reaction, telecommunication, etc.

The actual definition of the word multiferroic stands for combination of ferroelectric
and ferromagnetic effect of a material. The current definition of multiferroic also includes
the antiferroelectric effect. Nowadays, multiferroic materials draw a lot of attention as they
can be implemented in a wide variety of new devices and detectors. Since multiferroic
materials exhibit ferroelectric and magnetic properties, they became an essential part of
many nanostructures. These materials also require less power than conventional systems
to operate.

A unique advantage of single phase multiferroic based thin film materials is the
fact that they suggest appealing and prosperous ways of creating new materials with a
unique combination of different substrates which emphasize the advantages of individual
materials. Single phase multiferroic materials which exhibit strong magnetic coupling are
rare. Therefore, bismuth ferrite is the only intensively studied material.
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BFO is a multiferroic material with great potential. BFO is an outstanding material
which possesses ferroelectric and magnetic properties simultaneously. The material has a
significant advantage in terms of photovoltaic devices due to a narrow bandgap, suppres-
sion of recombination of electron–hole pair and wide absorption range. Manipulation of
electromagnetic coupling by electric or magnetic field makes BFO-based materials potential
candidates for spintronic applications.

Thin films of BFO material were and still are very popular for the development of
modern nanomaterials. Thin films allow numerous modifications of morphology and thick-
nesses of the final product. In comparison to BFO ceramics, thin films can be produced in a
relatively low range of operational temperatures, which enhance the overall performance
of the final film. BFO–based thin films were widely used in ferroelectric memory storage
devices due to high remanent polarization. In addition to memory devices, thin films play
an important role in miniature antennas and microwave MEMS devices.

Over the past decade, BFO has been intensively used in BFO–based ceramics due to its
high temperature resistance and the coexistence of para–ferro electric phases. In addition
to the morphotropic phase boundary, the perovskite chemical structure of BFO material
allows implementation of impurities, thus enhancing electromagnetic coupling. Another
considerable advantage of BFO material is manipulation with its ferrotoroidic system by
the electric/magnetic field. These properties combine with the high conductivity of BFO
and make it a promising material for the development of BFO–based ceramics.

Although an outstanding material with unique properties among other materials,
there are still challenges that need to be addressed in the near future. It is necessary to find
potential solutions to decrease high parasitic current and increase relatively low electro-
magnetic coupling for implementation into large-scale devices. The physical mechanism of
photovoltaic response is still unknown and requires further and deeper investigation.

2. Characterization of Bismuth Ferrite Material

BFO material is one of a few multiferroic materials which shows a simultaneous
ferroelectric and ferromagnetic effect [1]. The material was intensively studied over the
past decade because of BFO versatile multifunctionality. It was proven that BFO is the
only material which has the strongest electromagnetic coupling at room temperature range
among all potential materials making it an excellent candidate [2] for ferroelectric sensors.

Considering all multiferroic materials, thin films based on BFO have been successfully
used for microelectronic and optoelectronic devices due to low band gap. The principal
of ferroelectricity at room temperature is based on a lone–pair mechanism, where valence
electrons of Bi+3 create a localized magnetic dipole and are involved in SP–hybridization [3].
The local magnetic dipole leads to the creation of spontaneous (remnant Pr [3]) polarization
around 90–100 (µCcm−2) [4,5] which is a main reason BFO is an exceptional multifer-
roic material.

Magnetoelectric materials belong to multiferroic materials with a correlation of mag-
netic and ferroelectric properties. Magnetic properties (magnetization) and electric prop-
erties (polarization) can be controlled by the electric and magnetic field. The material is
synthesized into single and multi–phase molecules.

BFO is popular not only due to its thermal stability but also due to its high range of
polarization (~90–100 µCcm−2) [4,5].

2.1. Structural Characterization of BFO Material

The most common crystallization form of Bismuth ferrite material is a crystallographic
structure represented by a symmetric rhombohedral (Figure 1) [2,3,6] centrally orientated
perovskite [6] structure where parameters a, b are lattice parameters and c is a hexago-
nal parameter. The typical ferromagnetic perovskite parameters of BFO material stand
within a = b = (5.7–6.7) Å [7,8] and hexagonal c = (13–14) Å [5,9]. The angle α is around
60 degrees [10]. The space group orientation is R3c. The parameters of the cubic rhombohe-
dral structure are a = b = c ~4 Å and angle α stays roughly under 90 degrees.
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Figure 1. Rhombohedral crystallographic structure.

R3c space orientation stands for rhombohedral symmetry group, where the direction
of one symmetry is c, and the other direction of symmetry being perpendicular to c.
Rhombohedral order is represented by two symmetry directions, which are c and b. The
coordinate system for the rhombohedral group corresponds to [9] with lattice parameters
a = b = c and α 6= 90◦.

The typical Perovskite structure (Figure 2) includes an FeO unit which is inserted
into the Bi cubic rhombohedral crystal structure. Oxygen anions and Fe cations create
octahedral orientation closed by Bi ions.
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One of the most significant disadvantages which limits usability of BFO [6] is high
parasitic current (low electrical resistance). High parasitic current accrues in the BFO
composite due to defects related to the secondary phase of BFO such as absence of Bi or
oxygen atoms during the preparation process. There are many reasons which cause high
parasitic current; however, the primary cause is a high amount of impurities during the
deposition process, and the chemistry of the BFO unit. One potential defect is related to
the evaporation of bismuth during the preparation process, thus changing the chemical
valence of Fe+2 to Fe+3 [11,12] ions due to the evaporated Bi+2 [11,12] cations and oxygen
vacancies. Uncompensated vacancies lead to a distribution of spin moment of the entire
cell unit.

The absence of oxygen anions to compensate the charge of lower chemical valency
of Fe+2 causes a significant decrease of electrical resistance, and thus an increasing leak-
age current.

The parasitic current becomes more prominent in multi–phase composites (Bi2Fe4O9,
BiFeO3 etc.), thus it is becoming more popular to find methods to reduce parasitic current.
To lower the leakage current, the structure of the composite has to be changed by adding a
small amount of impurities [13]. Some papers prove a significant decrease in leakage current
by implementing rare–earth materials [6] such as titanium, chromium and manganese. The
leakage current [14,15] causes a huge limitation of implementation of BFO material into
complex sensor devices.
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2.2. Magnetic Properties of BFO Material

The crystallographic structure of BFO [14] is represented by a rhombohedral centrally
orientated perovskite structure [15]. Oxygen anions create an octahedral formation in the
crystal, thanks to these bands the system showing a nonzero [8] ferromagnetic response.
Ferroelectric properties of the material are highly dependent on these oxygen bands [4,7].
Bismuth atoms create a cubic rhombohedral structure next to octahedral units of FeO,
which is located inside of rhombohedral structure. Spin interaction of bismuth atoms and
the resulted spin moment of the octahedral FeO unit leads to the formation of ferroelectric
response. Spin moment of the Bi+3 electron pair (6s2) [16] shares an electron pair with
residual moment of Fe+3 caused by a weak magnetic response [16]—G–type magnetization
order (Figure 3).

Materials 2022, 14, x FOR PEER REVIEW 4 of 28 
 

 

To lower the leakage current, the structure of the composite has to be changed by adding 

a small amount of impurities [13]. Some papers prove a significant decrease in leakage 

current by implementing rare–earth materials [6] such as titanium, chromium and man-

ganese. The leakage current [14,15] causes a huge limitation of implementation of BFO 

material into complex sensor devices. 

2.2. Magnetic Properties of BFO Material 

The crystallographic structure of BFO [14] is represented by a rhombohedral cen-

trally orientated perovskite structure [15]. Oxygen anions create an octahedral formation 

in the crystal, thanks to these bands the system showing a nonzero [8] ferromagnetic re-

sponse. Ferroelectric properties of the material are highly dependent on these oxygen 

bands [4,7]. Bismuth atoms create a cubic rhombohedral structure next to octahedral units 

of FeO, which is located inside of rhombohedral structure. Spin interaction of bismuth 

atoms and the resulted spin moment of the octahedral FeO unit leads to the formation of 

ferroelectric response. Spin moment of the Bi+3 electron pair (6s2) [16] shares an electron 

pair with residual moment of Fe+3 caused by a weak magnetic response [16]—G–type mag-

netization order (Figure 3).  

 

Figure 3. G–type magnetization order. 

Magnetization order characterizes the orientation of magnetic couples and angular 

moment of atoms. In G–type magnetization order, all nearest magnetic dipoles are ori-

ented antiparallelly (Figure 3), causing antimagnetic distribution. Recent studies show 

that magnetic properties of the rhombohedral structure of BFO are size-dependent (Figure 

4) [5,6]. It was proven that the ferroelectric could be greatly enhanced by changing the size 

of BFO [14] particles. As BFO crystals are smaller, the magnetic response is stronger due 

to a closer and stronger interaction of magnetic dipoles [5]. Ferroelectric response is 

stronger when the size of particles is smaller due to the lower interaction of Bi and Fe spin 

moments, resulting in overall enhanced ferroelectric response. Critical thickness, in which 

the antiferromagnetic response dominates over ferroelectric response, starts around 150 

nm [17].  

 

Figure 4. Hysteresis loop of various particle sizes of BFO material. 

Figure 3. G–type magnetization order.

Magnetization order characterizes the orientation of magnetic couples and angular
moment of atoms. In G–type magnetization order, all nearest magnetic dipoles are oriented
antiparallelly (Figure 3), causing antimagnetic distribution. Recent studies show that mag-
netic properties of the rhombohedral structure of BFO are size-dependent (Figure 4) [5,6]. It
was proven that the ferroelectric could be greatly enhanced by changing the size of BFO [14]
particles. As BFO crystals are smaller, the magnetic response is stronger due to a closer and
stronger interaction of magnetic dipoles [5]. Ferroelectric response is stronger when the size
of particles is smaller due to the lower interaction of Bi and Fe spin moments, resulting in
overall enhanced ferroelectric response. Critical thickness, in which the antiferromagnetic
response dominates over ferroelectric response, starts around 150 nm [17].
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The overall magnetic spin moment of the rhombohedral structure is perpendicu-
lar [7] to its central axis which leads to the existence of small magnetization ability. The
magnification is affected by oxygen bands in the same way as ferroelectric properties.

It is necessary to mention that ferromagnetic properties start to occur by the over-
all suppression of cycloid magnetic moment [18], otherwise ferroelectric and magnetic
properties are subdued. The cycloid moment can be broken under certain conditions: by
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implementing the magnetic field, magnetization, chemical additives, and strain into thin
films or heterostructures the cycloid moment is suppressed, allowing ferroelectric and
magnetic properties to occur [18].

The existence of cycloid spin moment [18] is given by flexomagnetoelectric interaction.
Considering flexomagnetoelectric [18] interaction, the electric polarization is offset by
spin modulation. It was shown that magnetic properties become negligible if the size of
nanoparticles is greater than 65 nanometers [8].

Another significant advantage of BFO is the fact that BFO has outstanding temperature
stability (Figures 5 and 6). The temperature, where it changes from antiferromagnetic to
permanent magnetic material, is also known as Neel temperature (Figure 6). The Neel [7]
temperature of BFO stays around of 320 to 350 ◦C [6,7]. The material is capable of withstand-
ing a high range of temperatures and retain its magnetic properties (Curie Temperature is
850 ◦C [6,19]). Considering the outstanding thermal stability of the material, including high
Curie and Neel temperatures, the material shows little change with temperature differences.
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In addition to ferromagnetic properties, BFO also shows massive spontaneous magne-
tization [20].

It has always been a trend to find a way to enhance the magnetic and ferroelectric
properties of BFO material. Since magnetic and ferroelectric properties are greatly affected
by oxygen bands, adding additional FeO will greatly increase the magnetic properties [6].

Even while possessing the strongest ferromagnetic response of multiferroic properties,
the multiferroic properties of BFO material remain weak to be implemented into large-
scale devices. In addition, molecules of BFO are exposed to aggressive oxidation of the
oxygen atmosphere. It has been a hot topic of many discussions to figure out a potential
solution to decrease the parasitic current and enhance the multiferroic response. The weak
ferroelectric and magnetic response (antiferromagnetic response) for large-scale devices has
been a significant drawback of the material for wide implementation (Figure 7). However,
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in the year 2003, Ramesh developed artificial heterostructures with significantly higher
multiferroic properties [21].
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3. Thin Films of Bismuth Ferrite

Bismuth ferrite [14] has been under intense study because of the strongest and unique
combination of magnetic and ferroelectric properties. In addition to unique multiferroic
properties, BFO demonstrate a photoelectric, weak piezoelectric response and strong
dielectric properties, which could be enhanced by adding additional impurities of rare–
earth materials.

3.1. Morphology and Composition of Produced Thin Film

Thin films have drawn a lot of attention and popularity to be implemented into many
prosperous applications and complex microelectronic devices [22]. Thin films of BFO are
extremely popular nowadays due to the extreme degree of versatility [12,23]. Design of
thin films [24] offers numerous modifications of morphology (Figure 8B), particle size
(Figure 8A) and overall chemical compound of produced films. The versatility of thin films
is achieved by various deposition methods.
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BFO thin films demonstrate different crystallographic orientations based on ration of
lattice parameters with various orientation, with ration angles being 71◦, 109◦ and 180◦,
the operation temperature during the deposition process and substrate morphology. Thin
film can be synthesized into rhombohedral, relaxed rhombohedral (bulk), tetragonal and
strained tetragonal phases. There is a slight change in the crystallographic structure of
substrate structure to bulk phase with increasing film thickness caused by strain relaxation.
This change effects the symmetry of the resulted BFO film [26].

As was mentioned previously, to enhance the performance of BFO material, it is
necessary to suppress cycloid moment. According to fundamental studies [27,28] thin films
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with particles smaller than 62 nm have a significant increase in ferromagnetic response.
Increased performance of BFO thin films can be described as follows: particle size stays
within the range of 62 nm leads to the modulation of spiral spin moments resulting in
greater enhancement of ferromagnetic properties [27]. With even smaller particle size, BFO
material demonstrates a negligible ferromagnetic response due to insufficient compensation
of spin moments. Uncompensated moments result in a change of bond angle and bond
length of tetragonal and decrease of tilt of octahedral FeO units. Corresponding to the first
principal calculation, the tetragonal bond angle is crucial for the transformation between
ferromagnetic and antiferromagnetic phases. The change of bond aFngle suggests there is a
thickness dependence of thin films similar to bulk.

The easiest and comprehensible way of offset spiral spin moment is by straining
BFO material into thin films (Figure 9). It has been found, that under optimal strain
coefficient (around 4.05%) [28] (Figure 10) produced BFO films [28] undergo symmetrical
transformation which corresponds with a change of lattice parameters ratio.
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There is a definitive change in location of ions in the rhombohedral crystal structure
(Fe+3 octahedral units) compared to structure with Fe+5 cations, suggesting the phase
separation into tetragonal and distorted phase of the trigonal symmetry group (R3c). With
increasing strain, coefficient films demonstrate metastable R3c–like phase with minimal per-
formance enhancement and phase separation [29]. Summarization of thickness dependence
of BFO films on strain coefficient is shown in Figure 10 [28].

It was shown that the remanent polarization of produced films increases with every
layer of deposited BFO material, creating a complex multilayer heterostructure (Figure 11).
Preferred orientation of deposited multilayers is 110. Improvement of the remanent polar-
ization value is described by the lower parasitic current of the multilayer system, interlayer
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strain and increased coupling between deposited layers, resulting in the increase of distor-
tion in the BFO perovskite unit.
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Typical BFO thin films (Figure 12) can be produced within a wide range of thicknesses.
The most common and widely spread range of produced BFO films stays within 50 to
500 nm [28].
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3.2. Photoelectrical Properties

In addition to a unique combination of ferroelectric and magnetic properties, it is
necessary to mention that BFO-based thin films exhibit strong photoelectric properties.
Considering the smaller optical bandgap (~2.5–2.7 eV) in comparison to other ferroelectric
material (Pb(Zr,Ti)O3, LiNbO3, BaTiO3) and wide range of visible light absorption, BFO
material attracts increased attention for potential photovoltaic and/or photogalvanic ap-
plications [31]. The photovoltaic phenomenon has been encountered in different forms
of BFO material: crystal structure, films and BFO added ceramics. All forms above of
the material thin films are extremely useful to be implemented into small- and large-scale
devices, since it is uncomplicated to obtain signal from BFO films. Photovoltaic properties
of BFO thin films were successfully implemented into various devices, for example, planar
photodetectors [32], and complex sensors. Nevertheless, implementation into large-scale
devices remains limited considering constrained performance of the material. However,
the photovoltaic phenomenon is affected by a variety of factors. A potential attribute of
photoelectric properties is photocurrent intensity, which is related to quality of produced
BFO films. With smoother and more homogeneous films there is an increase of internal re-
combination of generated electron–hole pairs. The increase of recombination rate (increase
of lifetime) [33] is caused by a decrease of intermolecular (migration) distance within the
surface of produced film, which, in its own terms, leads to a potential decrease of current
intensity (increase of photoconductivity). Some studies propose that the photovoltaic
response is affected by external electric field (polarization) [34]. Direction of photovoltaic
response of produced films has been affected by applied electrical field in different di-
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rections [34,35]. As shown by Choi and his team, photovoltaic response in single crystal
BFO films demonstrate nonlinear behavior and the direction of photovoltaic response can
be changed by applied voltage. Furthermore, similar observations of the dependance of
photocurrent and electric field has been performed by Yi [36]. In addition to the observation,
the theory of the effect of the domain [37] wall angle on photovoltaic response has been
proposed. According to the theory, domain walls, which separate holes and electrons, are
estimated to be about 100 nm, which is considerably smaller in comparison to conventional
silicon semiconductors [38].

As confirmed and observed by Choi [35] and Yang [39] on pure BFO material with
periodical domain walls [36], photovoltage largely increases the bandgap of the BFO
material [39]. Yang has proven that the strongest photovoltaic response was obtained at the
71◦ domain wall [34]. Ji and his team have shown that the bulk photovoltaic effect is vital
for the determination of photovoltaic response of BFO films (Figure 13) [40]. Furthermore,
the photoelectric response is dependent on the structure of produced film. Strain of BFO
film could potentially provide enhanced photoconductivity and control over photovoltaic
effect of the final film. For example, strained BFO material on LAO [41] exhibits enhanced
photoconductivity [42].
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Figure 13. Sample of deposited BFO material.

Thin films of BFO material show an absorption rate of the wide visible light range of
350 and 575 nm (Figure 14). The wide visible light spectrum means the material can absorb
huge amount of light energy [43].
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Thin films of BFO material have become more popular for potential photovoltaic
applications due to the existence of anomalously large photovoltage, which overcomes
the low bandgap of BFO material (~2.7 eV). With the combination of photogalvanic effect,
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overall chemical stability makes BFO worthy of implementation into photoelectric and
photocatalytic devices.

4. Deposition Methods of BFO Thin Films

BFO is a unique material which shows ferroelectric and magnetic properties at same
time. However, due to the cycloid moment of the cell unit, it is necessary to offset cycloid
spin moment to obtain the strongest ferroelectric response. One way to offset cycloid
moment is straining material into thin [25] films. It was a crucial point of discussion to find
the most cost–effective and suitable method of producing heterostructures based on thin
films of BFO material with minimum potential defects.

The most cost–effective method of enhancing overall properties of produced films
is the implementation of impurities. It was shown that rare–earth materials dramatically
decrease the parasitic current of BFO films because of the compensation of evaporated Bi
atoms and oxygen vacancies due to changed overall spin moment of a cell unit. Evaporation
of Bi atoms and oxygen vacancies is an unavoidable side effect of production of BFO films.
The most promising materials to enhance multiferroic properties and decrease parasitic
current are Mn [44] and Ni [45] due to similar atomic radius of Fe cations and chemical
valence stability (Table 1).

Table 1. Comparison table of magnetic parameters of pure and doped by Mn BFO material.

Material Coercivity (Oe) Magnetization (emu) Retentivity (emu)

BFO ~70 ~0.08 ~920 µ

BMnFO–0.1 ~280 ~0.12 ~5.5 m

BMnFO–0.2 ~130 ~0.17 ~3 m

These dopants aim to substitute cations of Fe+2 to compensate residual spin moment,
thus lowering the antiferromagnetic response of cell unit. Typical magnetic loop is repre-
sented in Figure 15. Recent reports clam the implementation of rare–earth materials lower
cell value, thus creating compact surface morphology resulting in a significant decrease in
current density.
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Figure 15. Typical magnetic loop of BFO thin film.

The typical structure of thin films of BFO material is represented by a multilayer struc-
ture (Figure 16). Base substrate layer has a function of carrier of the entire heterostructure of
thin film. Most common substrates for the deposition of BFO thin films are conductive and
nonconductive glasses (FTO) and a wide variety of ceramic materials. Next, the layer serves
as a bottom electrode and buffer barrier of the parasitic current [46]. The crystallographic
orientation of the buffer layer will have a determinative effect on the final orientation
of produced films. Over the past decade, buffers of Pt/Si/Ti/SiO2 materials proved to
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be great candidates to enhance overall morphology, homogeneity, and lowering leakage
current [47].
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The most common crystallographic orientation of produced BFO films is a polycrys-
talline diamond structure (100). In this orientation, deposited films show strong multiferroic
properties due to overconcentrated Bi atoms between the bottom electrode and BFO layer.
In order to integrate BFO films into potential devices, films are covered by an upper elec-
trode (contacts). Contacts are deposited in the form of big or small dots across surface or
as monolayer which covers entire surface of the BFO film. The most prominent material
for deposition of contacts is platinum. Pt material has been widely used as a main ma-
terial for deposition of contacts due to high thermal and chemical stability and superior
electrical conductivity.

4.1. Sol Gel Deposition Method

Over past decade, the sol gel method has become the most popular method for
preparation of thin films in large quantities. The method offers fast deposition rate, low
cost of used equipment, and high production rate. Unfortunately, produced films have a
significant contamination rate by a high amount of parasitic byproducts, since the sol gel
method operates with the presence of oxygen atmosphere and high temperature range.
Parasitic byproducts cause a significant increase in the leakage current of produced films
and suppression of ferroelectric response. Another drawback of the method is the thickness
limitation of final products. Thickness of produced films is varied within several hundreds
of nm to µm, which is overly thick to be used in fundamental studies of BFO material.
Topography of produced films shows a high rate of pores (Figure 17), which form in places
with increased current density resulting in a faster degradation rate of the material.
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The sol gel method [24] has been introduced as one of the most spread and earliest
methods for synthesizing wide varieties of complex metal oxide particles and thin films.
The method is exceptionally good for preparation of films on a large-scale, considering the
low costs of equipment and relatively high–quality product outcome.

The method is based on drying of a chemical water–soluble salts precursor with the
presence of oxygen atmosphere on the preliminarily cleaned substrate surface. While
the precursor is drying down, the composition is becoming denser, turning into a thick
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gel substance. The method allows precise control over morphology composition, process
temperature, and thickness of produced films.

The process starts by preparation of a precursor of water–soluble salts. Most spread
compounds of precursor are nitrate and mononitrate salts of bismuth (bismuth nitrate)
and iron (iron nitrate) followed by low molecular alcohols, such as methanol, ethanol,
etc. These compounds are mixed in highly purified deionized water to lower additional
contamination and impurities of resulted films. Once the precursor is prepared it must be
rested at room temperature for at least 30 min to settle down. To accelerate the dry down
process, additional anhydrites or acids could be added to the final precursor.

Before application (spin coating) (Figure 18) of precursor, the substrates must be
properly and repeatedly cleaned by alcohols to obtain a contamination–free surface. The
sol gel [48] method allows the utilization of a huge variety of substrates. The most suitable
substrates for the sol gel method are conductive and nonconductive inorganic substrates
(glass [24], metal plates) due to their chemical and thermal stability against high heat.
Organic substrates are suitable as well; however, the morphology of produced films on
organic substrates is considerably worse, due to high number of cracks and inhomogeneity
of final films.
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The application of precursor starts with layering one or several layers of precursor on a
cleaned substrate. Each layer of precursor needs to be pre–heated. The preheat is necessary
to obtain homogeneous thin films with minimum defects such as cracking and splitting of
produced film (Figure 17). Preheating is usually carried out on hot plates with temperatures
around 150–235 ◦C during several minutes. To obtain the required thickness of produced
film it is necessary to repeatedly deposit several layers of precursor, preliminarily after
pre–heat. The entire duration of complete crystallization of applied layers is around 1 h
with temperature around 500 ◦C and the presence of oxygen atmosphere for maximal
crystallization rate.

The versatility of the method allows thin films with different thicknesses to be obtained.
The thickness of produced films stays within the range of 100 nm to several µm [17]. With
increased thickness of films, overall performance of the final product is rapidly decreasing
simultaneously with worsening morphology of resulted films [17]. Since the ferroelectric
and magnetic properties of BFO material are size dependent [17], the thickness of produced
films is critical for evaluation of performance of final product.

It was shown that the films produced by the sol gel method did not show a ferroelectric
response [49], which is given by the decreasing interaction of spin moments of Bi+2 and
Fe+3 ions due to increased intermolecular distance. In addition, a significant decrease of
current conductivity was detected. The overall decrease of performance of produced films
could be potentially described by the large accumulation of micromorphological structural
defects such as cracks, surface decomposition, etc. A huge amount of impurities, which are
inevitable considering presence of oxygen atmosphere, have a huge negative impact on
electric conductivity.

All that was mentioned indicate the need of optimalization of the sol gel procedure by
researching new capabilities to modify process parameters and improve unique properties
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of resulting BFO thin films [17]. A more suitable method for synthesizing thin films for
fundamental research would be either PLD or ALD. Both methods allow producing of films
with resulting thickness of several angstroms. The produced films do not undergo extensive
contamination by byproducts caused by either the oxygen atmosphere or high heat. These
methods, in their principle, use inert gases or vacuum and a low range of operational
temperatures to produce homogeneous films with a high degree of stoichiometry. Both
techniques may utilize different materials to selectively incorporate various impurities in
order to enhance the overall chemical structure of resulted BFO compound.

4.2. Atomic Layer Deposition

In the world of continuously growing interest in nanotechnology and multiferroic ma-
terials, the discovery of technology which will provide the best final product with outstand-
ing properties and relatively low costs is becoming a hot topic of countless discussions.

Many popular techniques of producing a thin film of Bismuth ferrite either offer low
versatility of controlling properties of produced films or operate in a high range of temper-
atures, which dramatically lower ferroelectric and magnetic properties of Bismuth ferrite
films. The technology, which would offer a practical method for producing heterostructures
with integrated thin films of Bismuth ferrite and control over every deposited layer, would
have enormous potential in near future.

The Atomic Layer Deposition (ALD) [50] method deserves much popularity for prepar-
ing complex metal oxides [51] and thin films [52] of Bismuth ferrite for many applications
and modern devices. ALD [52] is a chemical method of growing homogeneous thin films
at a low range [50] of operation temperatures. ALD [53] belongs to a group of conventional
bottom–up type deposition techniques where deposited materials crystalize on surface
of a substrate. The method is highly versatile [54], allowing preparation of complicated
heterostructures [50] suitable for mostly any potential devices. The ALD method can
operate with wide geometric shapes of used samples. In addition to high versatility [53],
the method also operates within a relatively low range [52] of temperatures (200–400 ◦C)
which is a considerable advantage for producing films [55] of BFO material. The low range
of temperature enhances magnetic and ferroelectric properties of a final product due to the
low rate of evaporation of Bismuth atoms.

ALD [53] is based on a self–limited repeatable reaction between a gas precursor and
substrate surface. By stocking every deposited layer, a heterostructure will be the final
product of the synthesis. The deposition is carried out inside a chamber with the presence
of a gas precursor under vacuum (10−6–10−9 Torr). Considering the versatility of the
ALD [55], the method allows for single layer deposition of a certain material per single
cycle [52]. The duration of a single cycle stays around 30–60 min. To prevent potential
contamination of monolayers and corrosion by an aggressive chemical precursor, the main
chamber is ventilated by an inert gas (Ar or N2) [48]. The cycle is repeated over again in
order to obtain the required thickness of the resulted heterostructure. Figure 19 illustrates
the process of the ALD method. The process is carried out at lower temperatures (max
400 ◦C) to prevent potential oxidation of monolayers [55]. The lower the temperatures,
the less potential surface defects such as surface decomposition, oxidation, and uneven
surface morphology will occur [48]. Considering the high evaporation rate of bismuth
atoms during preparation process, a low operational range of temperatures [56] is vital to
achieve better quality produced thin films [54] of BFO [57] material.

The fundamental advantage of produced monolayers by the ALD process is the
homogeneity of single layers over a large surface area, [54] which is a crucial advantage of
the method making ALD [52] an outstanding method of producing heterostructures [48].
The homogeneity is achieved by a gas precursor, which will spread evenly throughout the
surface and deep trenches, and thus fully reacting with entire surface of the substrate [48].
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The next considerable advantage is a wide thickness [58] range of the resulted films.
The ALD process offers a wide range of thicknesses of produced films. The thickness
range [58] is determined by the number of repeated deposition cycles [48]. The growth
rate of the single cycle stays within several angstroms to hundreds of nanometers and is
based on the duration of deposition cycle and individual requirements [48]. The thick-
ness versatility of ALD is a considerable advantage for the preparation of thin films for
numerous applications.

4.3. Pulsed Laser Deposition

In the world of nanotechnologies, the trend of producing high–quality nanomaterials
and small dimensional lithographic structures is of current interest. The conventional
methods of preparing thin films are divided into two different types: top–bottom and
bottom–up [19]. Bottom–up methods offer a wide range of possibilities of producing a
huge variety of nanostructures. These methods also influence morphology, orientation, and
properties of produced nanostructures by changing operational parameters.

Laser technologies have been successfully used in many different applications over
many years. The laser has a unique combination of outstanding properties such as
monochromatic, pulsed and continuous operation modes, and a narrow energy distri-
bution making it superior for a wide variety of applications.

Pulsed Laser Deposition (PLD) [59,60] earned a title to be an extremely good and
versatile method for the deposition of a wide range of complex heterostructures and high–
quality thin films of many materials due to the selective evaporation of practically any
materials. The first films were synthesized in 1965 by scientists Turner and Smith [61,62].
The laser with ruby medium was used as a primary instrument to synthesize the first thin
films. The year 1965 is a starting point of the development of the PLD method. After
successful deposition of thin films, the PLD method started gaining deserved attention
and popularity.

The principle of PLD is based on the interaction of laser radiation [61,62] with the
liquid of solid material (target) [59,60], which leads to the absorption of laser radiation.
After irradiation of target with a laser beam, a small amount of target material is evaporated
and carried away from the target. The result of the absorption is the ablation of particles
which are carried away with kinetic energy.

The evaporation rate of microscopic particles and kinetic energy of evaporated par-
ticles are proportional to the laser operational parameters. Depending on the kinetic
energy [63,64] of evaporated material, the increase of interaction will require a cooler
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temperature range to compensate for the collusion of evaporated particles, which would
lead to an increase of the deposition rate. The main parameters, which effect the evap-
oration rate [61] of the targeted material, are energy intensity, pulse duration (period),
laser wavelength and angle of incidence between laser beam [65] and target material. The
evaporated material comes into contact with cooler substrate, where films will be deposited,
and condensates on substate surface, creating the required films. The laser system repeats
pulsation, keeping the evaporation rate stable and synthesizing the desired thickness of
resulted thin films. The main chamber and laser system are represented in Figure 20.
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Figure 20. PLD laser construction setup.

The process starts by interaction of a powerful laser [59] with the targeted material
of the BFO compound. The evaporated component will condensate on the surface of a
substrate. Popular substrates, which are used for the preparation of BFO thin films [57],
are polycrystals of Si with different orientation {111, 110, 001} (Figure 21), Dysprosium
Scandium Oxide (DyScO3), and Strontium titanate (SrTiO3, STO substrate). Typical opera-
tional parameters of the PLD method include repetition rate, deposition time, substrate
preheat temperature, laser pulses and main chamber pressure. The orientation of substrate
will be a decisive factor of the resulted BFO crystal orientation. Since the substrate is
targeted by a laser, the crystallization of BFO is started by creating a crystal matrix of Bi2O3
and Fe2O3 materials with a different orientation. The pulse rate repetition stays around
5–15 Hz [61,62] and may vary based on the recipe. The wavelength of laser radiation
usually corresponds to a deep ultraviolet color (200–400 nm), which is the most used laser
radiation. To achieve maximum energy distribution on the targeted material the incidence
angle should stay around 45◦ [66]. The entire process is accompanied by vacuum and/or
the presence of an inert gas to reduce potential impurities. The duration of the deposition
process is based on the thickness of produced film and pulses of the laser. The typical
duration of the deposition cycle of 100nm film with 5000 pulses stays within 20 min. The
deposition temperature of BFO films (substrate) stays under 500 ◦C.
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PLD has considerable advantages compared to the conventional techniques of the
preparation of thin film materials based on BFO material.

The major superiority of PLD [64] is stoichiometry of produced films. Stoichiometry
is caused by a high condensation rate of evaporated particles of targeted material on the
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substrate surface. The versatility of the operation process allows changing targeted material
sequentially on a rotatable holder which is a key advantage of the process. Sequential
change of targeted material is necessary to produce multi–layer complex structures and the
development of new artificial structures of stable/metastable materials without inflicting
aggressive operation conditions by changing laser parameters. An example of the multi–
layer structure of BFO material is represented in Figure 22a,b.
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The operational parameters of PLD, such as laser optical energy [64,67] distribution,
the distance between target and substrate, the substrate temperature and grow rate greatly
constrain the negative effect of morphology and enhance magnetic and electrical properties
of the resulted thin film structures.

In comparison to costly, conventional methods (selective ion implementation) which
operate in a higher temperature range, thus producing various types of defects and impuri-
ties of deposited composite, the PLD [64,67] method operates in a lower temperature range.

The price of used substrate is another disadvantage of conventional methods. Consid-
ering that the PLD can operate in a lower range of temperatures, the PLD method operates
with more available and cheaper polymer base substrates [67].

It has been reported that films produced by the PLD method show relatively low
parasitic current, considering the low amount of crystallographic defects and small particles
size [68].

4.4. Comparison of ALD, PLD and Sol Gel Methods

By comparing the most widespread methods of the synthesis BFO thin films, the sol
gel method was proven to be the most popular method for the preparation of films in
huge quantities. In comparison to PLD and ALD, the sol gel method (Table 2) is relatively
inexpensive since it does not utilize a vacuum nor inert gases during the preparation
procedure. The major downside of the sol gel method is a significantly high defect rate
of the crystallographic and morphological structure of produced films. The quality of
produced films is based on purity of used chemical ingredients such as water–soluble salts
and chemical solvents. The presence of an oxygen atmosphere has a negative effect on the
properties of BFO films due to occurring oxide side products. Thin films produced by the
sol gel method exhibit a high parasitic current, which is given by the contaminated surface
due to the presence of oxygen atmosphere and impurities of chemical compounds. In
addition, films demonstrate a negligible ferroelectric response given by increased particle
size. The sol gel method would be extremely useful for the preparation of films for
applications where quality of morphology and properties are tolerable such as range
scale sensor devices. The sol gel method does not show versatility of producing complex
heterostructures of BFO material, and instead allows for the preparation of “sandwich”
structures with different monolayers.
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Table 2. Comparison table of deposition methods.

Synthesis Method Morphology Thickness Cost Quality

PLD Thin films, micro/nano crystals,
heterostructures. 1 nm–>1 µm High High

ALD Thin films, single layer deposition.
micro/nano crystals, heterostructures. 1 nm–>1 µm High High

Sol gel method Thin films 100 nm–>1 µm Low–medium Low

The operation principles of PLD and ALD methods share many similarities. Both
methods use an external heat source to evaporate a small amount of targeted material.
The evaporated material will condensate on a cooler substrate surface, creating the de-
manded orientation of thin film. Both methods show a high degree of quality of produced
films by operating with the presence of a vacuum and inert gases to further decrease the
contamination rate and impurities of produced films. The methods do not involve the
operation with presence of aggressive chemical solvents, which could have a negative effect
on produced films. One major advantage of both methods is their operation within a low
temperature range (<350–400 ◦C), in comparison to the sol gel method (400–700 ◦C). The
produced thin films by PLD and ALD methods show considerably lower parasitic current
and a high degree of stoichiometry. The key advantage of both methods is the effective
deposition of complex heterostructures with different crystallographic orientation with
different material monolayers. Both methods offer a wide range of thicknesses of produced
films. The thickness of the final product varies from several angstroms to hundreds of
nanometers where minimal thickness of produced films by the sol gel method is 100 nm
and maximum may increase several µm. The versatility and high quality of produced films
comes with increased coasts of both methods, which is a significant disadvantage of these
methods. The high cost of both methods is given by the utilization of laser technologies,
vacuum and inert gases, expensive materials, and equipment. Both methods are suitable
the preparation of thin films in small quantities with superior properties and morphology
for precise measurement devices or prototypes.

5. Side Phases of Bismuth Ferrite

The need for cost–effective energy sources involve seeking new and prospective ma-
terials and technologies. Considering ever increasing pollution and rapid development
of the manufacturing industry, the use of solar energy has become an undivided part
of the modern trend of utilization of eco–friendly energy sources. Nowadays trends of
designing microelectronic devises offer new challenges, involving the design of micro-
electronic devices which would be based on manipulation by electric and magnetic parts.
These challenges require investigation and recache of new materials. Among all materials,
multiferroics and especially Bismuth ferrite, stands out. The BFO material aims to be a
potential solution regarding simultaneous control of magnetic and electric parts, since BFO
exhibits the strongest ferroelectric and magnetic response at room temperature.

5.1. Bismuth Mullite Material

During intensive studying of Bismuth ferrite material preparation methods, it was
found that during the initial preparation process of BFO powders, alongside pure BFO
material, other side–phase materials were synthesized. It was shown, due to the aggressive
chemical nature [4] of bismuth, that BFO causes byproducts. These materials have been
categorized as impurities of the BFO material. The two most popular byproducts of
synthesis of pure BFO material are bismuth Mullite and Iron Selenite. Instead of crystalizing
the single–phase of the BFO material, multi–phase side products were crystalized [69]. The
mechanism of crystallization side products is related to the stoichiometric imbalance [70]
of BFO [71]. The stoichiometric imbalance refers to the asymmetrical growth of FeO
monomers (some particles could evaporate during crystallization), which are particles
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that can undergo side reactions. The chemical equation BixFeyO1.5x + 1.5y [72] describes
the general composition of a single–phase BFO [1] material and secondary phase of new
side products.

The first and most prominent byproduct [73] of the synthesis pure BFO material
is mullite ferrite Bi2Fe4O9. The typical cell unit of the mullite material is represented
in Figure 23. The crystallographic structure of the mullite is represented by a central
symmetric [74], orthorhombic structure [73] with two atoms of Bi+2, four atoms of Fe+2,
and 9 atoms of oxygen [75] with different valency. The lattice parameters are a=b=8 Å [1],
c=6 Å [74] and the cell value is around 400–410 Å [74,76]. The parameters may differentiate
due to structure defects during the preparation process, and oxygen vacancies [74]. A
typical Bi2Fe4O9 [77] cell unit consists of FeO4 tetrahedra [73,75] and FeO6 octahedra [74]
formation. The octahedral [78] bond distance is approximately 2 Å, and the tetrahedra
distance is smaller and stays within 1.8 Å [74,79] (Figure 24).
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Figure 24. The cell unit of Bi2Fe4O9 [78].

Fe+3 cations are in both tetrahedra and octahedra formations. FeOn are distributed
homogeneously across the unit cell and are surrounded by Bi ions. Spin moments of octahe-
dral [81] FeO6 create couples with electrons of tetrahedral the FeO4 spin moments. The cou-
pling of FeOn spin moments lead to a stronger interaction between the two monomers, thus
causing strong anti–ferromagnetic properties [82] of the unit cell (G–type ordering). The
anti-ferromagnetic response is given by the interaction of coupled electron spin moments
of FeO4 and FeO6 monomers and uneven spin distribution, causing overall geometrical
distortion of spin moments [82].

It was reported that the mullite also exhibits anti–ferromagnetic properties closer to
the 0 ◦C [73] temperature. The paramagnetic transition temperature to antiferromagnetic
(Neel) of the compound stays within −23 ◦C as Curie temperature was determined to be
in the range of −9 to 0 ◦C. In addition to anti–ferromagnetic properties, the mullite ferrite
demonstrates ferromagnetic ordering. Ferromagnetic properties are observed by parallel
orientation of spin moments across one dimensional axis. Ferroelectric properties of mullite
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ferrite are potentially described by asymmetrical distribution of hybridization between s–
and p– orbitals of bismuth cations and oxygen vacancies.

However, overall asymmetrical frustration might be stabilized by the interaction of SP
hybridization of Bismuth ions and oxygen anions.

Magnetic and ferroelectric properties (response) (Figure 25) of the mullite material are
size dependent and show similar behavior to pure BFO material (Figure 26). It was shown
that the smaller particles demonstrate a stronger ferromagnetic response, in comparison
to greater particle size. The increase in ferromagnetic properties could be described by
a decreased interaction of tetrahedral and octahedral spin moments, changing the spin
layout of a cell unit.
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Recent reports claim the ferroelectric response is negligible, considering the symmetri-
cal orientation of unit cell by the central axis. Therefore, it is necessary to find a suitable
solution to enhance the magnetic and ferroelectric properties of the mullite for future
implementation into multifunctioning devices. A potential solution would be adding
impurities of rare–earth material to compensate oxygen vacancies. It was proven that
rare–earth material, such as lanthanum and magnesium, dramatically enhance ferroelectric
properties [73].

Mullite is widely spread [83] in chemistry and sensor devices. The material is extremely
sensitive on alkali vapors and was successfully used as a gas [84] leakage sensor. The mullite
proves to be a great and cheap catalyzer for chemical reactions, such as the decomposition
of ammonia to nitrate oxide.

Recent research reports the existence of different reactions of visible–light absorption,
which suggests the material possesses photocatalyst [85] and photoelectric properties.
Hence, Mullite can be used for the utilization of solar [86] radiation. The material shows
wavelengths absorption within the range of 350–700 nm [86] (Figure 27). The range of
wavelengths corresponds with 2–3 eV [79].
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The photocatalytic [85,87] properties prove that the material has a lower bandgap
potential [88], which is a considerable advantage, and make the material attractive for light
detection sensors and photovoltaic application [88].

Mullite is a proven, very promising material to be implemented into new types of
sensors. Mullite is widely used in the area of sensors for detecting gas leakage due to its
chemical nature, and in organic chemistry as an enhancer of chemical reactions [1]. The full
potential of the material is still not revealed; thus, more and deeper studying is required.

5.2. Iron Selenite Material

Bismuth ferrite is represented in two different structures: perovskite cell and Selenite
material. Iron Selenite material (Bi25FeO40) [87,89] has been encountered during the synthe-
sis of pure phase BFO material. Selenite draws a lot of attention nowadays due to its unique
and strong photocatalytic [90] properties [91], which is a popular subject of research. Selen-
ite belongs to semiconductor family and was proven to be a very eco–friendly material for
a wide variety of applications. In addition, Selenite has become an outstanding candidate
for solar light utilization technologies due to the slower rate of sunlight degradation, low
bandgap potential [91,92] and overall harsh chemical environment resistance. A superior
paramagnetic response is another advantage of the material, making it easily obtained and
separated from pure BFO material during the synthesis process. The existence of a hystere-
sis curve near room temperature range suggests ferroelectric and dielectric properties of
Selenite material.

Selenite material (Figure 28) occurs as another side product of the synthesis of pure
BFO material. It was proven by many experiments [89,92,93] that the most widespread
methods to obtain pure phase Selenite material are the sol gel and hydrothermal grow
methods. Selenite is usually obtained from a chemical precursor of bismuth nitride and
iron nitride water–soluble salts with an operational temperature around 650–750 ◦C [92,94].
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The crystallographic structure of the Selenite unit (Figure 28) is represented by cubic
asymmetrical I23 space orientation with lattice parameters a = b = c = 10 Å and the
estimated crystal value is about 250 Å. In this orientation bismuth cations with valence
Bi+3 [92], together with surrounding oxygen atoms, form incomplete BiO5 octahedral
units. The interatomic distance between Bi+3 and shared oxygen atoms is around 2–2.5 Å.
The octahedral unit is completed by the inert 6s2 [92] pair. An anisotropic vibration is
shown in Bi+3 atoms. Each Fe+3 [92] and Bi+5 [92] cation forms tetrahedral [92] units. Bi+5

ions cause distribution not only of the tetrahedral unit, but also of the entire chemical
structure. Bi+5 [92] cations are present in the cell unit which leads to the chemical formula
of Bi24

+3(Bi+5Fe+3)O40 [92] with stoichiometric formation.
Selenite shows weak ferromagnetic activity with transitional temperature, around

–5–0 C◦ [92], and significant spontaneous magnetization at room temperature.
Selenite is considered a perfect candidate for the photo–Fenton [95,96] reaction en-

hancer. The photo–Fenton [95,96] reactions stand for advance oxidation where organic
compounds are decomposed and disinfect in water. Nevertheless, insufficient surface
transition of Fe+2/Fe+3 [92] limits the photo–Fenton [95] (Figure 29) reaction enhancing
activity of the material. Iron Selenite shows remarkable properties, which are useful in
piezoelectric [92] and especially in photo [97] applications.
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Figure 29. Photocatalytic [98] reaction mechanism of iron Selenite and Mullite under light radiation.

Considering even the lower band gap [99] of Iron-Selenite, in comparison to pure
Bismuth ferrite (2–3 eV [100]), the material was proven to be an exceptionally good ab-
sorbent of ultraviolet [101] and visible light radiation attracting much attention. The band
gap [102] of Iron Selenite stands under 2 eV [92], which is much lower among most of
the conventional photo–active materials. By analyzing the absorption [99] activity, it was
found that the absorption rate of Iron Selenite is even higher compared to Mullite Ferrite.
The wavelength absorption [103] range of Mullite stays within 600–850 nm, whereas for
Iron Selenite it is much wider within 500–900 nm [99,101] (Figure 30), and with a smother
absorption rate at higher wavelengths, resulting in stronger optical absorption capabilities.
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In recent years, Iron Selenite (Figure 28) was widely used in digital logic and sensor
devices due to the existence of a hysteresis loop. A hysteresis loop suggests the existence of
magnetic and electric coupling which could be changed by applying a magnetic and/or
electric field. The paramagnetic behavior of the material is another aspect which makes the
material a potential candidate for digital applications.

The perovskite–like crystallographic orientation of Iron Selenite and chemical struc-
ture of the material open new opportunities for the implementation of a wide variety of
impurities. Impurities are necessary to compensate for vacancies of evaporated oxygen
and/or Bismuth atoms, which is major issue of conventional, high–temperature deposi-
tion methods. Impurity changes the overall spin structure, thus enhancing the unique
ferromagnetic and ferroelectric properties of the compound.

Although the Selenite material was widely studied, the full potential of the material is
not yet revealed and requires further and deeper investigation.

6. Discussion

BFO material is an outstanding material, which combines a variety of unique proper-
ties, including high remnant polarization, narrow bandgap potential ferroelectric, magnetic
coupling, etc. In addition to unique ferromagnetic properties, Bismuth ferrite shows this
unique combination at room temperature. This material offers versatility of exploration
of new technologies with complex functions. Despite having a unique combination of
ferroelectric and magnetic properties, the high parasitic current is significant downside
of the material, which limits its implementation into large-scale devices. Many strategies
were offered to enhance and modify overall performance and decrease parasitic current.
New low–temperature deposition methods (PLD, ALD, etc.), proper implementation of
rare–earth materials impurities and straining BFO material into thin films achieve great
results of enhancing performance of BFO material. The implementation of new strategies
drives the utilization of BFO material in different fields, such as photovoltaic, piezoelectric,
sensorics and memory devices. Nevertheless, even though great results have been achieved,
many challenges remain. It is necessary to further enhance the magnetic response of the
material before incorporating it into large-scale devices. The crystallographic structure of
Bismuth ferrite is represented by a rhombohedral perovskite structure. In this structure,
the material exhibits a ferroelectric response due to the residual magnetic spin orientation
of a single cell unit. The perovskite structure offers opportunities for implementation of
different materials to improve an overall spin structure by compensation of decreased
valency of Fe atoms, resulting in stronger ferroelectric response and decreased parasitic
current. The parasitic current is given by defects of crystallographic structure of Bismuth
ferrite during the initial deposition method. One of the most common causes of parasitic
current is evaporation of Bi atoms and a decrease of valency of Fe atoms. A high operational
temperature resulting in a high evaporation rate of chemically volatile Bismuth, suggests
that the modification (or choice) deposition method operates with the lower temperature
range. The best suitable deposition methods for preparation of Bismuth ferrite material
are Pulsed laser Deposition (PLD) and Atomic Layer Deposition (ALD), since they operate
in a relatively low temperature range and offer outstanding control over morphology
of final products. A low range of operational temperatures is extremely important for
the evaluation of ferroelectric properties of the produced BFO material, considering the
chemical volatility of Bismuth atoms. Considering the perovskite–like structure, the impu-
rities of different material aim to enhance electromagnetic coupling of BFO. Impurities of
rare–earth materials not only stabilize the crystal structure of BFO but also dramatically
increase the magnetic response due to closer interaction of spin moments of the entire
cell unit. Implementation of rare–earth materials considerably increase the transition be-
tween ferromagnetic and antiferromagnetic phases due to the elimination of the cycloid
spin moment, allowing a strong magnetic response to occur. Most studied impurities
of rare–earth materials are Titanium, Neodymium, Lanthanum, Samarium, Europium,
Praseodymium; implementation of these materials causes a significant increase of electro-
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magnetic coupling [105,106]. Another potential solution to enhance ferroelectric response
is a decrease in cell unit size. The decrease of cell size could be achieved by straining the
BFO material into thin films by applying pressure, which leads to a transformation between
ferromagnetic and antiferromagnetic phases (morphotropic phase boundary). Smaller cell
units show greater ferroelectric response due to a stronger interaction of spin moments
of the single cell unit. The existence of the morphotropic phase transformation under
applied mechanical pressure allows the discovery of new ways of enhancement of overall
ferroelectric properties, which could dramatically decrease production costs of new types
of ferroelectric materials for potential complex devices. The most versatile form of BFO
material, which offers a wide variety of produced particles and modifications, is thin film.
Among other forms of BFO material (powders, nanoparticles), thin films are exceptionally
versatile and can be easily integrated into large-scale devices. In addition to versatility,
different materials could be implemented into the thin film structure to enhance the unique
properties of BFO material. Besides thin films, BFO material was extensively used for the
preparation of BFO-based ceramics due to its temperature stability. BFO is a lead–free,
non–toxic material with the electrical structure of bismuth molecules being similar to Pb.
The perovskite–like structure of BFO allows for the creation of the morphotropic phase
transformation enabling the achievement of maximized piezoelectric response. Neverthe-
less, problems with the preparation of BFO–based ceramics associated with high operation
temperatures and unfortunate combination of low electrical resistance and coercive field
of BFO material cause difficulties with research of the piezoelectric response and domain
behavior. These reasons were at the beginning of numerous research avenues of potential
modification of BFO–based ceramics. The most interesting compounds are BaTiO3, Bi–
K–TiO, Bi–Na–Ti–O, and Bi(Zn–Ti)O, since these compounds enhance Curie temperature
and piezoelectric response. Unfortunately, the properties of these compounds have not
been systemized.

Byproducts of the BFO material crystallization were discovered during the initial
deposition process. Mullite and Iron Selenite are two common byproducts, which were
under intense investigation, considering the uniqueness of their properties. The strong
photoelectric response and visible light absorptions capabilities of both byproducts was
proven vital for photovoltaic applications and devices.

7. Conclusions

This paper provided a review of the BFO material. The reasons for making Bismuth
ferrite unique over other multiferroic material has been described. The crystallographic
structure of the material is represented by a cubic Rhombohedral perovskite structure. This
paper describes the crystallographic structure of BFO material in detail, including the spin
structure of a single cell unite and their effect on ferroelectric and magnetic properties. The
main disadvantage of the material is the parasitic current. The reason for the occurrence
of parasitic current and potential solutions of how to decrease parasitic current have been
described. Bismuth ferrite is synthesized in different forms, such as powders, nanoparticles
and thin films. Thin films of the BFO material are the most widespread and popular form
of the material. Morphology, properties, variety of thicknesses and their effect on leakage
current have been described in detail.

The deposition methods of thin films include: the sol gel method, Pulsed Lased
Deposition (PLD), and Atomic Layer Deposition (ALD). Their operational principle, com-
parison, advantages, and disadvantages for preparation of BFO thin films have been
mentioned. Among the described methods, ALD and PLD are superior methods, allowing
the deposition of a single atomic layer stoichiometric heterostructure of thin films with
minimal contamination.

It was discovered that thin films include byproducts of Bismuth ferrite. Iron Selenite
and Bismuth Mullite are the typical byproducts of the initial synthesis of BFO films. The
chemical and crystallographic structure of both byproduct materials have been described.
Superior visible light absorption, and strong photoelectric properties have been mentioned.
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Future perspectives of the thesis will lie with analyzing samples of the BFO material.
Samples will be prepared by the PLD method on ceramic substrates with a platinum buffer
layer. Analyzing methods include topography analysis by atomic force microscopy (AFM)
and near–field scanning optical microscopy (SNOM), due to their availability at the research
facility and uncomplicated scanning procedure. In addition to AFM and SNOM microscopy,
topography of prepared samples will by studied by scanning electron microscopy (SEM)
and focused ion beam (FIB); both methods will provide detailed information of cross
section and thickness of BFO and platinum buffer layer of produced samples. To determine
whether there are any byproducts present in produced samples, Raman spectroscopy will
be extensively used. In the case of discovery of potential byproducts of the BFO material
the attempt of extraction will be carried out.
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