Band Structure and Quantum Transport of Bent Bilayer Graphene
Abstract
1. Introduction
2. Model and Methods
3. Results and Discussion
3.1. Edge and Interface States in the Presence of an Electric Field and Local Potential
3.2. Zeeman Effect
3.3. Effect of Disorder
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [PubMed]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef]
- Geim, A.K. Nobel Lecture: Random walk to graphene. Rev. Mod. Phys. 2011, 83, 851–862. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, Y.; Kim, P.; Pinczuk, A. Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene. Phys. Rev. Lett. 2007, 98, 166802. [Google Scholar] [CrossRef]
- Kramberger, C.; Hambach, R.; Giorgetti, C.; Rümmeli, M.H.; Knupfer, M.; Fink, J.; Büchner, B.; Lucia, R.; Einarsson, E.; Maruyama, S.; et al. Linear Plasmon Dispersion in Single-Wall Carbon Nanotubes and the Collective Excitation Spectrum of Graphene. Phys. Rev. Lett. 2008, 100, 196803. [Google Scholar] [CrossRef]
- Gusynin, V.P.; Sharapov, S.G. Unconventional Integer Quantum Hall Effect in Graphene. Phys. Rev. Lett. 2005, 95, 146801. [Google Scholar] [CrossRef]
- Nagaosa, N.; Sinova, J.; Onoda, S.; Mac Donald, A.H.; Ong, N.P. Anomalous Hall effect. Rev. Mod. Phys. 2010, 82, 1539. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Tan, Y.W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef]
- McCann, E.; Fal’ko, V.I. Landau-Level Degeneracy and Quantum Hall Effect in a Graphite Bilayer. Phys. Rev. Lett. 2006, 96, 086805. [Google Scholar] [CrossRef] [PubMed]
- McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 2006, 74, 161403. [Google Scholar] [CrossRef]
- Novoselov, K.S.; McCann, E.; Morozov, S.V.; Fal’ko, V.I.; Katsnelson, M.I.; Zeitler, U.; Jiang, D.; Schedin, F.; Geim, A.K. Unconventional quantumHall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2006, 2, 177–180. [Google Scholar] [CrossRef]
- Herbut, I.F. Theory of integer quantum Hall effect in graphene. Phys. Rev. B 2007, 75, 165411. [Google Scholar] [CrossRef]
- Kane, C.L.; Mele, E.J. Z2 Topological Order and the Quantum Spin Hall Effect. Phys. Rev. Lett. 2005, 95, 146802. [Google Scholar] [CrossRef] [PubMed]
- Kane, C.L.; Mele, E.J. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 2005, 95, 226801. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Y.; Xu, Z.; Sheng, L.; Wang, B.G.; Xing, D.Y.; Sheng, D.N. Time-Reversal-Symmetry-Broken Quantum Spin Hall Effect. Phys. Rev. Lett. 2011, 107, 066602. [Google Scholar] [CrossRef] [PubMed]
- Abanin, D.A.; Lee, P.A.; Levitov, L.S. Spin-Filtered Edge States and Quantum Hall Effect in Graphene. Phys. Rev. Lett. 2006, 96, 176803. [Google Scholar] [CrossRef]
- Sun, Q.F.; Xie, X.C. CT-Invariant Quantum Spin Hall Effect in Ferromagnetic Graphene. Phys. Rev. Lett. 2010, 104, 066805. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, Y.; Zhang, J. From helical state to chiral state in ferromagnetic bilayer graphene. Solid State Commun. 2015, 212, 41–45. [Google Scholar] [CrossRef]
- Annett, J.; Cross, G.L.W. Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate. Nature 2016, 535, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, X.L.; Zhang, Y.Y.; Wang, D.F.; Bao, D.L.; Que, Y.D.; Xiao, W.D.; Du, S.X.; Ouyang, M.; Pantelides, S.T.; et al. Atomically precise, custom-design origami graphene nanostructures. Science 2019, 365, 1036–1040. [Google Scholar] [CrossRef] [PubMed]
- Schniepp, H.C.; Kudin, K.N.; Li, J.L.; Prud’homme, R.K.; Car, R.; Saville, D.A.; Aksay, I.A. Bending properties of single functionalized graphene sheets probed by atomic force microscopy. ACS Nano 2008, 2, 2577–2584. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Suenaga, K.; Harris, P.J.F.; Iijima, S. Open and closed edges of graphene layers. Phys. Rev. Lett. 2009, 102, 015501. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.S.; Huang, J.Y.; Feng, J.; Shi, D.N.; Li, J. The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap. ACS Nano 2011, 5, 3475–3482. [Google Scholar] [CrossRef]
- Prada, E.; San-Jose, P.; Brey, L. Zero Landau Level in Folded Graphene Nanoribbons. Phys. Rev. Lett. 2010, 105, 106802. [Google Scholar] [CrossRef]
- Rainis, D.; Taddei, F.; Polini, M.; León, G.; Guinea, F.; Fal’ko, V.I. Gauge fields and interferometry in folded graphene. Phys. Rev. B 2011, 83, 165403. [Google Scholar] [CrossRef]
- Gonz’alez, J.W.; Pacheco, M.; Orellana, P.A.; Brey, L.; Chico, L. Electronic transport of folded graphene nanoribbons. Solid State Commun. 2012, 152, 1400–1403. [Google Scholar] [CrossRef]
- Xie, Y.E.; Chen, Y.P.; Wei, X.L.; Zhong, J.X. Electron transport in folded graphene junctions. Phys. Rev. B 2012, 86, 195426. [Google Scholar] [CrossRef]
- Xie, Y.E.; Chen, Y.P.; Zhong, J.X. Electron transport of folded graphene nanoribbons. J. Appl. Phys. 2009, 106, 103714. [Google Scholar] [CrossRef]
- Queisser, F.; Schützhold, R. Strong magnetophotoelectric effect in folded graphene. Phys. Rev. Lett. 2013, 111, 046601. [Google Scholar] [CrossRef] [PubMed]
- Li, C.C.; Xu, L.; Zhang, J. Quantized transport of edge and interface states in bent graphene. Solid State Commun. 2015, 207, 30–34. [Google Scholar] [CrossRef]
- Lee, D.H.; Joannopoulos, J.D. Simple scheme for surface-band calculations. II. The Green’s function. Phys. Rev. B 1981, 23, 4997–5004. [Google Scholar] [CrossRef]
- Sancho, M.P.L.; Sancho, J.M.L.; Rubio, J. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F Met. Phys. 1985, 15, 851–858. [Google Scholar] [CrossRef]
- Nardelli, M.B. Electronic transport in extended system: Application to carbon nanotubes. Phys. Rev. B 1999, 60, 7828–7833. [Google Scholar] [CrossRef]
- Wang, Y.C.; Yu, L.F.; Zhang, F.; Chen, Q.; Zhan, Y.Q.; Meng, L.W.; Zheng, X.; Wang, H.; Qin, Z.Z.; Qin, G.Z. The consistent behavior of negative Poisson’s ratio with interlayer interactions. Mater. Adv. 2022, 3, 4334–4341. [Google Scholar] [CrossRef]
- Klitzing, K.V.; Chakraborty, T.; Kim, P.; Madhavan, V.; Dai, X.; McIver, J.; Tokura, Y.; Savary, L.; Smirnova, S.; Rey, A.M.; et al. 40 years of the quantum Hall effect. Nat. Rev. Phys. 2020, 2, 397–401. [Google Scholar] [CrossRef]
- Prada, E.; San-Jose, P.; Brey, L.; Fertig, H.A. Band topology and the quantum spin Hall effect in bilayer graphene. Solid State Commun. 2011, 151, 1075–1083. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Xu, L. Band Structure and Quantum Transport of Bent Bilayer Graphene. Materials 2022, 15, 8664. https://doi.org/10.3390/ma15238664
Wang X, Xu L. Band Structure and Quantum Transport of Bent Bilayer Graphene. Materials. 2022; 15(23):8664. https://doi.org/10.3390/ma15238664
Chicago/Turabian StyleWang, Xue, and Lei Xu. 2022. "Band Structure and Quantum Transport of Bent Bilayer Graphene" Materials 15, no. 23: 8664. https://doi.org/10.3390/ma15238664
APA StyleWang, X., & Xu, L. (2022). Band Structure and Quantum Transport of Bent Bilayer Graphene. Materials, 15(23), 8664. https://doi.org/10.3390/ma15238664