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Abstract: A technique for poling of glasses using a resistive barrier discharge plasma in the atmosphere
in a gap of hundreds of microns is presented. Measurements of the polarization current, second harmonic
generation, and IR spectra of poled soda-lime glass slides show that voltage sufficient to ignite plasma
discharge provides efficient poling, whereas for lower voltages the poling effect is close to zero. We
attributed this to the large number of hydrogen/hydronium ions generated from atmospheric water
vapor by the plasma discharge in the gap, which penetrate into the glass. We also developed a simple
model of poling according to Ohm’s law, analyzed the temporal dependencies of the polarization current
and, basing on the model, estimated mobilities of hydrogen/hydronium and sodium ions in the glass:
µH = (2.4 ± 0.8) × 10−18 m2V−1s−1 and µNa = (4.8 ± 1.8) × 10−15 m2V−1s−1. The values obtained are
very close to the known literature data.

Keywords: glass poling; open-anode; resistive barrier discharge; second harmonic generation;
polarization current; ion mobilities

1. Introduction

The process of thermo-electric modification of glasses, i.e., glass poling, has been
known for decades. In thermo-electric poling, mm-scale thick glass plates are heated and
subjected to a DC potential. This procedure is very similar to the well-known charging of
glass electrets, which, however, does not require heating [1,2], and, similarly to the charging
of electrets, results in the accumulation of electric charge [3,4]. The heating allows for ionic
transport in glasses in accordance with the Arrhenius law, whereas DC potential causes the
drift of ions contained in glass. In this process, the subanodic region of the glass becomes
depleted of mobile positive ions (or some kinds of them depending on the poling regime
and glass composition) [5,6] which is called a depleted or a poled layer. Further cooling
of the specimen, still under the voltage applied, “freezes” the formed distribution of ions,
providing a highly stable structure capable of numerous applications. Particularly, poling
with profiled electrodes can be used to fabricate structures for diffraction optics [7], since
poled and initial glasses have different indices. Similarly, specific profiles and patterns
can be made on glass surface via etching [8,9] or ion exchange [10] because poled and
unpoled regions of glass are affected differently by etchants and differ in their diffusion
properties [11]. Most importantly, poling breaks isotropy of glasses, adding a dedicated
direction (direction of the applied electric field); therefore, poled glasses provide significant
second order optical nonlinearity (SON), allowing for optical second harmonic generation
(SHG) and sum frequency generation. Most often, SHG is associated with the third-order
optical nonlinearity effect in the presence of a “frozen” DC electric field generated by the
distribution of ions formed in thermal poling [12]. However, one cannot rule out such a
reason for the appearance of SON as the orientation of dipolar entities in poled glass [13].

Glass poling can be carried out either in closed anode (without access of any species
capable of penetrating the glass from atmosphere or other environment to the anodic
surface of the glass, e.g., in vacuum, argon or using deposited film electrodes) [14] or in
open-anode configuration which allows for access to the environment (mainly, atmosphere)
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to the anodic surface of the glass [15]. Moreover, there is an intermediate regime, when only
a limited access of atmosphere is provided, e.g., pressed anode configuration [5]. Essentially,
results of open-anode poling strongly depend on atmospheric species penetrating into the
subanodic region of the glass [15,16]. One of the standard open-anode poling configurations
is the so-called corona-poling with a needle-shaped anode [17]. Under a high voltage
applied to the needle, plasma discharge between the anode and the specimen surface
provides a large number of hydrogen/hydronium ions generated from atmospheric water
vapor [18]. These ions penetrate into the glass, drift, and mostly compensate negative
spatial charge left in the cation-depleted layer.

In this work, we demonstrate thermal poling configuration, which uses a small
(0.2-mm-thick) gap between the anode and the specimen surface. Applying sufficiently
high voltage results in a resistive (because of thermal activation of the glass conductivity)
barrier DC plasma discharge in the gap [19], which generates hydrogen/hydronium ions
penetrating into the glass, the number of which is less for lower voltages. Moreover, we
show the effect of such poling on glasses via measurements of the passed charge and
optical SHG.

2. Materials and Methods

In this study, we used microscope glass slides Menzel with high sodium content.
The composition is (in wt.%) [20]: 72.20% SiO2, 14.30% Na2O, 6.40% CaO, 4.30% MgO,
1.20% K2O, 1.20% Al2O3, 0.30% SO3, and 0.03% Fe2O3. Particularly, atomic concentration
of Na+ ions capable of drifting in the glass towards cathode is ~6.9·1027 m−3. In our case,
this is the only concentration of interest, since multivalent ions (Ca2+, Mg2+, Al3+, Fe3+)
are less mobile than hydrogen/hydronium coming from atmosphere and, therefore, do
not participate in the poling process. Potassium ions, K+, though, are involved in the
drift [21], however, their concentration is almost 20 times lower than the one of Na+ and,
therefore, they can be neglected.

In Figure 1a, we present the scheme of the plasma poling process described above.
There, we designated a heating plate, a pressed cathode, a specimen, an anode, and a di-
electric (glass) frame that provides 200 µm gap between the anode and the specimen. The
poled region is ~8 × 8 mm2. Moreover, we used a thin (200 µm) plate of covering glass
at the cathodic side of the specimen to prevent the formation of dendritic structures [22],
which disturb SHG measurements. With a covering glass, dendrites form there and
the cathodic side of the specimen remains clean after the covering glass is removed. In
Figure 1b, we demonstrate a photo of the setup with light emission of plasma [23,24]
in the gap under 1300 V applied. This blue glowing is associated with emission of N2
molecules [25]. We established that a voltage of about 1100 V is a characteristic voltage
of plasma discharge formation in this 200 µm gap configuration (“plasma voltage”).
However, we should note that it may depend on atmospheric conditions and the quality
of the electrodes. Our experiments were carried out at room temperature 22 ◦C and
relative humidity of the air 35%. This corresponds to ~0.6 wt.% water vapors in the
air, which also contains ~75 wt.% N2, ~23 wt.%. O2, ~1 wt.% Ar and minor impurities.
Moreover, for other kinds of glasses, the setup might need to be modified. Particularly,
higher resistive glasses (e.g., glasses with lower sodium content or even alkali free, such
as BF16 glass [26]) require higher voltages, so a modification of the glass frame may be
necessary to avoid breakdown.

During poling, we measured the polarization current using Multimeter APPA109N
(APPA Technology Corp., Taipei, Taiwan). We used the Maker fringes (MF) technique [27]
for measurements of the second harmonic (SH) signal generated by poled glasses. This was
first reported by Okada [17] in 1993. Here, we applied the same methodology to glasses
poled using resistive barrier plasma discharge. The optical setup used was described in
detail elsewhere [13]. A Nd:YAG laser (Litron, Rugby, UK) with a pulse duration of 6 ns
and a wavelength of 1064 nm was used in the experiments. The essence of the method is
to measure the dependence of the transmitted SH signal on the angle of the fundamental
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beam incidence. The fringes demonstrate the interference between SH signals generated by
the poled (subanodic) region of the glass (poling-induced SON) and the cathodic surface of
the glass, which possess SON conventional for any surface [28]. Thus, the resulting curves
make it possible to compare these two SONs and to estimate the optical nonlinearity in
the poled region. We used FTIR spectrometer FSM 2201 (Infraspek Ltd., Saint-Petersburg,
Russia) to measure IR absorption around 3000–3500 cm−1, related to hydrogenated species
penetrating into the glass during the poling.
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Figure 1. Scheme (a) and an actual photo (b) of the poling setup with glowing plasma under
1300 V applied.

3. Results and Discussion
3.1. Experimental

We carried out a series of poling experiments with Menzel slides, varying the applied
voltage and keeping the poling time constant (20 min plus 10 min for cooling of a specimen).
Specimens were heated up to 250 ◦C. Time dependences of the current passing through the
samples are presented in Figure 2a, and the overall charges passed through the samples
during the process vs. applied voltage are shown in Figure 2b. The latter was obtained
via integrating the curves presented in Figure 2a. For voltages 500–900 V (and, evidently,
lower), which are below the “plasma voltage”, the current was negligible—see the lowest
curve in Figure 2a which is indistinguishable from noise. For voltage 1100 V, which
is sufficient to ignite plasma that is visible to the eye (see Figure 1b), the current and,
respectively, the overall passed charge abruptly increase. This indicates an intense poling
process. For higher voltages (1300 and 1500 V) passed charge monotonously increases,
as expected. Note that after several minutes of poling, the light emission disappears,
i.e., the discharge changes its type to the so-called “dark discharge” [29], though the current
remains gradually decreasing. The fact that the poling carries on means that there is still
plenty of hydrogen/hydronium ions in the environment of the specimen at this stage.

Note that relatively high passed charge (hundreds of mC) essentially exceeds the
charge “frozen” in the samples. The latter is the difference of total positive charge of
hydronium/hydrogen ions injected into the anode side of the glass and sodium ions ejected
from the cathode side of the glass. This charge remains uncompensated after the poling. In
our recent work, we showed that the “frozen” charge occupies only a thin area at the front
of the depleted layer [30].

Moreover, we measured SHG signal provided by the poled samples. In Figure 3a we
show MF for a virgin Menzel glass and for specimens of this glass subjected to 1100 V, 1300 V
and 1500 V. MF for voltages below the “plasma voltage” (~1070 V in our configuration)
are similar to the MF for the virgin glass. For the virgin glass or glasses poled with
insufficient voltage, the interference pattern in minima drops almost to zero (see black
curve in Figure 3a) that is complete destructive interference—SONs on both sides of the
sample, anodic and cathodic, coincide. In the case of a poled glass, subanodic layer of
the specimen possesses a strong SON, whereas the SON of the cathodic surface stays
the same. Therefore, the fringes minima are noticeably above zero for 1100 V (see olive



Materials 2022, 15, 8620 4 of 10

curve in Figure 3a). For higher voltages of poling, induced SON is even higher and
interference oscillations are barely seen (see blue and red curves in Figure 3a. In Figure 3b
we plot maximal SH signal which corresponds approximately to 63◦ incidence angle of the
excitation [31] vs. poling voltage.
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Figure 2. (a) Time dependencies of the current during the poling process of Menzel glass specimens
subjected to different voltages. (b) Dependence of charge passed during 20-min-poling on the voltage
applied (dashed curve is a guide for an eye); the characteristic ignition voltage of plasma (“plasma
voltage”) is indicated.
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Figure 3. (a) Maker fringes for an initial glass (black) and for specimens subjected to 1100 V (olive),
1300 V (blue) and 1500 V (red). (b) Dependence of the maximal SH signal (at 63◦ incidence angle) on
the voltage applied (dotted line is no more than guide for eyes); the dependence normalized by SH
signal from the initial glass; ignition voltage of plasma is indicated.

The dependence in Figure 3b is qualitatively similar to the charge dependence in
Figure 2b. We can make out two regions in these dependencies. The first is below the
“plasma voltage”, where almost nothing happens to the specimens. We attribute this to
the fact that without access of positive ions from atmosphere or with a limited access,
there are no or insufficient charge compensation mechanisms. Therefore, electric field
of uncompensated volume charge, which is directed opposite to the field created by the
applied potential, rapidly stops the poling. In addition, before the ignition of the plasma,
the resistance of the air gap between the glass and the anode electrode is high, and the
voltage applied to the glass slide is less than after the ignition, when almost all of the
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voltage is applied to the slide due to the low resistance of the plasma. The latter situation
seems to be similar to poling in vacuum under a moderate voltage, which also results
in no SHG enhancement in the Menzel glass that we recently demonstrated [13]. Note
that even without access of positive ions from atmosphere, other charge compensation
mechanisms may occur, e.g., restructuring of glass matrix with the release of molecular
oxygen and electrons [32], although this is possible under voltages higher than discussed.
The second region, above the “plasma voltage”—where intensive poling occurs in the
open-anode configuration—corresponds to a progressive increase in the current passing
through the sample and the second harmonic signal with increasing voltage. It is worth
noting that known models describing poling with an open-anode, e.g., the latest one
by Oven [33], tacitly imply that there is a plenty of ions in atmosphere, and therefore
provide monotonous dependencies of charge passed on the voltage applied. However,
in experiments, the concentration of ions capable of entering the glass in the atmosphere
should be taken into account.

Thus, we experimentally showed that the simple access of the atmosphere to the anode
does not necessarily provide open-anode configuration of poling, since the concentration of
positive ions in the atmosphere may be insufficient for the effective charge compensation.
“Physical” openness of the anode requires more conditions, e.g., voltage high enough to
ignite plasma discharge that provides a large number of positive ions capable of penetrating
into the glass.

We also measured the infra-red (IR) spectra of the poled specimens. The range of
wavenumbers that is of particular interest is about 3000–3500 cm−1, where absorption
peaks of water and differently bonded hydroxyl groups (“water” peaks) lye [34]. In
Figure 4, we present the IR spectra of the specimens poled under 1100, 1300 and 1500 V
(the IR spectrum of the virgin glass was subtracted). We observe a strong peak of
“water” absorption around ~3500 cm−1 which supports the wide-spread statement that
hydronium-like ions penetrate the glass during poling. Moreover, the specimen poled
under 1500 V has the highest peak, whereas peaks for specimens poled under 1100 V and
1300 V are weaker. This correlates with the results of charge and SHG measurements
which are the highest for the 1500 V-sample, and moderate for the others.
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3.2. Modeling

In the model developed, we consider the poling process as a current flow through
an equivalent circuit of two series resistances: R1 and R2, which correspond, respectively,
to poled and unpoled regions of the glass. A schematic illustration of poling process and
the equivalent circuit are shown in Figure 5. The poling illustration is not to actual scale
for the sake of visual clarity. We supposed that the charge compensation is complete that
is so-called local charge neutrality assumption [33]. This assumption is legit, since the
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“frozen” charge occupies only a very thin layer relatively to all volume of poled region and
can be neglected.
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The current I in the equivalent circuit when a constant DC voltage U is applied (we
neglect voltage drop at the atmospheric plasma after the ignition) is:

I(R1 + R2) = U (1)

where R1,2 are:

R1,2 =
ρ1,2d1,2

S
. (2)

Here, ρ1,2 are resistivities, which depend on mobilities of ions in the corresponding
regions, S is the samples lateral area, d1,2 are thicknesses of the regions. Due to micron-scale
depth of poling d1, one can consider the thickness of the unpoled region d2 constant and
equal to the thickness of the sample, whereas thickness of the poled region d1 depends on
the total charge passed as follows:

d1(t) =
1

eC0S
Q(t) =

1
eC0S

t∫
0

I(t)dt, (3)

where e is the fundamental charge and C0 is the initial concentration of mobile positive
ions in the glass. Equation (3) directly follows from an expression for the total charge
that occupies volume d1S. Equation (3) is valid when the front of the poling is plane and
when only two kinds of ions are considered: one initially presents in the glass, the other
penetrates into the glass from the environment.

From Equation (1) using above equations and introducing current via the charge
passed it follows that:

dQ(t)
dt

(
ρ1

S2eC0
Q(t) + R2

)
= U. (4)
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Separating variables in Equation (4) we obtain the following solution:

Q(t) = −R2S2eC0

ρ1
+

√(
R2S2eC0

ρ1

)2

+
2US2eC0

ρ1
t. (5)

Differentiating Equation (5) with respect to time gives the expression for the current:

I(t) =
U
R2

(
1 +

2Uρ1

R22S2eC0
t
)−1/2

. (6)

Note that a formula equivalent to Equation (6) was obtained earlier by Prieto and
Liñares [35] and later extended by Oven [33] to three types of moving ions. It should
be noted that we followed macroscopic description using only Ohm’s law and evident
assumption that depth of the poling is proportional to the charge passed through the
sample (see Equation (3)). We believe that this approach is more convenient for use since
the current is expressed via macroscopic values as resistances and resistivities rather than
microscopic mobilities. Although, if one expresses the resistivities in terms of mobilities,
Equation (6) becomes identical to the ones in [33,35].

We should note the developed model describes well the results obtained in the present
experiments, however, it may not be directly applicable to other poling techniques. Particu-
larly, for poling with a needle corona discharge the front of the poling is rather spherical
than plane, therefore, Equation (3) should be generalized via replacement I(t)/S→ j(t, r) ,
where j(t, r) is a coordinate-dependent current density. Penetration of other positively
charged species from the atmosphere, which has also been recorded [16,36], may also limit
the applicability of the developed model if the concentration of these species is high. In
poling with pressed electrodes, depending on regimes, there may be a lack of positive
ions in the environment, therefore, other ions inside the glass can be involved in motion,
e.g., bivalent Ca2+, as was reported in [5]. Additionally, such poling suffers issues with
repeatability because the peculiarities of pressing the electrodes to the specimen, on which
the result strongly depends, are not amenable to precise control.

Using the above model, we approximated the temporal dependencies of the poling
current, which are presented in Figure 2a, with Equation (6). We took a general approxi-
mating function I(t) = A√

1+Bt
, where A and B are fitting parameters. In calculations, the

following parameters were used: e = 1.6 × 10−19 C, C0 = 6.9 × 1027 m−3 according to the
glass composition, S = 0.64 cm2, d2 = 1.2 mm (1 mm for the specimen plus 0.2 mm for the
covering glass), and only ρ1,2 were unknown values that were deduced from the fitting. In
experimental dependencies, we cut off first several tens of seconds since the poling process
is only establishing there, i.e., we used only descending part of the curves.

The fitting curves are presented in Figure 6 together with the experimental ones,
and the deduced values of ρ1,2 are indicated on the plots. The quality of approximations
is satisfactory, and discrepancies may be caused by the impact in resistivity by the air
gap the cathodic side of the specimen, for the pressing is not ideal. Calculating the aver-
age values and the standard deviations, we found: ρ1 = (3.8 ± 1.0) × 108 Ohm·m and
ρ2 = (1.9 ± 0.8) × 105 Ohm·m. Expressing the mobilities of hydrogen/hydronium and
sodium, µ1,2, via resistivities of the regions as µ = (eC0ρ)−1, we obtained
µ1 = (2.4 ± 0.8) × 10−18 m2V−1s−1 and µ2 = (4.8 ± 1.8) × 10−15 m2V−1s−1. We compare
these results with the known literature data: in the classical work of Mehrer and coau-
thors [37], the value of Na+ diffusion coefficient DNa = 2 × 10−16 m2s−1 was obtained for
the temperature 520 K and the glass with very similar composition. This corresponds
to the mobility µNa = 5 × 10−15 m2V−1s−1, if the Haven ratio [38] is 1.0, however, the
real mobility value is slightly lower, since the Haven ratio for soda-lime glasses is
typically <1.0 [39]. Nonetheless, coincidence with our estimation for the mobility of
sodium ions, µ2, is exceptional. Regarding hydrogen/hydronium mobility, there is
lack of reliable experimental data. Though, common estimations give three orders less
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than Na+ mobility according to Oven [33] and 0.5 × 10−3 of Na+ mobility according to
Doremus [40] that also strongly correlates with our results.
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4. Conclusions

To sum up, we presented a technique of glass poling using resistive barrier discharge
plasma in atmosphere. Measured polarization currents and SHG in the specimens of soda-
lime glass poled under different voltages have demonstrated that poling is only efficient
under voltages sufficient to ignite the plasma (about 1100 V in our case). The effect of
poling under lower voltages is negligible. We attribute this to the fact that plasma discharge
generates from atmospheric water vapor plenty of hydrogen/hydronium ions, capable of
penetrating into the glass in poling. This is actually an open-anode regime of poling. For
lower voltages, on the contrary, the number of hydrogen/hydronium ions in atmosphere is
insufficient for the effective charge compensation, and the process cannot be considered as
open-anode poling. Thus, we showed that the simple openness of the anode to atmosphere
does not necessarily provides open-anode configuration of poling. We proposed a very sim-
ple model of open-anode poling which represents poling glass using an equivalent circuit
of two series resistances and Ohm’s law. This allowed us to obtain the same expression for
the polarization current as in earlier works, but represented via macroscopic parameters
as resistivities and resistances. Fitting our measurements of polarization current with a
theoretical expression, we revealed the resistivities of poled and unpoled regions, respec-
tively: ρ1 = (3.8 ± 1.0) × 108 Ohm·m and ρ2 = (1.9 ± 0.8) × 105 Ohm·m. These correspond
to hydrogen/hydronium and sodium ions mobilities µ1 = (2.4 ± 0.8) × 10−18 m2V−1s−1

and µ2 = (4.8 ± 1.8) × 10−15 m2V−1s−1, respectively. These values are in a very good
agreement with the known literature data [33,40].
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