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Abstract: Many investigators have become interested in nanostructures due to their outstanding
mechanical, chemical, and electrical properties. Two-dimensional nanoplates with higher mechanical
properties compared with traditional structural applications are a common structure of nanosystems.
Nanoplates have a wide range of uses in various sectors due to their unique properties. This
paper focused on the static analysis of functionally graded (FG) nanoplates with porosities. The
nonlocal strain gradient theory is combined with four-variable shear deformation theory to model
the nanoplate. The proposed model captures both nonlocal and strain gradient impacts on FG
nanoplate structures by incorporating the nonlocal and strain gradient factors into the FG plate’s
elastic constants. Two different templates of porosity distributions are taken into account. The FG
porous nanoplate solutions are compared with previously published ones. The impact of nonlocal
and strain gradient parameters, side-to-thickness ratio, aspect ratio, and porosity parameter, are
analyzed in detail numerically. This paper presents benchmark solutions for the bending analysis of
FG porous nanoplates. Moreover, the current combination of the nonlocal strain gradient theory and
the four-variable shear deformation theory can be adapted for various nanostructured materials such
as anisotropic, laminated composites, FG carbon nanotube reinforced composites, and so on.

Keywords: porosity; nonlocal strain gradient theory; bending; functionally graded material; Navier
method; industrial development

1. Introduction

Nanostructures have numerous applications for their advantages such as high stiffness
and strength compared with weight ratio, elastic modulus greater than 1TPa, and excellent
mechanical, chemical, and electrical properties, among others [1]. As a result, they are
used in a variety of engineering fields, such as nanoelectromechanical systems, and their
low mass and great sensitivity make them ideal for applications in medicine, biosensors,
computers, industrial development, and other fields. Several studies have reported on
nanostructure mechanical properties [2–17].

The local (classical) elasticity theory cannot predict the minuscule size influence on
nanostructures because of the lack of a nonlocal elasticity theory. Unfortunately, because the
material length scale lacks a nonlocal parameter, the local (classical) elasticity theory cannot
anticipate the small size influence on nanostructures. Experiments and molecular dynamics
(MDs) simulations can be costly, time-consuming, and difficult to model nanostructure
systems. Several nonlocal elasticity theories, including Eringen’s nonlocal theory, couple
stress theory, strain gradient theory, surface stress theory, and the modified couple stress
theory [18–25] have been used to build such atypical plate models to overcome this issue.
Using Eringen’s nonlocal relations, Pradhan and Phadikar [26] utilized the classic and
first-order shear deformation theories. Via Eringen’s nonlocal linear theory that depends
on third-order theory, Aghababaei and Reddy [27] examined the vibration and bending
of nanoplates. Shen et al. [28] discussed the vibration of a one-layered graphene sheet via
a nanomechanical sensor via the first-order theory. Malekzadeh and Shojaee [29] used
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a refined plate theory and the differential quadrature technique to analyze the vibration
of nanoplates.

Functionally graded materials (FGMs) are a type of composite material of two phases,
with the volume percentage of the FGMs elements gradually changing in thickness di-
rection [30]. This property reduces the problems that inhomogeneous composites have
with interfaces. FGMs have been enhanced to encompass a wide range of applications.
During the manufacturing of FGMs, porosities occur inside the material [31]. Porous FGMs
with high stiffness and low density are utilized in a wide range of engineering sectors,
including aviation, aerospace, and military applications. Several researchers have studied
the FG porous structural mechanical behavior [32–43]. Using Eringen’s nonlocal elasticity,
Phung-Van et al. [44] demonstrated the influence of porosities on bending and vibration
responses for FG nanoplates.

Isogeometric analysis was used by Phung-Van et al. [45] to investigate the nonlinear
transient responses of FG porous nanoplates. Dastjerdi and Aghadavoudi [46] discussed
the static behavior of sandwich plates with FG nanocomposite face sheets on an elastic basis.
The vibration of an isotropic nanoplate under heat load was discussed by Wang et al. [47].
The nonlocal Timoshenko beam theory was used by Simsek and Yurtcu [48] to explain
the buckling and bending of FG nanobeams. Aksencer and Aydogdu [49] utilized a Levy
type solution for isotropic nanoplate buckling and vibration. Jomehzadeh and Saidi [50]
employed the Levy type method to analyze the vibration of an isotropic nanoplate.

Recently, Alghanmi and Zenkour [51] used a four-variable shear and normal deforma-
tion theory to investigate the effect of porosity on the static behavior of an FG plate linked
to a piezoelectric actuator. Through a modified shear and normal deformation theory,
Zenkour and Alghanmi [52] introduced an enhanced porosity distribution for the bending
of a new model of FG sandwich plates sitting on Pasternak’s elastic foundation.

According to the above literature reviews, most research concentrates on FG nanoplates
and ignores the effect of porosity on the bending response of FG nanoplates. Due to the
scarcity of research on the topic of porosities, this study concentrated on demonstrating
the impact of the porosity operator. Furthermore, the nonlocal strain gradient integrated
was used to investigate the mechanical responses of nanoplates up to this point. However,
studies on the bending of FG porous nanoplate by utilizing the nonlocal strain gradient in
conjunction with the four-variable shear deformation theory have not been conducted in
the literature to date. To the author’s best knowledge, this pairing of the four-variable shear
deformation theory and nonlocal strain gradient theory to study FG porous nanoplate is a
novel and unexplored topic. The nonlocal parameter and strain gradient parameter, the
side-to-thickness ratio, and the porosity and exponent parameters are all discussed.

Validation examples are offered to ensure the current work’s validity. This article
is organized as follows: a nonlocal strain gradient model for the bending of FG porous
nanoplate is presented in Section 2 with the description of porosities distribution types.
Sections 3 and 4 carry out the governing equations and the solution procedure, respectively.
Section 5 provides the numerical results and discussions of the bending analysis of FG
porous nanoplate. Section 6 summarizes the study’s main points.

2. Basic Formulation
2.1. Material Properties of FG Porous Nanoplate

Consider an FG porous nanoscale plate with thickness h, length a, and width b as
depicted in Figure 1. Cartesian coordinates (x, y, z) is considered. The coordinate system
is located at the corner of the middle plane of the nanoplate. A distributed mechanical
load q(x, y) is acting on the plate top surface (z = h/2). Porosity distributions across the
z-axis are presumed to be even and uneven. The material properties of the FG porous
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nanoplate for porosities with even distribution are described based on the modified power
law function as (Daikh and Zenkour [53])

P(z) = Pm + (Pc − Pm)

(
z
h
+

1
2

)k
− (Pc + Pm)

ζ

2
, (1)

and according to uneven porosity distribution, the material properties can be written as
(Daikh and Zenkour [53])

P(z) = Pm + (Pc − Pm)

(
z
h
+

1
2

)k
− (Pc + Pm)

ζ

2

(
1− 2|z|

h

)
, (2)

where c and m are abbreviations for ceramic and metal, respectively. ζ (0 ≤ ζ � 1) denotes
the porosity coefficient and setting α = 0 yields the mechanical characteristics for a perfect
FG porous nanoplate plate. k denotes the power law exponent (k ≥ 0).
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2.2. The Nonlocal Strain Gradient Theory for FG Porous Nanoplate

The nonlocal strain gradient theory states that the stress field takes into account both
the nonlocal elastic stress field and the strain gradient stress field. The constitutive equation
for the FG porous nanoplate can be written as (Askes and Aifantis [54])

(
1− η∇2

)


σxx
σyy
τyz
τxz
τxy

 =
(

1− λ∇2
)


c11
c12
0

0
0

c12
c22
0

0
0

0
0

c44
0
0

0
0
0

c55
0

0
0
0

0
c66




εxx
εyy
γyz
γxz
γxy

, (3)

where ∇2 = ∂2

∂x2 +
∂2

∂y2 is the Laplacian operator. η and λ represent the nonlocal and strain
gradient length scale parameters. Setting the strain gradient parameter to zero (λ = 0)
yields Eringen’s nonlocal model, whereas setting the nonlocal parameter to zero (η = 0)
yields Kirchhoff’s strain gradient model. The plate stiffness coefficients cij are written as

c11 = c22 =
E(z)

1− ν2(z)
, c12 =

ν(z)E(z)
1− ν2(z)

, c44 = c55 = c66 =
E(z)

2(1 + ν(z))
, (4)

where E(z) is young’s modulus and ν(z) is Poisson’s ratio.
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2.3. Displacement Model

The displacement model for the FG porous nanoplate is introduced in this study as
(Shimpi and Patel [55])

u1(x, y, z) = u(x, y)− z ∂wb
∂x − f (z) ∂ws

∂x ,
u2(x, y, z) = v(x, y)− z ∂wb

∂y − f (z) ∂ws
∂y ,

u3(x, y, z) = wb(x, y) + ws(x, y),
(5)

where u and v are the mid-plane displacements. The transverse displacement u3 is divided
into bending (wb) and shear (ws) components. The shape function that specifies the
variation in transverse shear stresses across the thickness of the nanoplate is taken as
(Thai and Kim [56]); f (z) = − z

4 + 5
3

(
z3

h2

)
. According to the linear elasticity theory, the

strain–displacement relations are provided by

εij =
1
2
(
ui,j + uj,i

)
(6a)

The strain relations based on the mentioned displacement field in Equation (5) can be
written as

εxx = ∂u
∂x − z ∂2wb

∂x2 − f (z) ∂2ws
∂x2 , εyy = ∂v

∂y − z ∂2wb
∂y2 − f (z) ∂2ws

∂y2 ,

γyz =
∂ws
∂y [1− f ′(z)], γxz =

∂ws
∂x [1− f ′(z)],

γxy = ∂u
∂y + ∂v

∂x − 2
[
z ∂2wb

∂x∂y + f (z) ∂2ws
∂x∂y

]
.

(6b)

3. Governing Equations

Using Hamilton’s principle, the following governing equations and associated bound-
ary conditions are derived as follows

∫ a

o

∫ b

0

{∫ h
2

− h
2

σijδεijdz− [q(δwb + δws)]
z= h

2
z=− h

2

}
dydx = 0, (7)

where q is the distributed transverse load. After replacing the components of strains
from Equation (6a) into Equation (7), and thereafter integrating through the z-direction,
Equation (7) can be written as

s
Ω

{
Nxx

∂δu
∂x −Mxx

∂2δwb
∂x2 − Sxx

∂2δws
∂x2 + Nyy

∂δv
∂y −Myy

∂2δwb
∂y2 − Syy

∂2δws
∂y2

+Nxy
∂δu
∂y + Nxy

∂δv
∂x − 2Mxy

∂2δwb
∂x∂y − 2Sxy

∂2δws
∂x∂y + Qyz

∂δws
∂y + Qxz

∂δws
∂x

−qδwb − qδws}dΩ = 0,

(8)

where the stress resultants Nij, Mij, Sij, and Qiz are defined as

{
Nij, Mij, Sij

}
=
∫ h

2
− h

2
σij{1, z, f (z)}dz, i, j = x, y,

Qiz =
∫ h

2
− h

2
τiz[1− f ′(z)]dz, i = x, y.

(9)
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The governing equations can be derived by the integration of Equation (8) and then
collecting the coefficients of δu, δv, δwb, and δws as follows

∂Nxx
∂x +

∂Nxy
∂y = 0,

∂Nxy
∂x +

∂Nyy
∂y = 0,

∂2 Mxx
∂x2 + 2 ∂2 Mxy

∂x∂y +
∂2 Myy

∂y2 + q = 0,

∂2Sxx
∂x2 + 2 ∂2Sxy

∂x∂y +
∂2Syy
∂y2 + ∂Qxz

∂x +
∂Qyz

∂y + q = 0.

(10)

Inserting the constitutive equations from Equation (3) into Equation (9), the stress
resultants for the nanoplate based on the nonlocal strain gradient theory can be expressed
as

Nxx − η∇2Nxx =
(
1− λ∇2)(A1

∂u
∂x − A2

∂2wb
∂x2 − A3

∂2ws
∂x2 + A4

∂v
∂y − A5

∂2wb
∂y2 − A6

∂2ws
∂y2

)
,

Nyy − η∇2Nyy =
(
1− λ∇2)(A4

∂u
∂x − A5

∂2wb
∂x2 − A6

∂2ws
∂x2 + A7

∂v
∂y − A8

∂2wb
∂y2 − A9

∂2ws
∂y2

)
,

Mxx − η∇2Mxx =
(
1− λ∇2)(A2

∂u
∂x − A10

∂2wb
∂x2 − A11

∂2ws
∂x2 + A5

∂v
∂y − A12

∂2wb
∂y2 − A13

∂2ws
∂y2

)
,

Myy − η∇2Myy =
(
1− λ∇2)(A5

∂u
∂x − A12

∂2wb
∂x2 − A13

∂2ws
∂x2 + A8

∂v
∂y − A14

∂2wb
∂y2 − A15

∂2ws
∂y2

)
,

Sxx − η∇2Sxx =
(
1− λ∇2)(A3

∂u
∂x − A11

∂2wb
∂x2 − A16

∂2ws
∂x2 + A6

∂v
∂y − A13

∂2wb
∂y2 − A17

∂2ws
∂y2

)
,

Syy − η∇2Syy =
(
1− λ∇2)(A6

∂u
∂x − A13

∂2wb
∂x2 − A17

∂2ws
∂x2 + A9

∂v
∂y − A15

∂2wb
∂y2 − A18

∂2ws
∂y2

)
,

Nxy − η∇2Nxy =
(
1− λ∇2)[A19

(
∂u
∂y + ∂v

∂x

)
− 2
(

A20
∂2wb
∂x∂y + A21

∂2ws
∂x∂y

)]
,

Mxy − η∇2Mxy =
(
1− λ∇2)[A20

(
∂u
∂y + ∂v

∂x

)
− 2
(

A22
∂2wb
∂x∂y + A23

∂2ws
∂x∂y

)]
,

Sxy − η∇2Sxy =
(
1− λ∇2)[A21

(
∂u
∂y + ∂v

∂x

)
− 2
(

A23
∂2wb
∂x∂y + A24

∂2ws
∂x∂y

)]
,

Qyz − η∇2Qyz =
(
1− λ∇2)A25

∂ws
∂y , Qxz − η∇2Qxz =

(
1− λ∇2)A26

∂ws
∂x ,

(11)

where the quantities mentioned in the above equations are defined as followsA1 A2 A3
A4 A5 A6
A7 A8 A9

 =
∫ h

2
−h
2

cc
11

cc
12

cc
22

[1 z f (z)
]
dz,

A10 A11 A16
A12 A13 A17
A14 A15 A18

 =
∫ h

2
−h
2

cc
11

cc
12

cc
22

[z2 z f (z) f 2(z)
]
dz,

[
A19 A20 A21
A22 A23 A24

]
=
∫ h

2
−h
2

cc
66

[
1 z f (z)
z2 z f (z) f 2(z)

]
dz,

{A25, A26} =
∫ h

2
−h
2

{
cc

44, cc
55
}
[1− f ′(z)]2dz.

(12)

4. Closed-Form Solution

The solution is found for a rectangular FG porous nanoplate. The FG nanoplate is
assumed to be fully simply supported. The next boundary conditions are imposed on the
nanoplate four edges.

v = wb = ws =
∂wb
∂y = ∂ws

∂y = Nx = Mx = Sx = 0, at x = 0, a,

u = wb = ws =
∂wb
∂x = ∂ws

∂x = Ny = My = Sy = 0, at y = 0, b.
(13)
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Following Navier method, assume the solution of the displacement components in
the following form (Reddy [57])

u
v

(wb, ws)

 =


U cos(αx) sin(βy)
V sin(αx) cos(βy)

(Wb, Ws) sin(αx) sin(βy)

, (14)

where
α = π/a, β = π/b (15)

in which (U, V, Wb, Ws) are the unknowns to be determined. A trigonometric development
is used for the mechanical load as

q = q0 sin(αx) sin(βy), (16)

where q0 denote the concentration of the distributed load at the nanoplate center.
Substituting Equations (14) and (16) in Equation (10), reveals

[A]{∆} = {F}, (17)

where {∆} and {F} denote the following

{∆} = {U, V, Wb, Ws},
{F} = {0, 0, q0, q0},

(18)

and the nonzero elements aij = aji of the symmetric matrix [A] are in the Appendix A.

5. Results and Discussions

The obtained results are introduced to demonstrate the influence of nonlocal (η) and
length scale (λ) parameters on the bending of porous FG plates with even and uneven
porosity distributions. The FG porous nanoplate has a length a = 10 nm and the constituent
materials have the following characteristics

Em = 70× 109 N/m2, Ec = 380× 109 N/m2, νm = νc = 0.3. (19)

5.1. Verification Analysis

The accuracy of the present model under the nonlocal effect and without considering
strain gradient effect (λ = 0) is verified. In this case the nonlocal effect of FG nanoplates
is investigated. A validation example compared with Sobhy [58] and Hoa et al. [59] is
provided using the following non-dimensional displacement and stresses

w = 100h3Ec
a4q0

u3

(
a
2 , b

2 , z
)

, σ1 = h
aq0

σxx

(
a
2 , b

2 , z
)

,

σ5 = h
aq0

σxz

(
0, b

2 , z
)

, σ6 = h
aq0

σxy(0, 0, z), z = z
h .

(20)

Table 1 shows the non-dimensional deflection and stresses of a local (η = 0) and
nonlocal (η = 2) FG square nanoplate without the effect of porosities for two values of
inhomogeneity parameter k. According to this case, the present numerical results are in
good agreement to those of Sobhy [59] and Hoa et al. [59], for all cases of nonlocal coefficient
and inhomogeneity parameters. Table 2 exhibits the variation in the non-dimensional
deflection w in a square FG nanoplate (without considering the porosity factor) in terms of
the nonlocal coefficient and length-to-thickness ratio. The current findings are consistent
with those presented by Hoa et al. [59].
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Table 1. Dimensionless deflection and stresses in a square FG nanoplate (a/h = 10).

k η Method w σ1 σ5 σ6

0 0 Sobhy [58] 2.9603 19.9550 2.4618 10.7450
Hoa et al. [59] 2.9607 19.9433 2.3873 10.7387

Present 2.9606 19.9432 2.3857 10.7387
2 Sobhy [58] 5.2977 35.7108 4.4056 19.2289

Hoa et al. [59] 5.2983 35.6900 4.2723 19.2177
Present 5.2981 35.6898 4.2694 19.2176

0.5 0 Sobhy [58] 5.4971 29.6544 2.4559 4.4493
Hoa et al. [59] 5.4816 29.3487 2.2354 4.4899

Present 5.4974 29.6351 2.3794 4.4474
2 Sobhy [58] 9.8374 53.0686 4.3950 7.9624

Hoa et al. [59] 9.8096 52.5215 4.0003 8.0350
Present 9.8380 53.0340 4.2580 7.9589

Table 2. Dimensionless deflection w in a square FG nanoplate (a/h = 10).

a/h η Method
k

0 0.5 1 4 10

4 0 Hoa et al. [59] 3.7905 5.6097 7.1689 11.0892 13.5096
Present 3.7864 5.6546 7.2842 11.5987 13.9086

0.5 Hoa et al. [59] 3.9775 5.8866 7.5227 11.6364 14.1762
Present 3.9732 5.9336 7.6437 12.1711 14.5949

1 Hoa et al. [59] 4.5387 6.7171 8.5840 13.2781 16.1762
Present 4.5338 6.7708 8.7221 13.8881 16.6540

1.5 Hoa et al. [59] 5.4740 8.1012 10.3528 16.0142 19.5096
Present 5.4680 8.1660 10.5194 16.7500 20.0858

10 0 Hoa et al. [59] 2.9607 4.5292 5.8701 8.7307 10.0194
Present 2.9606 4.5371 5.8895 8.8148 10.0870

0.5 Hoa et al. [59] 3.1068 4.7527 6.1598 9.1615 10.5139
Present 3.1067 4.7610 6.1802 9.2498 10.5848

1 Hoa et al. [59] 3.5451 5.4233 7.0289 10.4540 11.9972
Present 3.5450 5.4327 7.0521 10.5547 12.0781

1.5 Hoa et al. [59] 4.2756 6.5408 8.4773 12.6082 14.4694
Present 4.2755 6.5522 8.5053 12.7297 14.5670

100 0 Hoa et al. [59] 2.8042 4.3255 5.6252 8.2859 9.3613
Present 2.8042 4.3255 5.6254 8.2868 9.3620

0.5 Hoa et al. [59] 2.9426 4.5389 5.9028 8.6948 9.8232
Present 2.9426 4.5390 5.9030 8.6957 9.8239

1 Hoa et al. [59] 3.3577 5.1793 6.7356 9.9215 11.2091
Present 3.3577 5.1794 6.7358 9.9225 11.2099

1.5 Hoa et al. [59] 4.0496 6.2466 8.1236 11.9660 13.5189
Present 4.0496 6.2467 8.123939 11.9671 13.5199

5.2. Parametric Analysis

This subsection presents numerical results for the FG porous nanoplate according
to the nonlocal strain gradient theory. The influence of different values of the nonlocal
parameter (η), length scale parameter (λ), porosity coefficient (ζ), length-to-thickness
ratio (a/h), and aspect ratio (a/b) on the bending of the FG porous nanoplate plates are
investigated. The dimensionless displacement and stresses used for the present results are

w = 10h3Ec
a4q0

u3

(
a
2 , b

2 , z
)

, σ1 = h
aq0

σxx

(
a
2 , b

2 , z
)

,

σ5 = 10h
aq0

σxz

(
0, b

2 , z
)

, σ6 = 10h
aq0

σxy(0, 0, z), z = z
h .

(21)

The parameters considered (except otherwise clarified) are k = 2, a/h = 10, a/b = 1,
λ = 1, η = 2. The variation in the non-dimensional deflection and stresses in a square



Materials 2022, 15, 8601 8 of 19

FG porous nanoplate for different values of the nonlocal and length scale parameters are
depicted in Tables 3–6.

Table 3. Dimensionless deflection w in a square FG porous nanoplate (k = 2, a/h = 10).

η λ
Perfect Even Uneven

ζ = 0 ζ = 0.15 ζ = 0.25 ζ = 0.15 ζ = 0.25

0 0 0.7573 1.1081 1.6539 0.8400 0.9098
1 0.6325 0.9254 1.3812 0.7015 0.7599
2 0.5429 0.7944 1.1858 0.6023 0.6523
4 0.4232 0.6192 0.9242 0.4694 0.5084

Table 3. Cont.

η λ
Perfect Even Uneven

ζ = 0 ζ = 0.15 ζ = 0.25 ζ = 0.15 ζ = 0.25

1 0 0.9068 1.3268 1.9804 1.0058 1.0894
1 0.7573 1.1081 1.6539 0.8400 0.9098
2 0.6501 0.9512 1.4198 0.7211 0.7811
4 0.5067 0.7414 1.1066 0.5621 0.6088

2 0 1.0563 1.5455 2.3068 1.1717 1.2690
1 0.8821 1.2907 1.9265 0.9785 1.0598
2 0.7572 1.1081 1.6539 0.8400 0.9098
4 0.5902 0.8636 1.2890 0.6547 0.7091

4 0 1.3552 1.9830 2.9598 1.5033 1.6282
1 1.1318 1.6561 2.4718 1.2555 1.3598
2 0.9716 1.4217 2.1220 1.0778 1.1674
4 0.7573 1.1081 1.6539 0.8400 0.9098

Table 4. Dimensionless axial stress σ1 in a square FG porous nanoplate (k = 2, a/h = 10).

η λ
Perfect Even Uneven

ζ = 0 ζ = 0.15 ζ = 0.25 ζ = 0.15 ζ = 0.25

0 0 3.6067 4.0854 4.8992 3.8081 3.9583
1 3.0121 3.4119 4.0915 3.1803 3.3058
2 2.5858 2.9290 3.5125 2.7302 2.8379
4 2.0154 2.2829 2.7376 2.1279 2.2119

1 0 4.3186 4.8918 5.8662 4.5597 4.7396
1 3.6067 4.0854 4.8992 3.8081 3.9583
2 3.0963 3.5072 4.2058 3.2691 3.3981
4 2.4132 2.7335 3.2780 2.5480 2.6485

2 0 5.0306 5.6982 6.8333 5.3114 5.5210
1 4.2013 4.7588 5.7068 4.4358 4.6108
2 3.6067 4.0854 4.8992 3.8081 3.9583
4 2.8110 3.1841 3.8184 2.9680 3.0851

4 0 6.4544 7.3110 8.7674 6.8148 7.0836
1 5.3904 6.1058 7.3221 5.6913 5.9159
2 4.6275 5.2417 6.2858 4.8859 5.0787
4 3.6067 4.0854 4.8992 3.8081 3.9583
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Table 5. Dimensionless shear stress σ5 in a square FG porous nanoplate (k = 2, a/h = 10).

η λ
Perfect Even Uneven

ζ = 0 ζ = 0.15 ζ = 0.25 ζ = 0.15 ζ = 0.25

0 0 2.1857 2.1271 2.0595 1.9621 1.8000
1 1.8254 1.7765 1.7200 1.6386 1.5033
2 1.5670 1.5251 1.4766 1.4067 1.2905
4 1.2213 1.1886 1.1508 1.0964 1.0058

1 0 2.6171 2.5470 2.4660 2.3494 2.1553
1 2.1857 2.1271 2.0595 1.9621 1.8000
2 1.8763 1.8261 1.7680 1.6844 1.5453
4 1.4624 1.4233 1.3780 1.3128 1.2044

2 0 3.0485 2.9669 2.8726 2.7367 2.5106
1 2.5460 2.4778 2.3990 2.2855 2.0967
2 2.1857 2.1271 2.0595 1.9621 1.8000
4 1.7035 1.6579 1.6052 1.5292 1.4029

4 0 3.9114 3.8067 3.6856 3.5113 3.2212
1 3.2666 3.1791 3.0780 2.9324 2.6902
2 2.8043 2.7292 2.6424 2.5174 2.3094
4 2.1857 2.1271 2.0595 1.9621 1.8000

Table 6. Dimensionless shear stress σ6 in a square FG porous nanoplate (k = 2, a/h = 10).

η λ
Perfect Even Uneven

ζ = 0 ζ = 0.15 ζ = 0.25 ζ = 0.15 ζ = 0.25

0 0 5.44216 5.10538 4.1978 5.4135 5.3822
1 4.5450 4.2637 3.5058 4.5211 4.4949
2 3.9018 3.6603 3.0096 3.8812 3.8588
4 3.0410 2.8529 2.3457 3.0250 3.0075

1 0 6.5164 6.1131 5.0264 6.4821 6.4446
1 5.4421 5.1054 4.1978 5.4135 5.3822
2 4.6720 4.3829 3.6037 4.6474 4.6205
4 3.6413 3.4160 2.8087 3.6222 3.6018

2 0 7.5906 7.1209 5.8550 7.5507 7.5070
1 6.3393 5.9470 4.8898 6.3059 6.2694
2 5.4422 5.1054 4.1978 5.4135 5.3822
4 4.2416 3.9791 3.2717 4.2193 4.1948

4 0 9.7391 9.1364 7.5122 9.6878 9.6317
1 8.1336 7.6303 6.2738 8.0908 8.0439
2 6.9825 6.5504 5.3859 6.9458 6.9055
4 5.4422 5.1054 4.1978 5.4135 5.3822

Even and uneven types of porosity distribution with two values of porosity coefficients
are discussed in addition to the perfect case. It can be observed from these tables that
the center deflection and stresses increase by the decreasing in length scale parameter λ
and by the increasing in the nonlocal parameter η, whatever the FG nanoplates type and
porosity coefficient ζ are. Furthermore, it can be concluded that as the porosity coefficient ζ
increases, so do the deflection w and in-plane normal stress σ1 as depicted in Tables 3 and 4.
This is due to a decrease in plate stiffness caused by the presence of porosity. Tables 5 and 6
reveal that the transverse shear stress σ5 and the in-plane shear stress σ6 are decreased
with the existence of porosity factor ζ. It can be concluded that the deflection and stresses
results of FG nanoplates with uneven porosities have lower values than the ones with even
porosities except for the in-plane stress σ6.

The center deflection w variation for three types of FG nanoplates versus the length scale
parameter λ and the nonlocal parameter η are displayed in Figure 2a and 2b, respectively.
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Figure 2. The variation in dimensionless center deflection w in a square FG porous nanoplate in
terms of (a) λ (b) η.

According to Figure 2, the presence of porosity increases deflection significantly when
compared with nonporous FG nanoplates. The nanoplates with porosities that are unevenly
distributed deflect less than those that are evenly distributed. Moreover, as previously
mentioned, for the three types of FG nanoplates, the center deflection increase by the
decreasing in λ and by the increasing in η. In Figure 3a,b, the center deflection w variation
for five types of FG nanoplates in terms of aspect ratio a/b and length-to-thickness ratio
a/h is demonstrated, respectively. The aspect ratio impact on the central deflection is
much larger than that of the length-to-thickness ratio for all FG nanoplates types. The FG
nanoplates with even porosities (ζ = 0.25) have the largest deflections of all types.
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Figure 4 shows the variation in center deflection and stresses for four types of FG
porous nanoplate with different values of λ and fixed nonlocal parameter η. The FG
nanoplates with uneven porosities and λ = 2 have the lowest deflections of all types as
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shown in Figure 4a. Figure 4b shows that the in-plane normal stress σ1 have the lowest
values at the FG nanoplate upper surface with the uneven porosity distribution and λ = 2
while the even porosity distribution and λ = 2 cause the lowest stresses at the lower surface.
For FG nanoplates, the variation in shear stress σ5 through the thickness is not parabolic,
and maximum values do not happen in the center of the plates as shown in Figure 4c.

Furthermore, the FG nanoplates with even and uneven porosities are identical in the
upper 15% of the thickness. It can be found from Figure 4d that the in-plane stress σ6 for the
uneven type are equal to zero at z ∼= 0.18 while for even type are equal to zero at z ∼= 0.19.

With fixed length scale parameter (λ = 1) and two different values of the nonlocal
parameter (η = 0, 2), the variation in center deflection and stresses are depicted in Figure 5
for FG nanoplate with even and uneven porosities. The lowest deflections of all types
happened in the case of uneven porosities and η = 0 as shown in Figure 5a. The lowest
values of in-plane normal stress σ1 at the nanoplate upper surface occur with the case of
uneven porosity distribution (η = 0) while the lowest values of stresses at the nanoplate
lower surface happened with the even porosity distribution case (η = 0). The maximum
values of shear stress σ5 occur at z ∼= 0.24 for all types of FG nanoplates as shown in
Figure 5c.
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Figure 5. The variation in dimensionless center deflection and stresses in a square FG porous
(uneven\even distribution) nanoplate for different values of η. (a) w, (b) σ1 , (c) σ5, (d) σ6.

It is apparent that the in-plane stresses σ6 do not depend on the nonlocal parameter η
for both even and uneven cases at z ∼= 0.19 as illustrated in Figure 5d.

Figure 6 shows the variation in center deflection and stresses across the thickness direc-
tion in a square FG nanoplate with uneven and even porosity distribution and two values
of ζ. The smallest deflections happened for the uneven case (ζ = 0.15) as demonstrated in
Figure 6a. From Figure 6b, we observe that the even porosity case (ζ = 0.25) causes the
smallest values of normal stress σ1 at the plate’s lower surface and the highest values at
the plate’s upper surface. The maximum value of shear stress σ5 at z ∼= 0.23 are caused
by the even porosity case with ζ = 0.25 as shown in Figure 6c. It can be observed from
Figure 6d that the in-plane stresses σ6 are not dependent on the porosity coefficient ζ and
the porosity type at z ∼= −0.28 and z ∼= 0.28.
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The two-dimensional (2D) distribution of the deflection and stresses of FG rectangular
nanoplate (a/b = 1/2) with even porosities in terms of ζ and η are examined in Figure 7.
It can be observed from Figure 7a,b that the increasing in the porosity coefficient and the
nonlocal parameter led to an increment of central deflection and normal stress σ1. It can
be found from Figure 7c that shear stress σ5 is increased with the decrease in porosity
coefficient ζ and the increase in the nonlocal parameter η. Furthermore, we can observe
that the influence of ζ on the in-plane stress σ6 is more significant with the increment of η
as shown in Figure 7d.
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Figure 8 exhibits the 2D distribution of the center deflection and stresses of FG rectan-
gular nanoplate (a/b = 1/2) with even porosities in terms of ζ and λ. The increase in the
porosity coefficient with the decrease in the length scale parameter led to an increment of
central deflection and normal stress σ1 as shown in Figure 8a,b. From Figure 8c,d, we can
see that shear stress σ5 and in-plane stress σ6 are increased with the decrease in porosity
coefficient and length scale parameter.
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In Figure 9, the variation in center deflection and stresses across the thickness direction
in a square FG nanoplate with even porosity distribution and different values of the power
law exponent is plotted. Figure 9a shows that the deflection increases as k increases for fixed
ζ = 0.15, λ = 1 and η = 2. The in-plane normal stresses σ1 of the FG porous nanoplate are
tensile at the upper surface and compressive at the lower surface, as depicted in Figure 9b.
The homogeneous FG porous nanoplate yields the highest compressive stresses at the
lower surface and the lowest tensile stresses at the upper surface. Figure 9c captures the
non-dimensional shear stress along the plate thickness of various FG porous nanoplates for
different power law exponent k values. For the homogeneous FG porous nanoplate, the
maximum results occur at a point on the mid-plane. The maximum values for the other FG
porous nanoplate, on the other hand, are at different locations of the FG porous nanoplate.
For k = 4, the highest magnitude of the FG porous nanoplate is obtained.

Finally, Figure 9d illustrates the through thickness distribution of in-plane tangential
stresses σ6 of FG porous nanoplate for various exponential factors. The in-plane tangential
stresses, unlike in-plane normal stresses σ1 , are tensile at the lower surface and compressive
at the upper surface. The highest compressive stress is found at the upper surface of the FG
porous nanoplate for k = 10.



Materials 2022, 15, 8601 16 of 19Materials 2022, 15, x FOR PEER REVIEW 16 of 19 
 

 

  

  
Figure 9. The variation in dimensionless center deflection and stresses in a square FG porous (even 
distribution) nanoplate for different values of 𝑘. (a) 𝑤, (b) 𝜎  , (c) 𝜎 , (d) 𝜎 . 

6. Conclusions 
This paper is interested in developing the nonlocal strain gradient theory for the anal-

ysis of the bending of FG porous nanoplates. A four-variable shear deformation theory is 
used for the modeling of the FG porous nanoplate. Two different porosity distributions 
are considered in this paper. The equilibrium equations are described in detail and de-
rived utilizing the virtual work concept and Navier’s procedure. The nonlocal and strain 
gradient parameters, porosity factor, length-to-thickness ratio, and aspect ratio are all ex-
plored. Comparison studies are provided. Additional results are provided to serve com-
parison purposes. The major findings are as follows: 
• The presence of a porosity factor has a significant impact on the static response of the 

FG nanoplate and FG nanoplates with unevenly distributed porosities deflect less 
than those with evenly distributed porosities; 

• The impact of the nonlocal parameter on the central deflection and stresses is oppo-
site to that of the response of strain gradient parameter under the same conditions; 

• The impact of aspect ratio 𝑎/𝑏 on the central deflection is much larger than that of 
the side-to-thickness ratio 𝑎/ℎ; 

Figure 9. The variation in dimensionless center deflection and stresses in a square FG porous (even
distribution) nanoplate for different values of k. (a) w, (b) σ1 , (c) σ5, (d) σ6.

6. Conclusions

This paper is interested in developing the nonlocal strain gradient theory for the
analysis of the bending of FG porous nanoplates. A four-variable shear deformation theory
is used for the modeling of the FG porous nanoplate. Two different porosity distributions
are considered in this paper. The equilibrium equations are described in detail and derived
utilizing the virtual work concept and Navier’s procedure. The nonlocal and strain gradient
parameters, porosity factor, length-to-thickness ratio, and aspect ratio are all explored.
Comparison studies are provided. Additional results are provided to serve comparison
purposes. The major findings are as follows:

• The presence of a porosity factor has a significant impact on the static response of the
FG nanoplate and FG nanoplates with unevenly distributed porosities deflect less than
those with evenly distributed porosities;

• The impact of the nonlocal parameter on the central deflection and stresses is opposite
to that of the response of strain gradient parameter under the same conditions;

• The impact of aspect ratio a/b on the central deflection is much larger than that of the
side-to-thickness ratio a/h;
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• The results in the tables and figures indicate that the decreasing in the length scale
parameter λ increases the center deflection and stresses;

• The center deflection and stresses increase by the increase in the nonlocal parameter η
for all types of FG porous nanoplates. It implies that the nonlocal parameter may be
capable of reducing the stiffness of FG porous nanoplates.
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Appendix A

a11 = A1α2 + A24β2, a12 = (A4 + A24)αβ, a13 = −α[A2α2 + (A5 + 2A25)β2],

a14 = −α[A3α2 + (A6 + 2A26)β2], a15 = −αA7, a22 = A24α2 + A8β2,

a23 = −β[A9β2 + (A5 + 2A25)α
2] , a24 = −β[A10β2 + (A6 + 2A26)α

2],
a25 = −βA11, a33 = A12α4 + 2(A14 + 2A27)α

2β2 + A17β4,

a34 = A13α4 + 2(A15 + 2A28)α
2β2 + A18β4, a35 = A16α2 + A19β2,

a44 = A20α4 + A32α2 + 2(A21 + 2A29)α
2β2 + A30β4 + A22β4,

a45 = (A22 + A33)α
2 + (A23 + A31)β2, a55 = −(A34α2 + A35β2 + A36).
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