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Abstract: Today, artificial intelligence plays a huge role in the mechanical engineering field for
solving many complex problems and the problem with fracture mechanics is one of them. In fracture
mechanics, artificial intelligence is used to predict crack behavior under various conditions such as
mixed-mode loading. Many parameters are used for explaining the crack behavior under various
conditions, but those parameters are obtained from destructive testing, in which usually, only one
data point is obtained from each test. An artificial problem method requires a large amount of data to
train the model to be able to learn crack behavior, which is a disadvantage of applying this method to
fracture mechanics. To eliminate the disadvantage of the large amount of experiment data required
for modeling, in this study, the small data obtained from the experiment along with data obtained
from fracture criteria that were used for elementary prediction of mixed mode fracture toughness
were used to create an artificial intelligence model. Data from the experiment was combined with
fracture criteria data using the multi-fidelity surrogate model that is described in this study. The
mixed mode I/II fracture toughness of the PMMA material was tested in order to primarily propose
the data combination technique. After the modeling process, the prediction results indicated that the
performance of a model in which the actual test data was combined with the data from the fracture
criteria (multi-fidelity surrogate model) was more predictively effective compared to only actual
data-based modeling.

Keywords: mixed-mode I/II; fracture criteria; artificial intelligence; Kriging; multi-fidelity surrogate
model

1. Introduction

One of the crucial factors to consider when designing engineered components is
fracture toughness. This parameter of the fracture mechanics field indicates a material’s
capacity to withstand the crack expansion of discontinuous or cracked materials in the
presence of external loads. According to the direction of the external load acting on the
crack surface, fracture toughness can be divided into three modes [1]. For the majority of
engineering parts, the load pattern or direction is more likely to occur in a mixed direction
than in just one direction. According to the nature of the load direction on that part, it must
be studied in a mixed-mode fracture toughness; either it is studied in mixed-mode I/II [2,3],
mixed-mode I/III [4,5], or mixed-mode II/III [6,7], with mixed-mode I/II loading being
popularly studied in various research. The fracture toughness values under mixed-mode
loading can be calculated under several methods such as actual testing, numerical method,
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etc. In addition to such methods, in recent years, the artificial intelligence method was used
to calculate or predict fracture toughness values.

Artificial Intelligence is one of the most effective solutions to complex problems based
on human learning and decision-making. The majority of artificial intelligence models
that predict fracture toughness use supervised learning which trains their models using
data from actual fracture toughness tests in order to produce accurate predictions [8–10].
For this reason, the dataset used to train the model must be sufficiently large enough so
that the model can learn the behavior of the material. The relatively data-intensive use of
modeling artificial intelligence is considered a huge disadvantage in fracture toughness
prediction. The fracture toughness test is destructive testing in which the test specimens
are destroyed during testing and cannot be used for other testing anymore. According to
the testing characteristics of fracture toughness, tests that are performed in several types of
engineering materials such as polymers, metal, composites, or building materials usually
obtain a single point of data from each test. As a result, gathering sufficient data to model
artificial intelligence necessitates extensive actual testing, which appears to go against
the idea that predictive modeling is used to minimize testing. In addition to the fracture
toughness data from the actual test, when considering the method for determining the
fracture toughness, a method by which the elementary fracture toughness can be calculated
is known as fracture criteria, whereby a lower cost of data acquisition is compared to the
actual test data.

The fracture criteria is a numerical model based on the relationship between stress,
strain, or energy occurring around the crack tip of material. The fracture criteria was
designed for pure model loading, but it can be extended to mixed-mode loading. Ordinarily,
the fracture criteria is designed to indicate whether material is fractured or not by giving a
specific value, but it can also be used as an elementary prediction of fracture toughness.
Many fracture criteria are created based on the relationship around the crack tip. as Also of
interest is the generalized maximum tangential stress criteria (GMTS) [11,12], which focuses
on the tangential stresses at the crack tip, and the average strain energy density criteria
(ASED) [13,14], which focuses on the strain energy density around the crack tip, and the
generalized maximum energy released rate criteria (GMERR) [15], which concerns the strain
energy release rate around the crack tip etc. The fracture criteria serves as an excellent
indication of the fracture of the material, but sometimes the specific value of fracture
toughness obtained from the fracture criteria is quite different from the actual fracture
toughness, as seen in the previous work of Poapongsakorn et al. [5], which describes the
time-dependence of epoxy resin that was found in the elementary fracture toughness from
criteria clearly different from the actual fracture toughness value.

In order to solve the relatively data-intensive use of modeling artificial intelligence,
as in the case of models where the fracture toughness of materials is applied and where the
acquisition of data is limited due to high cost or limited material, or when it is difficult to
prepare specimens such as composites materials that take a lot of time to be molded or metal
materials that take a long time in the heat treatment process, etc., this research aims to create
an artificial intelligence model using small data from actual fracture toughness tests. The
data from the actual fracture toughness test are combined with the elementary prediction
data obtained from the widely used fracture criteria, including the generalized maximum
tangential stress criteria (GMTS), the average strain energy density criteria (ASED), and the
generalized maximum energy released rate criteria (GMERR) in the model training stage to
obtain enough data to train the model to be able to make accurate predictions. Poly (methyl
methacrylate) or PMMA, which is frequently used in lab-scale experiments, was chosen to
perform fracture toughness testing under mixed-mode I/II loading in order to concentrate
on presenting an artificial intelligence modeling technique from a small actual test dataset
by combining the data with fracture criteria. The incline crack specimen with three-point
bend testing configurations was selected as described in the first section of this study. The
widely used fracture criteria for elementary fracture toughness prediction are described in
the second section. Combining actual testing data with elementary prediction data from
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fracture criteria for artificial intelligence modeling relies on the multi-fidelity surrogate
model integration principle [16–18] commonly used for multiple data combinations in
aircraft design and the Kriging algorithm [19–21], which is designed for modeling artificial
intelligence from small datasets that are described in the third section. The performance
of the artificial intelligence model generated from the data integration is compared with
the performance of the model generated from the only actual test data shown in the last
section of this study.

2. Mixed-Mode I/II Fracture Toughness

This study aims to present a technique for improving artificial intelligence model
prediction accuracy using a limited testing dataset. A poly (methyl methacrylate) or PMMA
sheet, which is widely used in lab-scale testing, was employed to test the fracture toughness
under mixed-mode I/II in order to concentrate largely on the presentation of the approach.
Table 1 shows the mechanical properties of the PMMA sheet utilized in this study, for which
testing was conducted in accordance with ASTM D638 and D732 standards. Numerous
testing methods and specimens, such as incline edge crack asymmetric bending [3], compact
tension shear [6], asymmetric four-point bending [22], semi-circular bending [23], Brazilian
disc specimen [24], etc., are used to study mixed-mode I/II fracture toughness. In this study,
the mixed-mode I/II of PMMA was studied using the inclined crack bending specimen
based on previous research by Mingdong Wei [25] and M.R.M. Aliha [26]. The inclination
crack bending specimen (ICB) was modified to be more suitable for our three-point bending
testing apparatus by extending its width and length. The dimension of the ICB specimen
is shown in Figure 1 (the crack length, inclined angle, span length (S), and thickness of
specimen (t) will be explained in the next section).
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Table 1. Mechanical properties of PMMA used in this study.

Properties Values

Tensile strength (MPa), σt 70.00 ± 3.67
Shear strength (MPa), τt 43.00 ± 2.45
Young’s modulus (GPa), E 2.95 ± 0.78
Shear modulus (GPa), G 1.10 ± 0.14
Poisson’s ratio, v 0.30 ± 0.02

Stress intensity factors (K) were used to present the mixed-mode I/II fracture tough-
ness values of PMMA in the form of the ICB specimen shape, which were divided into
mode I (KI) and mode II (KI I) stress intensity factors, which we will refer to as “fracture
toughness” to avoid confusion. The KI and KI I of the ICB specimen can be calculated
using the Equations (1) and (2), respectively. For ICB specimens, the crack’s inclination
at an angle to the line of load applied to the specimen causes a mixed load between the
open crack loading (mode I) and the shear crack loading (mode II) to be created. The ratio
between mode I and mode II loading, also called “mode mixity parameter (Me)”, can be
calculated using Equation (3)

KI =
P

Wt
√

πa0,ICBYI

(
a0,ICB

W
,

S
W

, β

)
(1)
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KI I =
P

Wt
√

πa0,ICBYI I

(
a0,ICB

W
,

S
W

, β

)
(2)

Me =
2
π

tan−1
(

KI
KI I

)
(3)

where P is maximum load applied to the specimen, W is the specimen width, t is the
specimen thickness, a0,ICB is the initial crack length, S is the span length that measures
the distance from the center of the specimen to the bottom of the three-point bending
pin in horizontal axis, β is the inclined crack angle, YI and YI I are the normalized or
dimensionless stress intensity factors for mode I and mode II, respectively, which depend
on the specimen’s geometry and loading configurations. The corresponding values of YI
and YI I of the ICB specimen at different specimen geometries and loading configurations
can be computed using the finite element analysis model (FEA). The FEA model of the ICB
specimen in ABQUS 6.13 software is shown in Figure 2. The FEA modeling used material
properties of PMMA (Table 1) and the load applied to the model was fixed at 1 kN. The FEA
model of all specimen geometries and loading configurations was created by twenty nodes
quadratic C3D20 elements (Hex-dominated) with a convergence at 1 mm, the approximate
global element size. Mesh refinement was generated around the crack tip for singularity
concerns of the stress-strain field around the crack tip (Figure 2 right-hand side) by the
fifteen nodes quadratic C3D15 element (Wedge) with a 0.15 mm element size. For elements
that are defined according to the above, the model had approximately 21,536 elements.
According to actual testing, the moving condition of the FEA model was set, and the
support pin on the bottom left side is set to be motionless or fixed to both move and rotate.
The support pin on the bottom right side was configured as a roller support that can be
moved along the x-axis and rotated in the direction normal to the x-y plane.
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According to preliminary experiments, the length of the FEA model was set at 100 mm,
the width at 30 mm, the ratio between initial crack length and specimen width set at 0.6,
the ratio between span length and specimen width set at 0.6, and the incline crack angle (β)
was increased from 0◦ to 50◦ (increment 5◦). According to Equation (4), YI and YI I can be
converted from KI and KI I extracted from the finite element analysis using the J-integral
method [26,27]. The dimensionless stress intensity factor YI and YI I at various incline crack
angles are shown in Figure 3. The results showed that YI decreased as the incline crack
angle increased, whereas YI I increased until reaching the maximum value at an incline
crack angle around 20◦ and then decreased. According to the FEA result, the incline crack
angle was chosen to be 0◦ for pure mode I (Me = 1), 20◦ for mixed-mode I/II (Me = 0.5),
and 31◦ for pure mode II (Me = 0). Fracture toughness testing was carried out on a Lloyd
universal testing machine LD series (100 kN) at a loading rate of 10 mm/min. The ICB
specimen was prepared using a laser cutting process on a PMMA sheet. A brand-new razor
blade was used to cut the crack tip of the ICB specimens to ensure that it contained the
theoretically sharp crack. In Equations (1) and (2), the mixed mode fracture toughness
shown values were changed according to the function of stress (P/Wt) applied to the
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specimen. The stress function applied to the specimen is found to be related to the force
exerted on the specimen (P) and the cross-sectional area of the stressed area (Wt). In this
study, the thickness of the ICB specimen which influenced the cross-sectional area of the
stressed area was included to factor in the design of the experiment (DOE). The general
full factorial design was generated, with at least three replicates in each condition and the
average fracture toughness of PMMA from testing used for the present predictions method
is shown in Table 2.

Yi =
KiWt

P√πa0,ICB
, i = Mode I, I I, I I I (4)
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Table 2. Average mixed-mode I/II fracture toughness of PMMA.

Thickness
(mm) Me

KI
(MPa·m1/2)

KII
(MPa·m1/2)

Average SD Average SD

5 1.0 1.509 0.052 0.009 0.002
5 0.5 0.854 0.041 0.825 0.039
5 0.0 0.012 0.001 1.439 0.110
10 1.0 1.365 0.080 0.008 0.002
10 0.5 1.152 0.039 1.107 0.036
10 0.0 0.010 0.001 1.205 0.042

3. Mixed-Mode I/II Fracture Toughness Prediction
3.1. Mixed-Mode I/II Fracture Criteria

For the branch of fracture mechanics that studies the behavior of cracks under various
loading types, such as crack propagation, crack severity parameters, and so on, the occur-
rence behavior of cracks in a material can be explained by the relationship of stress, strain,
or energy exerted on the crack of the material. As a result, many researchers attempted to
predict crack behavior, such as whether fractures occur on materials or not when subjected
to various loading conditions, using a variety of numerical equations based on a relation-
ship of stress, strain, energy, or material behavior known as “fracture criteria”. A fracture
criterion defines how fracture occurs on material by giving a specific value which could be
used as an elementary fracture toughness predictive tool. Most fracture criteria are typically
designed for pure mode loading conditions, but they have also been developed and applied
to mixed-mode loading. In this study, the generalized maximum tangential stress (GMTS),
the average strain energy density (ASED), and the generalized maximum energy release
rate criteria (GMERR) were used for the elementary prediction of the mixed-mode I/II
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fracture toughness of PMMA. The brief fracture criteria used in this study is described in
this section.

3.1.1. Generalized Maximum Tangential Stress Criteria (GMTS)

The generalized maximum tangential stress (GMTS) is a fracture criterion that was
modified from maximum tangential stress (MTS) to improve the predictive performance of
the fracture criteria. The GMTS criteria is a criterion based on the stress intensity factor (K)
with added the T-stress term into the original MTS criteria. For the GMTS fracture criteria
aimed at studying the tangential stresses at the crack tip (σθθ), these stresses can be written
according to the Equation (5) [25]

σθθ =
1√
2πr

cos
θ0

2

(
KI cos2 θ0

2
− 3

2
KI I sin θ0

)
+ T sin2 θ0 + (H.O.T)θθ (5)

where r is the distance to the crack tip in polar coordinates, θ0 is initial crack growth angle
measured from the initial crack direction, T is a non-singular term or knows as T-Stress,
and H.O.T. is the high order term in the stress solution. According to the GMTS fracture
criteria, a material is fractured when the tangential stress at the crack tip exceeds the stress
that the material can withstand, with the fracture growing in the direction of the maximum
tangential stress at the crack tip. The direction of crack growth or initial crack growth angle
(θ0) can be described in terms of dimensionless stress intensity factors that are the basis of
the fracture criteria in Equation (6), where the estimated values of the initial crack growth
angle (θ0) is equal to 0◦ at pure mode I (Me = 1), −52◦ at mixed-mode I/II (Me = 0.5), and
−70◦ at pure mode II (Me = 0). The elementary prediction of mixed-mode I/II fracture
toughness in the form of specific values of the GMTS criteria (KI,GMTS and KI I,GMTS) was
obtained from the relationship of mode I critical fracture toughness (KIC) described in
Equations (7) and (8)

θ0 = − cos−1

3(YI I/YI)
2 +

√
1 + 8(YI I/YI)

2

1 + 9(YI I/YI)
2

 (6)

KIC
KI,GMTS

= cos
θ0

2

[
cos2 θ0

2
− 3

2
YI I
YI

sin θ0

]
+

√
2rC

a0,ICB

T∗

YI
sin2 θ0 (7)

KIC
KI I,GMTS

= cos
θ0

2

[
YI
YI I

cos2 θ0

2
− 3

2
sin θ0

]
+

√
2rC

a0,ICB

T∗

YI I
sin2 θ0 (8)

where rC is the critical distance (assume specimen failure under plane strain conditions),
and, thus, rC can be estimated from Equation (9) [28]) and T∗ is the normalized form
of T-stress, which is influenced by the same factors that influence dimensionless stress
intensity factors. The T-stress can be calculated using the finite element analysis method
and converted to a normalized form according to Equation (10). Figure 4 shows the T∗ at
various incline crack angles. T∗ is a negative value at slightly inclined crack angles (less
than 15◦) and then increases with incline crack angles.

rC =
1

6π

(
KIC
σt

)2
(9)

T =
P

Wt
T∗
(

a0,ICB

W
,

S
W

, β

)
(10)
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3.1.2. Average Strain Energy Density Criteria (ASED)

The average strain energy density criteria (ASED) was first presented by Lazzarin
et al. [29]. The ASED criteria focuses on strain energy density around the crack tip. In this
criterion, the material will be fractured when an average strain energy density over a control
volume reaches the critical strain energy (WC), which is dependent on material properties
and notch geometry. In the ICB, where the crack tip is sharp, the control volume is a circle
of radius (RC) with a center at the crack tip. The result of the stress-based expression can be
summarized together with the fracture of the aforementioned material and can be rewritten
in terms of mode I and mode II local strain density following Equation (11) [2]

W1

W1C
+

W2

W2C
= 1 (11)

where W1C and W2C are the critical strain energy densities obtained from pure mode I and
pure mode II loading, respectively, and can be calculated following Equations (12) and (13).
W1 and W2 are the strain energy density generated from the applied external load. The
values of W1 and W2 can be rewritten in terms of stress intensity factor, which is considered
an elementary prediction of fracture toughness of the ASED criteria (KI,ASED and KI I,ASED)
following Equations (14) and (15)

W1C =
σ2

t
2E

(12)

W2C =
τ2

t
2G

(13)

W1 =
e1

E

[
K2

I,ASED

R1C
2(1−λ1)

]
(14)

W2 =
e2

E

[
K2

I I,ASED

R2C
2(1−λ2)

]
(15)

where e1 and e2 are given by Lazzarin et al. [29] as 0.1186 and 0.3332, respectively, KI,ASED
and KI I,ASED are specific values of mixed-mode I/II fracture toughness obtained from
the ASED criteria, λ1 and λ2 are mode I and II Williams’ eigenvalues, which are equal
to 0.5 [30], and R1C and R2C are mode I and mode II radii under plane strain conditions,
which can be calculated following Equations (16) and (17).

R1C =
(1 + v)(5− 8v)

4π

(
KIC
σt

)2
(16)
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R2C =
9− 8v

8π

(
KI IC

τt

)2
(17)

where KI IC is mode II critical fracture toughness.

3.1.3. Generalized Maximum Energy Release Rate Criteria (GMERR)

The generalized maximum energy released rate criteria was proposed by Hou, Cheng,
et al. [15]. The GMERR was developed by adding terms of non-singular stress based
on the maximum energy released rate criteria (MERR), which predicts the initiation of
the mixed mode crack by calculating the energy release rate around the crack tip. In the
GMERR criteria, materials will be fractured when values of strain energy release rate reach
the maximum strain energy release rate of the material. The initial crack growth angle
according to the GMERR can be calculated as follows

C1(YI)
2 + C2(YI I)

2 + C3YIYI I + 4C4

√
rC
a0

YI T∗ + 4C5

√
rC
a0

YI I T∗ + 16C6

(
rC
a0

)
(T∗)2 = 0 (18)

where the variables are the same according to the Equation (7) and coefficients (C) can be
calculated as follows

C1 = − 1
4 sin

(
2θER)− 1

2 sin θER

C2 = 3
4 sin

(
2θER)− 1

2 sin θER

C3 = −2 cos2 θER − cos θER + 1

C4 = 10 sin5 θER

2 − 14 sin3 θER

2 + 4 sin θER

2

C5 = 10 cos5 θER

2 − 20 cos3 θER

2 + 8 cos θER

2

C6 = sin
(
2θER)

(19)

The elementary prediction fracture toughness of the GMERR criteria separated by
mode I and II loading (KI,GMERR and KI I,GMERR) can be expressed as

KIC
KI,GMERR

=

[
B1 + B2

(
YI I
YI

)2
+ B3

YI I
YI

+ 4B4

√
rC
a0

T∗

YI
+ 4B5

√
rC
a0

YI I T∗

(YI)
2 + 16B6

rC
a0

(
T∗

YI

)] 1
2

(20)

KIC
KI I,GMERR

=

 B1

(
YI
YI I

)2
+ B2 + B3

(
YI
YI I

)
+ 4B4

√
rC
a0

YI T∗

(YI I)
2 +

4B5

√
rC
a0

T∗
YI I

+ 16B6
rC
a0

(
T∗
YI I

)2


1
2

(21)

where coefficients (B) can be calculated as follows

B1 = 1
4
(
cos θER + 1

)2

B2 = −3 sin4 θER

2 + 2 sin2 θER

2 + 1

B3 = − 1
2 sin

(
2θER)− sin θER

B4 = −4 cos5 θER

2 + 4 cos3 θER

2

B5 = 4 sin5 θ
2

ER − 4 sin θER

2

B6 = sin2 θER

(22)
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The fracture criteria mainly require the mechanical properties or critical mode I fracture
toughness of materials for elementary prediction fracture toughness values that cause
materials to fracture. In this study, the parameters used for the fracture criteria equations
are shown in Tables 1 and 2, and Figures 3 and 4. The specific mixed-mode I/II fracture
toughness from the criteria is calculated and separated based on the aforementioned
influence of ICB specimen thickness on the cross-sectional area of the stressed area shown
in Figure 5. The results showed good prediction performance at pure mode I and mode II
fracture toughness for both thicknesses, but at mixed-mode I/II conditions, the predictions
were quite different from the experimental results, indicating a decrease in the fracture
criteria’s predictive efficiency. To demonstrate the fracture criteria’s predictive performance
more clearly, the fracture criteria’s performance is measured using the MAPE performance
metric, which is commonly used in regression problems according to Equation (23). The
MAPE values for GMTS fracture toughness and experiment fracture toughness in modes I
and II are 10.26% and 28.41 %, respectively. The MAPE values for ASED fracture toughness
and experiment fracture toughness in modes I and II are 10.79% and 24.90%, respectively.
The MAPE values for GMERR fracture toughness and experiment fracture toughness in
modes I and II are 7.82% and 24.05%, respectively. Regarding the interpretation of MAPE
values based on Lewis’ research [31], it was found that the predictive performance of the
all fracture criteria at mode I (KI) was relatively good (10% ≤MAPE ≤ 20%). However,
when mode II (KI I) is considered, prediction performance is a rational prediction, which
means that only data trends (20% ≤MAPE ≤ 50%) can be predicted. Although elementary
predictions with fracture criteria show some deviation from actual fracture toughness, the
specific fracture toughness from these fracture criteria is still used as a preliminary criterion
that determines the limit stress that materials can withstand before fractures occur, which
is very useful in designing engineering parts where fracture toughness is a consideration.

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣Ai − Âi
Ai

∣∣∣∣∣× 100 (23)

where Ai is the ith experiment data, Âi is the ith prediction data, and n is the number of
observations.
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3.2. Artificial Intelligence Method

In recent years, many researchers have applied artificial intelligence to many complex
engineering problems in many disciplines. For fracture mechanics, artificial intelligence has
been applied to describe the behavior of cracks, such as in the prediction of the pure mode
loading fracture parameters [8,32,33] or mixed-mode loading fracture parameters [22,34].
Artificial intelligence methods have significant advantages in terms of making accurate
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predictions on complex problems, but there is a rather problematic disadvantage about
the learning process of artificial intelligence models. The artificial intelligence learning
process simulates how the human brain responds to external stimuli and learns to respond
to that stimulus in the future, and learning in this manner requires a large amount of data.
The fracture toughness test is a destructive test in which one data point is obtained, which
means that applying artificial intelligence predictions requires a large number of tests,
which appears to be counterproductive to the predictive equation’s goal of reducing the
number of tests as much as possible.

In this study, the artificial intelligence model’s prediction performance is improved
when data from the fracture toughness test is limited. The actual fracture toughness test
data is then combined with the infinite elementary predictive data obtained from the
fracture criteria. The concept of the data combination technique called the “multi-fidelity
surrogate model” is described in the next section.

3.2.1. Concept of Multi-Fidelity Surrogate Model

The concept of the combination technique is explained in Figure 6 using continuous
functions with nonlinear relationships. (It should be noted that continuous functions with
nonlinear relationships are unrelated to this study, as they are simply an illustration to
help explain the concept of combination). The high fidelity function was used to represent
the fracture toughness data obtained from actual testing. In addition, it has high accuracy
but is expensive or time-consuming to obtain. The low fidelity function was used to
represent the fracture toughness obtained from the elementary prediction of the fracture
criteria where data acquisition is quick and inexpensive, even though accuracy may not
be very high. The difference between the prediction results and the actual value of the
problem is clearly shown in Figure 6 (left-hand side), but if the relationship between
these two values is considered, the predicted value can be equal to the actual value of the
problem according to Equation (24) when the difference is known. The actual value and
prediction value difference parameters may be linear or nonlinear relationships, depending
on the characteristics of the problem. This correlation occurs in such a way that the
data is interchangeable and is performed on a model called the “surrogate model’. The
interchangeability of the data means that rather than using an excessive amount of high
fidelity data to build a model, low fidelity data can be used in conjunction with the
difference parameters to build a predictive model of high fidelity data, as shown in Figure 6
(right-hand side). This model is referred to as a “multi-fidelity surrogate model”.

F(X)HF,i = F(X)LF,i + Di (24)

where F(X)HF,i is the output of the high-fidelity function at index ith, F(X)LF,i is the output
of the low-fidelity function at index ith, and Di is difference between the output of the high
and low fidelity functions.

In the multi-fidelity surrogate model, data substitution is performed on the basis of
a Gaussian process regression model known as the Kriging model. Although it uses a
model to make the prediction, the Kriging model’s prediction does not directly predict
the difference parameters but predicts that parameter along with the value of the high
fidelity data or actual data. Prior to describing how the original Kriging model and the
multi-fidelity surrogate model were implemented in the fracture toughness prediction,
the preparation of the data and the performance evaluation of the artificial intelligence
prediction model are described in the following section.
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3.2.2. Data Preparation and Model Performance Evaluation

Data preparation is one of the processes that affects the predictive performance of the
model. In this study, the artificial intelligence model used specimen thickness (t) and the
mode parameter (Me) as inputs and average mixed-mode I/II fracture toughness (KI and
KI I) as outputs. Six data points were used in the artificial intelligence modeling process. To
reduce the different lengths of input factors in the artificial intelligence model (thickness
and mixed mode parameter), input data was normalized to range 0 to 1 using Equation (25).
Because of the small dataset of this study, the train and test dataset in the modeling process
was selected by the holdout cross-validation method. All artificial intelligence models
were created using MATLAB programing. For fracture toughness in which the data is
continuous, the regression artificial intelligence model was used, in which many models’
performance metrics are evaluated. The performance of the prediction model was assessed
in this study using the common regression performance metrics of mean absolute percent
error (MAPE), root mean square error (RMSE), and coefficient of determination (R2), which
can be calculated in the following Equations (23), (26) and (27).

Xnormalized =
Xi − Xmin

Xmax − Xmin
(25)

where Xi is the input data of the artificial intelligence model at index ith, and Xmax and
Xmin are the maximum and minimum data in the input dataset.

RMSE =

√√√√√ n
∑

i=1

(
Ai − Âi

)2

n
(26)

R2 = 1−


n
∑

i=1

(
Ai − Âi

)2

n
∑

i=1

(
Ai − A

)2

 (27)

where A is the average of experimental data and other variables according to Equation (23).

3.2.3. Brief of Kriging Model

The Kriging model or original Kriging model represents the single fidelity artificial
intelligence model that used only experiment fracture toughness in the modeling process.
In this section, the original Kriging abbreviation, also referred to as “Or-K”, was discussed.
The Or-K modeling process is shown in Figure 7. The prediction model of the Or-K model
can be expressed as follows [16,20].
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The Or-K model can be predicting using the unknow function ŷ(X) as

ŷ(X) = u(X) + ε(X) (28)

where u(X) denotes a global model and ε(X) denotes a local model. The sample of input
X is interpolated using a Gaussian random function. The correlation between Z(Xi) and
Z
(
Xj
)

is related to the distance between the two corresponding points Xi and Xj. The
distance function between point Xi and Xj is expressed as

d
(
Xi, Xj

)
=

n

∑
k=1

θk
∣∣∣Xk

i , Xk
j

∣∣∣2 (29)

where θk
(

0 ≤ θk ≤ ∞
)

is the kth element of the correlation vector parameter θ. The corre-
lation between Xi and Xj is defined as

Corr
[
Z(Xi), Z

(
Xj
)]

= exp
[
−d
(
Xi, Xj

)]
(30)

The Or-K model prediction can be expressed as

ŷ(X) = u(X) + rT R−1(F− û) (31)

where F = [ f (X1), f (X2), f (X3), . . . , f (Xn)]
T is the output of evaluation function at

X = [X1, X2, X3, . . . , Xn]. In this study, F represents the experiment fracture tough-
ness obtained from the X input factors, R denotes the n × n matrix, whose (i, j) entry
is Corr

[
Z(Xi), Z

(
Xj
)]

, n is the number of observations sample, and r is the vector whose
ith element is

ri(X) = Corr
[

Z(X), Z
(

Xi
)]

(32)

u(X) is assumed to be constant in the Or-K model, and û is given by

û = [u(X), u(X), u(X), . . . , u(X)] (33)

It is defined as

u(X) =
IT R−1F
IT R−1I

(34)

where I denotes an n-dimensional unit vector.
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The unknown parameter θ in Equation (29) is known as a hyperparameter that affects
the prediction performance of the OR-K model, which can be estimated using the maximum
likelihood estimation following

Ln
(

µ, σ2, θ
)
= −n

2
ln
(

σ2
)
− 1

2
ln(|R|) (35)

In this study, the generic algorithm optimization (GA) was used for the optimized max-
imum likelihood estimation. For given unknows of θ, the variance of Gaussian distribution
(σ2) can be defined as

σ2 =
(F− µ̂)T R−1(F− µ̂)

n
(36)

where the variables are the same according to the Equation (31).

3.2.4. Brief of Multi-Fidelity Surrogate Model

As mentioned above, for the multi-fidelity surrogate model, data substitution is
performed on the basis of the Kriging model. The multi-fidelity surrogate modeling process
is shown in Figure 8. The surrogate model for multi-fidelity approaches a radius bias
function (RBF) to represent the global model in Equation (37) (Note. High-fidelity data
denotes fracture toughness data obtained from experiments and low-fidelity data denotes
fracture toughness obtained from the fracture criteria)

ŷ(X) = [µ(X) + f r(X)] + rT R−1(Fh − µ̂− FR) (37)

where local deviations
(
rT R−1(Fh − µ̂− FR)

)
are evaluated based on the high fidelity

data set obtained using the Or-K model Fh = [ fh(X1), fh(X2), fh(X3), . . . , fh(Xn)]
T and

is the output data obtained from high-fidelity function at X = [X1, X2, X3, . . . , Xn] and
FR = [ fr(X1), fr(X2), fr(X3), . . . , fr(Xn)]

T . Note that µ(X) is a mean value of the Gaussian
process of the high-fidelity data, assumed to be a constant value expressed by Equation (34),
and the definition of µ̂ is given by Equation (33). The term [µ(X) + f r(X)] is a compound
of the Or-K model term of high fidelity data µ(X), which has been defined in Equation (28)
and the RBF term of low fidelity data fr(X) predicted from the low fidelity data can be
expressed as

fr(X) = a0 + a1 fl(X) (38)

where fl(X) is a function predicted by the RBF using low fidelity data, and a0 and a1 are
correlation terms between the low fidelity and high fidelity data. The function predicted by
the RBF using low fidelity data ( fl(X)) can be expressed as

fl(X) =
n

∑
i=1

wiΦ(X− Xi) (39)

where Φ(X) is an RBF, and wi is a weigh function. A multi-quadratic function is applied as
an RBF. The weight is determined from the interpolation conditions

Aw = Fl (40)

where

A =


a1,1 a1,2 · · · a1,j
a2,1 a2,2 . . . a2,j

...
...

. . .
...

ai,1 a1,1 . . . ai,j

 (41)

where ai,j = Φ
(

xi − xj
)

and Fl = [ fl(X1), fl(X2), fl(X3), . . . , fl(Xn)]
T are the values of the

low fidelity function at X = [X1, X2, X3, . . . , Xn].
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The variance of Gaussian distribution (σ2) can be defined as

σ2 =
(Fh − µ̂− FR)T R−1(Fh − µ̂− FR)

n
(42)

The unknown parameter (θ, a0 and a1) of multi fidelity-surrogated model can be
estimated using the same maximum likelihood estimation as the Or-K model. According
to the various type of low fidelity function (fracture criteria) that were used for the multi-
fidelity surrogate model, the three multi-fidelity models were created. The model namely
GM-K represents the multi-fidelity model based on the GMTS criteria, the AS-K model
represents multi-fidelity model based on the ASED criteria, and the ER-K model represents
the multi-fidelity model based on the GMERR criteria. For the multi-fidelity surrogate
model, the data obtained from the experiment fracture toughness were used to create
the model along with data obtained from the fracture criteria that was calculated by the
separation of thee two thicknesses and mixed mode parameters from 0 to 1.0 with an
increment 0.1 for each criterion.

4. Results and Discussions of the Artificial Intelligence Prediction Models

According to the modeling process of the multi-fidelity surrogate model that combines
high-fidelity data, a high precision response to the behavior of the output of the problems
and low-fidelity data that show a low precision response to the behavior of the output of
problems occur together in the modeling process. When closely considering this modeling
method, also called the multiple certainties or multiple precision modeling methods,
in which the high-fidelity data (actual experimental fracture toughness) represents the data
with high certainty, whereas the low-fidelity data (fracture criteria) is simple to obtain but is
inaccurate or has many errors, the data represents a low certainty response to the behavior
of the output of the problems. The prediction results of the Or-K model in the modeling
process are shown in Figure 9, which shows the modeling based on the experimental
fracture toughness. To evaluate all artificial intelligence, the prediction performance metrics
in different terms including the percentage-base error measurement (MAPE, Equation (23)),
the scale based-error measurement (RMSE, Equation (26)), and the goodness-of-fit statistic
(R2, Equation (27)) between prediction results of the testing data set obtained via holdout
cross-validation method and actual mixed mode I/II fracture toughness results were
measured. When considering the prediction performance of the artificial intelligence
model in mixed-mode I/II fracture toughness problem, the performances were measured
separately into mode I and mode II according to the loading characteristic that causes
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specimens to fracture. The Or-K model had performance metrics including R2, MAPE, and
RMSE values equal to 0.896, 16.70%, 0.207 and 0.859, 14.79%, and 0.230 at mode I (KI) and
mode II (KI I) fracture toughness, respectively. The model performance metrics (MAPE)
of the Or-K model demonstrate low prediction performance caused by a fundamental
aspect of the artificial intelligence modeling due to the small dataset usage in modeling
that affected the learning process (6 data points were used to generate the Or-K model).
The prediction results of the multi-fidelity surrogate model, which aims to improve the
prediction performance of the artificial intelligence mode in case the data used in the
modeling process is limited, is shown in Figures 10–12. The multi-fidelity surrogate model
is based on the GMTS criteria (Figure 10), which used 28 data points in the modeling
process (6 data from experiment and 22 data from criteria) and had R2, MAPE, and RMSE
values at mode I and II fracture toughness equal to 0.954, 12.41%, 0.147, and 0.935, 12.54%,
and 0.156, respectively. The multi-fidelity surrogate model is based on the ASED criteria
(Figure 11) and had R2, MAPE, and RMSE values at mode I and II fracture toughness
equal to 0.933, 15.07%, 0.170 and 0.927, 12.25%, and 0.164, respectively. The multi-fidelity
surrogate model is based on the GNERR criteria (Figure 11) and had R2, MAPE, and RMSE
values at mode I and II fracture toughness equal to 0.945, 12.23%, 0.155 and 0.961, 12.28%,
and 0.122, respectively. When the performance metrics of each multi-fidelity surrogate
model were compared, it was found that firstly, for the R2 values, the GM-K model had
the highest mode I fracture toughness and the ER-K model had the highest at mode II
fracture toughness. Secondly, for the MAPE values, the ER-K model had the lowest at
mode I fracture toughness and the AS-K model had the lowest MAPE at mode II fracture
toughness. Finally, for the RMSE values, the GM-K model had the lowest fracture toughness
at mode I and the Ri-K model had the lowest fracture toughness at mode II.

The prediction performance metrics of the multi-fidelity surrogate model demonstrate
that the accuracy of the model had increased when compared to the Or-K model, which only
used data from experiments. The R2 values of the highest accuracy model had improved
when compared to the Or-K of around 6.47% and 11.87%, the MAPE values decrease
around 26.77% and 17.17%, and the RMSE values decrease around 28.98% and 46.96% at
mode I and II fracture toughness, respectively. When compared to the fracture criteria,
unfortunately, the mode I fracture toughness from the multi-fidelity model shows a decrease
in predictive performance. The MAPE values of the GM-K, AS-K, and ER-K models were
increased by around 15.01%, 46.88%, and 56.39%, respectively, when compared to the
based fracture criteria used for each modeling. The error of the multi-fidelity surrogate
model at mode I fracture toughness occurs mainly in mixed-mode loading, consistent
with the predicted results of the fracture criteria in mixed-mode loading (Figure 5) used as
additional data in modeling, whereas under pure mode I and II loading, fewer errors occur
compared with mixed-mode loading because prediction results of the fracture criteria are
close to the experimental results because the fracture criteria requires fracture toughness
under pure mode loading in the fracture criteria equation. It is for this reason that the
multi-fidelity surrogate model has more errors than the fracture criteria; however, when
considering the interpretation of the MAPE values, the performance of the three models
was also considered to be a good predictor. In mode II fracture toughness, when compared
to the fracture criteria, the multi-fidelity surrogated model efficiency increased. When
considering the MAPE value, it was found that the MAPE values of the GM-K, AS-K,
and ER-K models were decreased around 55.86%, 50.80%, and 48.94%, respectively. The
decrease in MAPE showed a marked improvement in predictive performance, when before
it was only possible to predict trends of the data when using the fracture criteria.
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The additional fracture toughness was tested to measure the model prediction perfor-
mance in datasets that are different from the modeling process. The prediction results of
the multi-fidelity surrogated model with the same data and different levels of thickness
and mode mix parameters are shown in Tables 3 and 4 according to the mode loading.
Further experimental results show that the fracture toughness obtained by the prediction
model is very close to the experiment results. When considering mode I fracture tough-
ness, the MAPE values of the Or-K model, GM-K model, AS-K model, and ER-K model
are equal to 18.90%, 9.42%, 11.35%, and 8.90%, respectively, whereas at mode II, fracture
toughness is equal to 9.83%, 3.33%, 3.33%, and 2.80%, respectively. The prediction results
in Tables 3 and 4 showed a very close prediction between the Or-K model and all multi-
fidelity models in the levels of the input factors used to create the model. The prediction
results model is very close because of the fact that the model had seen data at this level
before in the modeling process. On the other hand, the prediction result of the Or-K model
and all multi-fidelity models are quite different in the levels of the input factors that differ in
the modeling process, where the multi-fidelity models have values that are clearly close to
the experimental results. The above results show that modeling to predict mixed-mode I/II
fracture toughness results from combining the experimental data with the fracture criteria
to improve model accuracy in case of factor levels never seen before. This indicates that
the multi-fidelity surrogated model can solve the prediction issue in the case of predicting
fracture toughness of expensive or low-volume materials, making it impossible to perform
a large number of tests.

Table 3. Mode I fracture toughness from models’ testing processes.

Factors Experimental Prediction Model

Me Thickness
(mm)

KI
(MPa·m1/2)

Or-K GM-K AS-K ER-K

KI
(MPa·m1/2)

KI
(MPa·m1/2)

KI
(MPa·m1/2)

KI
(MPa·m1/2)

0.5 5 0.887 0.834 0.845 0.844 0.844
0.3 7 0.993 0.851 0.981 0.989 0.999
0.8 8 0.321 0.210 0.361 0.372 0.355
0.5 9 1.175 1.151 1.160 1.181 1.165
0.0 10 0.010 0.015 0.007 0.006 0.007
0.5 10 1.081 1.151 1.155 1.151 1.151
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Table 4. Mode II fracture toughness from models’ testing processes.

Factors Experimental Prediction Model

Me Thickness
(mm)

KII
(MPa·m1/2)

Or-K GM-K AS-K ER-K

KII
(MPa·m1/2)

KII
(MPa·m1/2)

KII
(MPa·m1/2)

KII
(MPa·m1/2)

0.5 5 0.854 0.782 0.785 0.782 0.784
0.3 7 0.657 0.789 0.631 0.682 0.647
0.8 8 1.253 0.989 1.204 1.292 1.206
0.5 9 1.168 1.087 1.190 1.201 1.185
0.0 10 1.190 1.204 1.208 1.205 1.209
0.5 10 1.073 1.087 1.080 1.079 1.070

5. Conclusions

This research aims to improve the prediction performance of artificial intelligence
models (Kriging model) on mixed-mode I/II fracture toughness of PMMA, which is mod-
eled using small datasets to respond in cases where data acquisition is limited. Prediction
model improvement involves combining data obtained from experiment testing with data
obtained from fracture criteria using a multi-fidelity surrogate model. The multi-fidelity
surrogate model based on the fracture criteria includes the generalized maximum tan-
gential stress criteria (GMTS), the average strain energy density criteria (ASED), and the
generalized maximum energy released rate criteria (GMERR). The results of the research
can be summarized as follows:

1. As for the fracture criteria, the elementary fracture toughness prediction results are
very close to the experimental results under pure mode loading since the fracture
criteria equations rely on critical fracture toughness under pure load (KIC, KI IC),
which was obtained from the experiment. For the predicted results at mixed-mode
loading, the values were found to be rather inconsistent with the experimental results.

2. As for the original Kriging model, the predicted fracture toughness was rather inaccu-
rate compared to the experimental results in the modeling process. The model had R2

values equal to 0.896 and 0.859, MAPE values equal to 16.70% and 14.79%, and the
RMSE equal to 0.207 and 0.230 when considering modes I and II fracture toughness,
respectively.

3. The prediction performance of the multi-fidelity surrogate model, which is modeled
on experimental data as well as the elementary prediction data obtained from the
fracture criteria, was found to be higher than that of the original Kriging model or
the fracture criteria. For the multi-fidelity surrogate model, the model’s performance
depends on the fracture criteria used in the modeling process.

4. The multi-fidelity surrogate model based on the GMTS criteria had R2, MAPE, and
RMSE equal to 0.954, 12.41%, 0.147, and 0.935, 12.54%, 0.156 following the mode I and
II loading while model based on the ASED had R2, MAPE, and RMSE equal to 0.933,
15.07%, 0.170 and 0.927, 12.25%, 0.164 and the model based on the MERR had R2,
MAPE, and RMSE equal to 0.945, 12.23%, 0.155 and 0.961, 12.28%, 0.122, respectively.

5. The multi-fidelity surrogate model based on the fracture criteria will ostensibly per-
form better than the original Kriging model, which solely relied on experimental data
in the modeling process, in case the input factors to be predicted differ from the input
factors used in the modeling process.

6. The multi-fidelity models’ prediction performance indicated that they are very useful
in situations where testing materials are difficult to obtain or prepare for in order to
gather enough data to apply artificial intelligence techniques to the problem of fracture
toughness. They also assist in reducing the costs associated with data acquisition.
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Nomenclature

Symbol Description
Ai Experiment data
A Average of experiment data
Âi Prediction data
ASED Average strain energy density fracture criteria
a0,ICB Initial crack length
E Young’s modulus
F(X)HF Output of high-fidelity function
F(X)LF Output of low-fidelity function
G Shear modulus
GMTS Generalized maximum tangential stress fracture criteria
GMERR Generalized maximum energy release rate fracture criteria
H.O.T High order term in the stress solution
ICB Inclination crack bending specimen
KIC Critical mode I stress intensity factor
KI IC Critical mode II stress intensity factor
KI , KI I Mode I and mode II stress intensity factor
KI,ASED,KI I,ASED Mode I and mode I stress intensity factor from ASED criteria
KI,GMTS,KI I,GMTS Mode I and mode I stress intensity factor from GMTS criteria
KI,GMERR, KI I,GMERR Mode I and mode I stress intensity factor from GMERR criteria
Me Mode mix parameter
MAPE Mean absolute percentage error
Or-K Original Kriging model
P Maximum load applied
R2 Coefficient of determination
RC Radius of control volume
RMSE Root means square error
r Distance to the crack tip in polar coordinates
rC Critical distance
S Span length of three-point bending
u(X) Global model
T T-Stress
T∗ Normalized form of T-stress
W Specimen width
W1, W2 Mode I and mode II strain energy density
W1C, W2C Mode I and mode II critical strain energy density
X Input data of the artificial intelligence model
YI , YI I Mode I, II dimensionless stress intensity factor
β Inclined crack angle
ε(X) Local model
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θ Hyperparameter of Kriging model
θ0 Initial crack growth angle
λ1, λ2 Mode I and mode II Williams’ eigenvalues
v Poisson’s ratio
σ2 Gaussian distribution
σt Tensile strength
σθθ Tangential stresses at the crack tip
τt Shear strength
(θ, a0 and a1) Hyperparameter of multi-fidelity surrogate model
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