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Abstract: Transverse tensile strength of unidirectional (UD) composites plays a key role in overall
failure of fiber-reinforced composites. To predict this strength by micromechanics, calculation of
actual stress in constituent matrix is essentially required. However, traditional micromechanics
models can only give the volume-averaged homogenized stress rather than an actual one for a matrix,
which in practice will cause large errors. In this paper, considering the effect of stress concentration
on a matrix, a novel micromechanics method was proposed to give an accurate calculation of the
actual stress in the matrix for UD composite under transverse tension. A stress concentration factor
for a matrix in transverse tensile direction is defined, using line-averaged pointwise stress (obtained
from concentric cylinder assemblage model) divided by the homogenized quantity (obtained from
a bridging model). The actual stress in matrix is then determined using applied external stress
multiplied by the factor. Experimental validation on six UD carbon fiber-reinforced polymer (CFRP)
specimens indicates that the predicted transverse tensile strength by the proposed method presents
a minor deviation with an averaged relative error of 5.45% and thus is reasonable, contrary to the
traditional method with an averaged relative error of 207.27%. Furthermore, the morphology of
fracture section of the specimens was studied by scanning electron microscopy (SEM). It was observed
that different scaled cracks appeared within the matrix, indicating that failure of a UD composite
under transverse tension is mainly governed by matrix failure. Based on the proposed approach, the
transverse tensile strength of a UD composite can be accurately predicted.

Keywords: unidirectional fiber-reinforced composites; transverse strength prediction; micromechan-
ics modeling; stress concentration factor; stress field in matrix

1. Introduction

Fiber-reinforced polymer (FRP) composites have many advantages over conventional
metals or concretes, e.g., lightweight, low maintenance, excellent resistance to stress, corro-
sion, and impact. As a result, they are used in a variety of industries, including aerospace,
construction, automotive, defense, and more. For instance, glass fiber-reinforced polymer
(GFRP) composites, which are much cheaper than other FRPs, are commonly used in
civil engineering construction [1]. Carbon fiber-reinforced polymer (CFRP) composites are
widely used in the aerospace industry. Airbus and Boeing, the world’s two largest airliner
manufactures, adopt CFRP for the latest models, knowing that the ratios of CFRP in A350
and B787 are both about 50% [2].

To use FRP composites safely and to improve the design efficiency of laminated
composites, the evaluation of its strength is necessary. However, prediction of the ultimate
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strength of a fibrous composite still remains a great challenge [3] and is a topic that attracts
a lot of attention [4,5]. As most FRP composite structures are made from a group of
stacked unidirectional (UD) composites, the evaluation of the strength of UD composites
is fundamental for the strength evaluation of FRP composites. Therefore, an accurate
prediction of the strength properties of UD composites is of great research interest and will
be the focus of this work.

FRP composites are treated as homogeneous and anisotropic in macromechanics
failure theories, including maximum stress failure theory, maximum strain failure theory,
Tsai-Hill failure theory [6] and Tsai-Wu failure theory [7], etc. Although such theories have
been employed with considerable success, they are phenomenological [8] and incapable of
investigating the failure mechanisms and the damage mode of composites. Additionally,
the macro models are anisotropic, and are composed of various strength parameters of
composites in multiple directions, which require costly and time-consuming tests on
the composites.

A micromechanics model of composites is developed to estimate the strength prop-
erties of composites only based on established constituent material properties and their
geometrical parameters, without requiring a large quantity of experiments on the com-
posites [3]. Micromechanics assumes that once the fiber or the matrix is estimated to
fail, the composite will lose the capacity of load bearing. This theory shows advantages
over macromechanics because of, for instance, the ability to output the internal stress in
fiber/matrix and identify the failure mode of a composite. In addition, some researchers
have conducted multi-scale computational analysis based on micromechanics modeling and
molecular dynamics (MD) simulations to investigate the microscopic failure mechanisms
of unidirectional UD CFRP composites [9].

In terms of ultimate strength, a UD composite appears to be weaker in transverse
direction than in longitudinal direction, in which case matrix failure is the controlling
factor. This could be supported by the fact that the overall failure of UD composites usually
initiates from transverse cracking [10,11]. Furthermore, given that a matrix’s compressive
strength is stronger than its tensile strength, transverse tensile strength will be the weakest
point that determines the lower limit of the overall strength in a UD composite. Therefore,
an accurate evaluation of transverse tensile strength is essential for the failure study of
UD composites.

Using present micromechanics models, the transverse tensile strength of a UD com-
posite is predicted to be greater than that of a pure matrix. However, experiments report
opposite results [12–14]. The missing link is the stress concentration in the matrix induced
by the process of incorporating fibers into composites: present micromechanical models
only calculate internal homogenized stress in fiber and matrix without considering the
stress concentration [15,16], leading to lower predictions of the stress in matrix compared
to the actual stress. A more accurate micromechanical failure model should take the actual
stress in matrix as input rather than the homogenized one.

The actual stress in matrix could be derived from its homogenized value multiplied by
the stress concentration factor, yet the determination of the latter parameter is a complex
issue. In terms of the stress concentration factor, the traditional method in mechanics of
fracture defines it as the ratio of the maximum pointwise stress to the nominal stress [17].
However, for determination of actual stress in matrix using a micromechanics model, the
stress concentration factor cannot be simply defined as that. Otherwise, the value calculated
would be infinitely large and the matrix strength would be almost zero when there is a
crack or flaw in the matrix.

To solve this problem, some research proposed a candidate approach to define the
stress concentration factor using line-averaged stress divided by a volume-averaged quan-
tity [15]. Huang and Xin [18] concluded from experiments and analyzed that the stress-
averaged line should be perpendicular to the failure surface of the composite. Pinho [19]
and Gonzalez and LLorca [20] reported that, for a UD composite under transverse tension,
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the failure surface is perpendicular to the loading direction, thus the stress-averaged line is
parallel to the loading direction.

In summary, ignoring the effect of stress concentration on matrix and only using the
homogenized stress will cause the predicted transverse tensile strength of UD composites
to be much higher than measured data. On the other hand, if considering the actual stress
by definition of stress concentration factor in mechanics of fracture, the predicted transverse
tensile strength of UD composites will be infinitely small. Therefore, more research studies
are required to investigate the actual stress in matrix by an appropriate definition of stress
concentration factor. In the present study, an effective solution was proposed to address the
above issue related to transverse tensile strength prediction for UD composites. Specifically,
the following work was conducted: (a) evaluating the homogenized stress in fiber and
matrix using a bridging model for a given transverse tensile load applied on the UD
composite, (b) investigating the stress concentration factor for the matrix and obtaining
the actual stress, (c) introducing efficient failure criteria to determine failure status of the
constituent fiber and matrix under the actual stress, and (d) carrying out transverse tensile
loading experiment and capturing scanning electron microscopy (SEM) images on a UD
composite to validate the theoretical model.

2. Materials and Methodology
2.1. Determination of Homogenized Stress in the Fiber and Matrix

Suppose that the fiber and the matrix in a composite are bonded perfectly, and that
any composite is heterogeneous. Then the homogenized stress σi in a composite is given
by averaging stress with respect to its representative volume element (RVE) V′ [14]

σi =

∫
V′

σ̃i dV

V′
(1)

where a stress with ‘∼’ on head represents a pointwise quantity. If only fiber and matrix
are contained in V′, the above integration can be written as

{σi} = Vf

{
σf

i

}
+ Vm{σm

i } (2)

where {σi} is the stress vector of a composite, Vf and Vm are the volume fraction of
fiber and matrix, and

{
σf

i
}

and
{

σm
i
}

are the homogenized stress vector in fiber and
matrix respectively.

When both fiber and matrix are in elastic deformation and there are no thermal residual
stresses, the internal homogenized stresses in fiber and matrix are correlated with each
other by a bridging tensor [Aij]

{σm
i } =

[
Aij
]{

σf
j

}
(3)

Combining Equations (2) and (3),
{

σf
i
}

and
{

σm
i
}

can be expressed as{
σf

i

}
=
(
Vf[I] + Vm

[
Aij
])−1{

σj
}

(4)

{σm
i } =

[
Aij
](

Vf[I] + Vm
[
Aij
])−1{

σj
}

(5)

So far, the major differences between existing micromechanics models consist in the
deduction of the bridging tensor [Aij]. By comparing predictions from 12 most well-known
micromechanics models with the measurements on the elastic properties of several UD
composites used in three worldwide failure exercises (WWFEs) [12–14], the bridging model
exhibits the best accuracy in the evaluation of internal stresses for a composite overall. In
this work, a bridging model is used to determine the homogenized stress in matrix and
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fiber for a UD composite under external loads. Explicit expressions for the bridging tensor
[Aij] in Equations (4) and (5) are denoted by [21].

[
Aij
]
=



A11 A12 A13 0 0 0
0 A22 0 0 0 0
0 0 A33 0 0 0
0 0 0 A44 0 0
0 0 0 0 A55 0
0 0 0 0 0 A66

 (6)

A11 =
Em

Ef
11

(7)

A22 = A33 = A44 = β + (1− β)
Em

Ef
22

, 0 < β < 1 (8)

A55 = A66 = α + (1− α)
Gm

Gf
12

, 0 < α < 1 (9)

A12 = A13 =
υmEf

11 − Emυf
12

Em − Ef
11

(A11 − A22) (10)

where Ef
11, Gf

12, and νf
12 are Young’s modulus, shear modulus, and Poisson’s ratio of the

fiber in a longitudinal plane, Ef
22 is Young’s modulus of the fiber in a transverse plane, Em,

Gm, and νm are Young’s modulus, shear modulus, and Poisson’s ratio of the matrix. In
most cases, one can assume a value of 0.4 to 0.5 for α, and a value of 0.35 to 0.45 for β [21].

When the UD composite is only subjected to a transverse load σ22, the internal homog-
enized stresses in fiber and matrix are given as follows:

σf
11 = − Vm A12σ22

(Vf + Vm A11)(Vf + Vm A22)
(11)

σm
11 = − Vf A12σ22

(Vf + Vm A11)(Vf + Vm A22)
(12)

σf
22 =

σ22

Vf + Vm A22
, σm

22 =
A22σ22

Vf + Vm A22
(13)

where σf
11 and σm

11 are the stress components of fiber and matrix along the longitudinal
direction, while σf

22 and σm
22 are the stress components of fiber and matrix along the trans-

verse direction.

2.2. Stress Concentration Factor of Matrix under Transverse Loads

To determine the stress concentration factor of the matrix in a composite subjected
to a specific load, pointwise stress in the matrix along the loading direction has to be
obtained, which follows by choosing a suitable RVE for the composite. Although various
RVE geometries are proposed in the literature [22], a simple concentric cylinder assemblage
(CCA) model has been proven successful in a number of widely used micromechanical
models. Hence, this work selected a CCA model as the RVE of a UD composite (as
illustrated in Figure 1).
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When the CCA model is subjected to a transverse load σ0
22, a pointwise stress compo-

nent in the matrix along the loading direction σ̃m
22 is given by Liu and Huang [16]

σ̃m
22 = σ̃m

ρρ cos2 ϕ + σ̃m
ϕϕ sin2 ϕ− σ̃m

ρϕ sin 2ϕ (14a)

σ̃m
ρρ =

σ0
22
2

{
1 + Aa2ρ−2 +

[
1 + B

(
4a2ρ−2 − 3a4ρ−4

)]
cos 2ϕ

}
(14b)

σ̃m
ϕϕ =

σ0
22
2

[
1− Aa2ρ−2 −

(
1− 3Ba4ρ−4

)
cos 2ϕ

]
(14c)

σ̃m
ρϕ = −

σ0
22
2

[
1− B

(
2a2ρ−2 − 3a4ρ−4

)]
sin 2ϕ (14d)

A =

[
1− υm − 2(υm)2

]
Ef

22 −
[
1− υf

23 − 2
(
υf

23
)2
]

Em

(1 + υm)Ef
22 +

[
1− υf

23 − 2
(
υf

23
)2
]

Em
(14e)

B =

(
1 + υf

23
)
Em − (1 + υm)Ef

22[
υm + 4(υm)2 − 3

]
Ef

22 −
(
1 + υf

23
)
Em

(14f)

Note that according to the standard for the geometrical size of RVE, the diameters of
the fiber and the matrix cylinders, 2a and 2b, are related to each other by the fiber volume
fraction through

b =
a√
Vf

(15)

As discussed previously, the stress concentration factor of the matrix within a com-
posite cannot be defined through a classical approach which divides maximum pointwise
stress by the nominal stress. An improved approach [23,24] calculates the factor by using
a line-averaged stress divided by a volume-averaged stress obtained from the previous
bridging model. Figure 2 shows the schematic of the failure surface and the average line in
the RVE of a UD composite subjected to a transverse tension load. In this configuration, the
stress concentration factor of the matrix is given by

K22(ϕ) =
1∣∣∣∣→Rb

ϕ −
→
R

a

ϕ

∣∣∣∣
|
→
R

b

ϕ |∫
|
→
R

a

ϕ |

σ̃m
22(

σm
22
)

BM
d
∣∣∣∣→Rϕ

∣∣∣∣ (16)
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where σ̃m
22 is the pointwise stress of the matrix in a CCA model along the transverse direction,

(σm
22)BM is given by bridging model, ϕ is the inclined angle between the outward normal

perpendicular to the failure surface and the loading direction denoted by x2, and
→
R

b

ϕ and
→
R

a

ϕ are respectively components of
→
Rϕ at the surfaces of the fiber and the matrix cylinders

in the RVE.
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In particular, (σm
22)BM is the internal homogenized stress of the matrix in x2 direction,

which is by nature an averaged quantity with respect to the matrix volume in the RVE. It
can be computed as

(σm
22)BM =

βEf
22 + (1− β)Em

(Vf + Vmβ)Ef
22 + Vm(1− β)Em

σ0
22 (17)

Substituting Equations (14), (15), and (17) into Equation (16) gives an explicit form of
Equation (15)

K22(ϕ) =

{
1 + A

2
√

Vf cos 2ϕ + B
2(1−

√
Vf)

[
V2

f cos 4ϕ + 4Vf(cos ϕ)2(1− 2 cos 2ϕ)

+
√

Vf(2 cos 2ϕ + cos 4ϕ)
]}
×
[
(Vf+Vmβ)Ef

22+Vm(1−β)Em

βEf
22+(1−β)Em

] (18)

The only unknown parameter in Equation (18) is ϕ. Experimental observations have
revealed that the failure surface is perpendicular to the loading direction when a UD
composite is under transverse tension [24], in which case the inclined angle is zero.

Setting ϕ = 0 in Equation (18), the stress concentration factor is reduced to

Kt
22 = K22(0) =

[
1 +
√

Vf
2

A +

√
Vf
2

(
3−Vf −

√
Vf

)
B
]
×
[
(Vf + Vmβ)Ef

22 + Vm(1− β)Em

βEf
22 + (1− β)Em

]
(19)

2.3. Failure Criteria for Constituents of a Composite under Transverse Tension

For a UD composite under transverse tensile load, the constituent fiber and matrix are
both in a biaxial stressed state along the transverse and longitudinal directions, denoted by
σf

22, σf
11, σm

22, and σm
11 in Equations (11)–(13). These orientations are also principal directions

for the fiber and matrix. Moreover, it can be observed that the transverse stress components
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are the maximum principal stresses (note that σf
22 � σf

11 and σm
22 � σm

11). Due to the effect
of stress concentration in the matrix, the homogenized matrix stress σm

22 in the transverse
direction can be converted into the actual stress σm

22

σm
22 = Kt

22 × σm
22 (20)

In addition, according to the explicit expression of fiber stress filed in CCA model [25,26],
the pointwise stress of a fiber is uniform within it, thus the actual fiber stress in the trans-
verse direction σf

22 is equal to the homogenized value σf
22, i.e., σf

22 = σf
22.

For a homogenized material under stress state where the maximum principal stress
(minimum principal stress) is far greater (far smaller) than the other two quantities, the
maximum normal stress theory is proven to be effective in predicting the ultimate strength.
The stress status of fiber and matrix under transverse loads (σf

22 � σf
11 and σm

22 � σm
11)

successfully satisfy the above use condition, thus, the strength theory of maximum normal
stress will be used for the strength evaluation of fiber and matrix under transverse tension in
this work. Specifically, when a UD composite fails under transverse tension, a combination
of Equations (13) and (20) will result in the following relations

σf
22 = σf

22 =
σu,t

22
Vf + Vm A22

≥ σf
u,t (21)

σm
22 =

Kt
22 A22σu,t

22
Vf + Vm A22

≥ σm
u,t (22)

where σu,t
22 is the ultimate strength of UD composites in transverse tensile direction, σf

u,t and
σm

u,t are the ultimate strengths of fiber and matrix in tensile direction, respectively.
Using Equations (8), (21), and (22) can predict the transverse tensile strength of a UD

composite as

σu,t
22 = min

{
(Vf + βVm)Ef

22 + (1− β)VmEm

Ef
22

σf
u,t,

(Vf + βVm)Ef
22 + (1− β)VmEm[

βEf
22 + (1− β)Em

]
Kt

22
σm

u,t

}
(23)

2.4. Specimen Preparation

To verify the accuracy of the proposed micromechanics model, transverse tensile
loading tests were carried out on a selected UD CFRP composite, namely CCF800H/AC531.
Twenty layers of UD carbon fiber preform (CCF800H, Supplied by AVIC Composite Corpo-
ration Ltd., Beijing, China) were used to fabricate the desired laminates with constant fiber
orientation (90◦). Resin (AC531, supplied by AVIC Composite Corporation Ltd., Beijing,
China) was used as matrix material. Required mechanical properties and the geometrical
parameters of the constituent fiber CCF800H and matrix AC531 are provided in Table 1.
After mixing these materials using a mechanical stirrer for 10 min, the mixture was kept in
vacuum up to 15 min to ascertain a gas-free solution. Afterwards, a hand lay-up technique
was used to apply the mixture on a carbon fiber preform in a desired sequence. A vacuum
bagging method was employed to squeeze out the excess resin. The whole setup was
then placed under 650 mm of Hg pressure for 24 h at room temperature. Subsequently,
post-curing was executed at 80 ◦C for 8 h, placing the UD-CFRP laminates in a hot air
oven. The fabricated laminate had a thickness of 2 mm with fiber volume fraction of 65%.
Finally, according to nominal dimensions (Table 2) ruled by ASTM D3039 standard, six
specimens were cut in the desired sizes as shown in Figure 3 using the abrasive waterjet
cutting process.
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Table 1. Constituent properties of CCF800H/AC531.

Fiber CCF800H Property Matrix AC531 Property

Ef
22 (GPa) 294 Em (GPa) 3.6

νf
23 0.45 νm 0.35

σf
u,t (MPa) 5725 σm

u,t (MPa) 87
Vf 0.65 Vm 0.35

Table 2. Nominal values of geometrical parameters for the specimen.

Parameter Value Parameter Value

l 175 mm δ 1.5 mm
W 25 mm θ 90◦

h 2 mm Vf 0.65
D 25 mm - -
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2.5. Testing Methods

The transverse tensile loading test for the prepared composite specimens was con-
ducted on a hydraulic mechanical testing system (MTS) by applying a controlled tensile
load (Figure 4a). The test was performed based on the ASTM D3039 standard. The load his-
tory of the six samples was measured and recorded during the whole loading process. The
load application on specimens was performed using a constant control rate of 2 mm/min.
After performing the mechanical experiment, one of the fractured specimens was used for
conducting an SEM test to further investigate the cause of the failure for the UD CFRP
composite subjected to transverse tension. The SEM test was performed by JSM-F100
type, JEOL, Akishima, Japan (Figure 4b), for characterization of microcrack distribution
inside the composite. The SEM sample, including the fracture surface, was acquired as
a remaining piece with dimensions of 5 mm × 2 mm × 25 mm cut from the fractured
specimen, which was subjected to transverse tension. Prior to the SEM test, a very thin
carbon layer (1 nm) was used to sputter-coat the fracture surface [27].
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3. Results and Discussion
3.1. Predicted Results

To make the predictions more illustrative, only the constituent elastic and the ultimate
strength parameters in Table 1 were used, and no thermal residual stresses were taken
into account. The bridging parameters α = 0.4, β = 0.4 in [Aij] were used. By substituting
the above values into Equations (14e), (14f), (19), and (23), an ultimate strength of the
UD composite CCF800H/AC531 and Kt

22 in transverse tensile direction were obtained
as follows

Kt
22 = 2.92

σu,t
22 = min{4540, 58} = 58 MPa

(24)

The factor Kt
22 has a value of 2.92, indicating the prominent effect of stress concentra-

tion on the matrix in transverse direction. It will significantly increase the actual stress in
the matrix compared to the homogenized stress predicted by previous micromechanics
models. The amplification of the matrix stress will in turn reduce the overall transverse
tensile strength for the composite (in this case from expected value of over σm

u,t (87 MPa)
to an amended value of 58 MPa). This result demonstrates that the transverse failure of
a UD composite is governed by matrix failure, completely in accordance with reported
experiment findings.

3.2. Transverse Tensile Strength Test

The measured displacements against loads of the specimens are curved in Figure 5.
Based on Figure 5 and the sizes of the specimen, transverse tensile strengths along with
their relative errors (RE) with two groups of predicted results (bridging model + Kt

22 and
bridging model) are listed in Table 3 and Figure 6.

As seen from Table 3 and Figure 6, except for No.6, the measured transverse tensile
strengths for all other five specimen show less than 10% RE from predicted strength by the
proposed method (bridging model + Kt

22), whereas that for the conventional method (only
bridging model) is almost 200%. The predicted outcome from the proposed micromechanics
model is quite reasonable. Theoretically, the load-bearing capacity of UD composites in
transverse direction is determined by the matrix. That is to say, the transverse tensile
strength of a UD composite is at least as large as the matrix tensile strength. However, the
range of measured transverse tensile strengths for the specimens is between 40 MPa–61
MPa, all much smaller than the measured pure matrix tensile strength (87 MP), with a
maximum reduction of over 50%. The large deviation demonstrates that the effect of stress
concentration on matrix can significantly weaken the transverse tensile strength of UD
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composites, so the present study on the calculation of a stress concentration factor is of
great value for the safety of advanced composite material design. Additionally, as shown
in Figure 7, it is observed that the fractured specimen exhibits failure surface perpendicular
to the loading direction, which absolutely abides by the assumed angle ϕ = 0 in Section 2.2
to determine the stress concentration factor.
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Table 3. Transverse tensile strengths of the six UD composite specimens.

Specimen No. 1 2 3 4 5 6 AVG *

Pure Matrix Tensile
Strength/MPa 87

Predicted UD Transverse
Tensile Strength/MPa

(Bridging Model + Kt
22)

58

Predicted UD Transverse
Tensile Strength/MPa

(Bridging Model)
169

Measured UD Tensile
Strength/MPa 55 61 59 60 57 40 55

Relative Error/%
(Bridging Model + Kt

22) 5.45 −5.45 −1.69 −3.33 1.69 45 5.45

Relative error/%
(Bridging Model) 207.27 177.05 186.44 181.67 196.49 322.50 207.27

* AVG: average.
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3.3. Scanning Electron Microscope (SEM)

SEM analysis was performed to observe the initiation and evolution of microcracks
inside the composite and explain the failure behavior of UD composite under transverse
tensile loads. Figure 8 illustrates images of fracture topography for the sample. Figure 8a
shows some microcracks initiation in the matrix oriented to fiber direction, while the
fibers are almost undamaged. The typical length of the cracks is in micron scale, about
10 µm–30 µm. Given the fact that the strength of a matrix is much less than fiber and the
effect of stress concentration on a matrix reduces its strength, the cracks are initiated first in
the matrix along fiber direction for a UD composite under transverse tension. These cracks
continue propagation slowly along the fiber direction to an approximate 10-micron scale
by the increasing loads (Figure 8b), until an overall fracture of the composite. Thus, it is
concluded from the mechanical experiment and SEM test that failure of UD composites
subjected to a transverse tensile load is mostly dependent on failure of matrix, which is
largely consistent with results obtained by previous research studies.
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4. Conclusions

In this study, the effect of stress concentration on a constituent matrix in FRP compos-
ites under transverse tensile load was investigated to make an accurate ultimate strength
prediction for composites. The primary outcomes of this study are summarized as follows:

• Instead of traditional definition by mechanics of fracture, using line-averaged stress
divided by volume-averaged homogenized stress in the present study, an explicit
expression for the stress concentration factor of the matrix in a UD composite subjected
to a transverse tension was derived. With the addition of that factor, the stress state in
matrix was revised as input data for failure criterion of composite.

• Following the results of conducted experiments on six 90◦ CFRP specimens in this
study, the predicted transverse tensile strengths of the specimens agree well with
measured results for an averaged error of 5.5%, while the error is over 200% for the
conventional method which ignores the effect of stress concentration on a matrix.
Thus, the proposed micromechanics method is feasible in predicting strength of a
UD composite.

• The measured transverse tensile strengths of the specimens spread between 40–61
MPa, all much smaller than the pure matrix tensile strength (87 MP), in contrast with
common knowledge that the transverse tensile strength of a UD composite should be
at least as large as the matrix tensile strength. The reason for the strength reduction is
the stress concentration in the matrix by incorporation of fiber into composite.

• The failure surface of specimen was perpendicular to the loading direction, indicat-
ing that the failure mechanism of the matrix under transverse tension follows the
maximum normal stress theory.

• SEM images showed different scaled microcracks in the matrix oriented to fiber
direction, while the fibers are almost undamaged. The cracks were initiated in micron
scale, about 10–30 µm, and then propagated to a large scale by increasing loads until
the overall fracture of the composite. The SEM analysis demonstrates that failure of
UD composites subjected to a transverse tensile load is mostly dependent on a failure
of the matrix.

• It is recommended to further investigate the effect of stress concentration on a matrix
for UD composite under other loading conditions, such as transverse compression,
longitude loads, and combined loads. Furthermore, plasticity of matrix could be
considered in future studies in an effort to achieve more effective design of an ad-
vanced composite.
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Abbreviations

Notation
a, b radius of fiber and matrix, respectively, in CCA model
[Aij] a bridging tensor

Ef
11, Ef

22, νf
12, Gf

12
longitudinal and transverse Young’s modulus, Poisson’s ratios, and
shear moduli of a transversely isotropic fiber material

Em, Gm, νm Young’s modulus, Poisson’s ratio, and shear modulus of a matrix material
Vf, Vm volume fraction of fiber and matrix, respectively

x1, x2, x3
rectangular coordinates for a lamina to represent longitudinal,
transverse, and through-thickness directions, respectively

z, ρ, ϕ

cylindrical coordinates for a geometry with a fiber inclusion embedded
in a matrix to represent longitudinal, radial, and tangential
directions, respectively

α, β bridging parameters
→
R ϕ position vector for a point in matrix for a given ϕ

Kt
22 stress concentration factor of matrix in tensile direction

σ11, σ22, σ12
external stress components in composite in a rectangular
coordinate system

σf
11,σf

22,σf
12,σ

m
11,σm

22,σm
12

planar homogenized stress components in fiber and matrix respectively
in rectangular coordinate system obtained by Bridging Model

σ
f
ρρ,σf

ϕϕ,σf
ρϕ ,σ

m
ρρ,σm

ϕϕ,σm
ρϕ

planar stress components in a (z, ρ, ϕ) coordinate system obtained by
Bridging Model.

σ̃m
22, σ̃m

ρρ, σ̃m
ϕϕ, σ̃m

ρϕ pointwise stress components in matrix obtained by CCA model
σm

22, σf
22 actual stress component of matrix and fiber in x2 direction

σf
u,t, σm

u,t
tensile strength of a pure fiber and a pure matrix obtained
from experiments

σu,t
22 ultimate tensile strength of a UD composite in transverse direction
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