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Abstract: In this work, NbOx-based selector devices were fabricated by sputtering deposition systems.
Metal-to-insulator transition characteristics of the device samples were investigated depending on
the oxygen flow rate (3.5, 4.5, and 5.5 sccm) and the deposition time. The device stack was scanned
by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The
yields, including MIT, nonlinear, and Ohmic, in working devices with different deposition conditions
were also evaluated. Moreover, we observed the trend in yield values as a function of selectivity. In
addition, the current–voltage (I–V) curves were characterized in terms of DC and pulse endurance.
Finally, the switching speed and operating energies were obtained by applying a triangular pulse on
the devices, and the recovery time and drift-free characteristics were obtained by the paired pulses.

Keywords: selector; niobium oxide; oxygen flow rate; metal-to-insulator transition

1. Introduction

The ability to store information is important with the development of information
technologies. With the fast development of electronic devices, flash memory, including
NAND and NOR types, represents a nonvolatile memory due to its high-density properties.
However, flash technology has several disadvantages, including high voltage operation
and low switching speed [1]. Therefore, it is urgent to develop the next generation of
nonvolatile memory for high-capacity storage, such as phase-change random-access mem-
ory (PRAM), magnetic random-access memory (MRAM), and resistive random-access
memory (RRAM) [2–7]. Among them, RRAM can be a representative candidate for the next
generation of nonvolatile memory because RRAM has several advantages [2,8–14]. It can
offer low power consumption, fast switching speeds, high endurance, and high density
with crossbar array integration.

RRAM with a crossbar array structure is considered a leading challenger for future
computing paradigms, such as in-memory computing and neuromorphic computing. How-
ever, the crossbar array structure presents a sneak current problem that seriously affects
misreading of information and memory operation [15]. Various studies have been con-
ducted to solve this problem. First, the self-rectifying RRAM device is effective in solving
the sneak current problem without the connection of an additional selector. Secondly,
complementary resistive switching (CRS) was designed, composed of two RRAM stacks
anti-serially connected [16,17]. The CRS devices can reduce the sneak current problem but
cannot avoid read destruction. Thirdly, a nonlinear device was directly combined with the
RRAM cell to effectively reduce the sneak current. Examples include the one-transistor
one-resistor (1T1R) [15,18,19], one-diode one-resistor (1D1R) [15,20,21], and one-selector
one-resistor (1S1R) [15,22] devices. In particular, the 1S1R structure is considered the
best structure for RRAM with bipolar resistive switching, exhibiting excellent memory
performance [15].

NbO2 [23,24] and ZnTe [25,26] are used in selector devices due to their stable threshold
switching [27]. NbO2 has recently been studied in a wide range of applications, such as
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optical sensors and various electronic devices, due to its metal-to-insulator transition (MIT)
characteristics [27]. Research has reported that it is possible to suppress leakage current in
a crossbar array structure by combining an RRAM cell with a NbOx-based selector device
with MIT characteristics [27]. TiN was used as the top and bottom electrodes to induce
more oxygen vacancies, due to its high oxygen reservoir content [28,29].

In this study, we have fabricated NbOx-based selector devices using reactive sputtering.
A total of nine devices were investigated by investigating different sputtering times of 7,
10, and 13 min and differing the oxygen flow rate from 3.5 to 4.5 to5.5 sccm for statistical
analysis. We obtained the yield for the devices made with different thicknesses and
oxygen flow rates. The TiN/NbOx/TiN devices were verified using energy-dispersive
X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). In addition, the
current–voltage (I–V) curves were characterized by measuring DC and AC endurance. The
switching speed was measured in detail using a triangular pulse to check the operating
energy, and the recovery time and drift-free characteristics were investigated.

2. Experiments

TiN/NbOx/TiN selector devices were fabricated as follows: First, a 100 nm thick
TiN bottom electrode (BE) was deposited on a SiO2/Si wafer by reactive sputtering. Ar
(19 sccm) and N2 (1 sccm) were used at a pressure of 3 mTorr and RF power of 280 W for
the TiN film with a Ti target and pure N2 gas. Then, a NbOx layer was deposited by RF
reactive sputtering with an Nb target at room temperature and a pressure of 5 mTorr. NbOx
layers with various compositions were obtained by controlling the oxygen flow. The flow
rate of Ar/O2 was 20/3.5 sccm (14.89%), 20/4.5 sccm (18.37%), and 20/5.5 sccm (21.57%),
respectively. Finally, a 100 nm thick TiN top electrode (TE) was defined by lithography and
a lift-off process by reactive sputtering in the same way as the bottom electrode. A Keithley
4200-SCS semiconductor parameter analyzer (SPA) and a 4225-PMU pulse measurement
unit in the probe station were used to measure electrical characteristics using DC sweep
mode and transient characteristics. A bias was applied to the TiN (top electrode) and the
TiN (bottom electrode) was grounded.

3. Results and Discussion

Figure 1a shows a schematic of the fabricated TiN/NbOx/TiN selector device. A
cross-sectional TEM image of the TiN/NbOx/TiN device is presented in Figure 1b, and
the elementary distribution is revealed by EDS in Figure 1c. Note that the EDS mapping
confirmed the composition of the device stack.

Figure 2a–c shows the yield with the different sputtering times with an oxygen flow
rate of 3.5 sccm, 4.5 sccm, and 5.5 sccm, respectively. Twenty cells were measured to collect
the yield data for each sample. Figure 2a shows the yield of the TiN/NbOx/TiN device
produced at an oxygen flow rate of 3.5 sccm. The yields are approximately 80% for the
MIT characteristic after 7, 10, and 13 min sputtering time. Figure 2b shows the yield of
the devices made at an oxygen flow rate of 4.5 sccm in which the MIT characteristic yields
are between 25% and 40%. Figure 2c shows the devices produced at an oxygen flow rate
of 5.5 sccm, in which MIT characteristic yields are 20% or less. In Figure 2b,c, the devices
deposited for 7 min show mostly Ohmic characteristics, but the devices deposited for 10 or
13 min show an increasing proportion of cells that are not included in the forming process.
Based on the above experimental results, the MIT properties do not change significantly
even if the thickness deposited varies by varying the sputtering time at the same flow
rate. The NbOx-based selector device is thickness-independent. Figure 2d–f shows the
yield as a function of the oxygen flow rate at the deposition time of 7, 10, and 13 min,
respectively. In Figure 2d–f, there was a change in the MIT properties when the oxygen
flow was different and when the deposition time was unchanged. However, they may have
different thicknesses due to different sputtering deposition conditions, so further research
is needed.
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Figure 2. MIT characteristic yield of TiN/NbOx/TiN devices with different oxygen flow rates:
(a) 3.5 sccm, (b) 4.5 sccm, and (c) 5.5 sccm. MIT characteristic yield of TiN/NbOx/TiN devices with
different sputtering times: (d) 7 min, (e) 10 min, and (f) 13 min.

Figure 3a–j shows the selectivity of cells that exhibited MIT characteristics in nine
devices at different sputtering times and oxygen flow rates. Figure 3a–c shows the yield
of the selectivity of the device with an oxygen flow rate of 3.5 sccm at different sputtering
times of 7, 10, and 13 min, respectively. All three devices show the most cells with a
selectivity of <×10 (Figures S1–S3). Figure 3d–f shows the selectivity of the device at an
oxygen flow rate of 4.5 sccm, and it was confirmed that the selectivity was greater than
that of the oxygen flow rate of 3.5 sccm (Figures S4–S6). Furthermore, it was confirmed
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that devices made at an oxygen flow rate of 5.5 sccm also had greater selectivity than
devices made at 3.5 sccm (Figures S7–S9) in Figure 3g–i. Note that for NbOx deposited
with an increasing the oxygen flow rate, the MIT characteristic yield decreased but the
selectivity increased.
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Figure 3. Selectivity of TiN/NbOx/TiN devices: (a) 3.5 sccm, 7 min, (b) 3.5 sccm, 10 min, (c) 3.5 sccm,
13 min, (d) 4.5 sccm, 7 min, (e) 4.5 sccm, 10 min, (f) 4.5 sccm, 13 min, (g) 5.5 sccm, 7 min, (h) 5.5 sccm,
10 min, and (i) 5.5 sccm, 13 min (oxygen flow, sputtering time).

Figure 4a shows I−V curves with MIT characteristics in a TiN/NbOx/TiN device
operating as a selector to suppress leakage current in a crossbar array structure. A dual
sweeping from 0 to 3 V in the positive region is needed for the device to work. The current
rapidly increases from about 0.8 V with a compliance current (CC) of 1 mA. Here, the
turn-on voltage is called the threshold voltage (Vth). Subsequently, the current rapidly
decreases again at about 0.6 V. Here, the hold voltage (Vh) is defined as the turn-off voltage.
Similarly, when a voltage sweep is performed in the negative region, the current increases
rapidly from around −0.8 V with a CC of 1 mA, and the current decreases rapidly again at
around −0.6 V. The turn-on and turn-off voltages are defined as −Vth and −Vh, respectively.
Figure 4b shows 300 cycles of DC endurance characteristics for the device that sputtered at
3.5 sccm for 7 min. Importantly, the device had excellent uniformity and stability during
the 300 cycles of DC measurements. Figure 4c shows pulse endurance characteristics of
the device sputtered at 3.5 sccm for 7 min. For 70,000 cycles, a positive Vth has a low
variation range between 0.93 V (Vth_max) and 0.84 V (Vth,min), while a negative Vth is
located from −0.77 V (−Vth,max) and −0.88 V (−Vth,min). NbOx-based devices have good
switching characteristics in terms of endurance and tight switching variation because of
Joule heating-induced filamentary metal-to-insulator transitions.
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Figure 4. (a) I−V curve of MIT characteristics. The endurance test: (b) DC sweep and (c) pulse mode.

We applied triangular pulses on the device to measure the intrinsic insulating and
metallic states of the NbOx selector device [30]. If the MIT in NbOx is initiated by an
electrical field, a sufficient current density is equated in the filament to complete insulating-
monoclinic phases to a metallic rutile phase assisted by Joule heating [30,31]. Figure 5a
shows the transient characteristics by set and reset pulses. A pulse amplitude of 2 V and a
pulse width of 10 µs were used for switching. The threshold switching speed is measured
in the positive region in Figure 5b. The current increased rapidly when the voltage of the
triangular pulse was around 1 V, and the rising time was calculated to obtain the switching
speed. Similarly, the threshold switching speed was obtained in the negative bias in the
same way, as shown in Figure 5c. The switching energy is obtained by Equation (1) as

Switching Energy = ICC × U × tswitching (1)

where ICC is the compliance current, U is the pulse amplitude, and tswitching is the switching
time [32,33]. As a result of obtaining the switching energy of a TiN/NbOx/TiN device
using the threshold switching speed, it was confirmed that this device has a low switching
energy of 70 to 80 pJ (Figure S10).
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Figure 5. (a) The triangular pulse with 10 µm of pulse width, (b) switching time at positive bias,
(c) switching time at negative bias.

Next, we obtained the recovery time of the device from the metal phase to the insu-
lating phase [34]. The device at 3.5 sccm and sputtering time of 7 min can be recovered
in below 20 ns. To record the switching speed, the device was biased with a 2 V pulse,
the recovery time range was set at 50 ns to 50 µs (Figures S11−S13), and the current was
recorded at Vcheck (0.5 V pulse) in Figure 6b. A steady current was observed below the
recovery time of 50 ns. To investigate the drift-free operation, we applied a 2 V pulse
with different wait times ranging from 50 µs to 50 ns (Figures S15−S18). Figure 6c shows
the drift-free operation without changing Vth due to the difference in pulse time inter-
vals [34]. Figure 6d monitors the voltage as a function of wait time. The results show that
the switching mechanism is primarily related to a MIT [27,34].
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4. Conclusions

In this article, TiN/NbOx/TiN devices were prepared by sputtering for selector appli-
cation in a crossbar array. An MIT was confirmed with the high slope of I−V in the devices,
ensuring selector device characteristics. The oxygen flow rate (3.5, 4.5, and 5.5 sccm) and
the deposition time were controlled to obtain the optimal MIT characteristics. The device
stack and its chemical deposition were verified by TEM and EDS analysis. The yields,
including MIT, nonlinear, and Ohmic, were investigated. Through the measured data, it
was confirmed that the MIT characteristics were well exhibited in the device fabricated with
an Ar/O2 ratio of 20/3.5 sccm. Furthermore, the yield values as a function of selectivity
were investigated. As the oxygen flow rate increases, the selectivity increases, but the yield
of MIT characteristics decreases. In addition, typical current−voltage (I−V) curves were
presented, and good DC and pulse endurance were found. Moreover, the switching speed
and operating energies were calculated by triangular pulses. Finally, the recovery time and
wait time were calculated to understand the MIT characteristics.
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