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Abstract: Changes in the microstructure and selected mechanical properties of two-phase ferritic-
austenitic cast steel containing 24% Cr-5% Ni-2.5% Mo-2.5% Cu after isothermal holding at 750 ◦C and
900 ◦C are presented. The choice of the two temperatures of isothermal holding was dictated by the
precipitation of brittle phases within a range of 600 ◦C–950 ◦C, while the holding time depended on
the casting cooling time in the mould. Changes in the microstructure were studied by the SEM-EDS
and XRD techniques. As a result of the decomposition of the eutectoid ferrite, a σ phase that was
rich in Cr, Mo, and Ni and a secondary γ2 austenite with Widmannstätten morphology were formed.
Compared to the austenite, the chemical composition of the secondary γ2 austenite showed depletion
of Cr and Mo. In the ferrite, the presence of Cr2N nitrides was also detected. After a holding time of
3 h at 900 ◦C, these phases increased the hardness of the tested cast steel to approximately 275 HV10.
At the same time, the UTS value was recorded to decrease with the increasing temperature based
on the tensile test results. At 750 ◦C, the value of UTS was 250 MPa for 1 h of holding and 345 MPa
for 3 h of holding. These values decreased after increasing the temperature to 900 ◦C and amounted
to 139 for 1 h holding and 127 MPa for 3 h holding. It was also found that the elongation values at
750 ◦C ranged from 7–10%, while they amounted to 35–37% at 900 ◦C. A fracture analysis of the
tested cast steel showed that in the prevailing part, the fractures were made of ductile nature with
an arrangement of dimples that is typical for this type of fracture. Non-metallic inclusions that are
typical for cast steel (i.e., oxides and nitrides) were also found in the area of the fractures.

Keywords: duplex stainless steels (DSS); microstructure; intermetallic phases; hardness; tensile test

1. Introduction

Duplex stainless steels (DSS) are a group of modern two-phase corrosion-resistant
steels that can be used under very demanding operating conditions [1–3], especially in
extractive industries [4], petrochemicals, offshore platforms, and seawater desalination
plants (the production of drinking water from seawater) [5]. The great interest in this group
of alloys is due to their high corrosion resistance (among others) to chloride ions [6,7]
and their good mechanical properties [8–10]. This favourable combination of properties
is obtained by the proper content of ferrite and austenite, i.e., the ratio of ferrite-forming
elements to austenite-forming elements [11,12]. For this reason, duplex steels are materials
that are competitive with conventional austenitic steels (304 and 316), which are mainly
used in low- and medium-aggressive environments [3]. DSS steels are also used for
responsible industrial castings that operate in the mining industry [4]. The double value
of the yield point and the about 30% higher tensile strength UTS of cast duplex steels also
contribute to wear resistance in erosive and corrosive environments better [13]. Recently,
articles have been published on the additional strengthening of the surfaces of duplex
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steel castings, further improving their wear resistance [14,15]. The complex chemical
composition of duplex steels (especially of the third and fourth generations—referred to
in the literature as Super- and Hyper-DSS [16,17]) promotes the release of undesirable
and harmful secondary phases in the microstructures of these materials [18]. During their
operation in corrosive environments, the presence of these phases increases the steel’s
susceptibility to intercrystalline, pitting, and stress corrosion while also deteriorating its
strength and welding properties [19]. The precipitation of the phases takes place within
two temperature ranges, i.e., 300 ◦C–500 ◦C (α′, ε, π, G) and 600 ◦C–950 ◦C (M7C3, M23C6,
Cr2N, CrN, σ, χ, γ’, R) [3,20]. This is the reason why these castings should not be operated
at temperatures above 300 ◦C. The precipitates that are formed in the range of higher
temperatures may lead to further deterioration of their properties and, under extreme
conditions, cracks that are formed in castings with different wall thicknesses. The most
dangerous is the hard, brittle and non-magnetic σ phase [21–23], as well as chromium
carbides and nitrides. Nitrides are formed in areas with high Cr concentrations, mainly
in chromium ferrite [24,25]. On the other hand, the σ phase is formed primarily at the
γ/α interface. This reduces not only the mechanical properties but also the corrosion
resistance [19]. The presence of Cr-enriched precipitates in the microstructure of DSS steel
leads to a depletion of the matrix in Cr in their immediate vicinity, thus creating conditions
for pitting or intercrystalline corrosion. These phases may occur during casting [26],
welding [27,28], or plastic working [29], and the speed of their formation is related not only
to the temperature but also to the time of holding at a given temperature. This phenomenon
has been observed especially under the conditions of manufacturing massive castings with
various cross-sections. Too long a cooling time of a casting in a mould may initiate the
precipitation of harmful brittle phases. In contrast to the σ phase, chromium carbides can be
almost completely eliminated from the cast microstructure by introducing elements with a
higher affinity for carbon than Cr (such as Nb or Ti) during the melting. Hence, precipitates
of Nb or Ti carbides, nitrides, and brittle σ phase are often found in the microstructures of
such castings.

High-temperature holding of DSS steel and cast steel leads to changes in their ferritic-
austenitic structure. The result is the precipitation of secondary phases, and this process
depends not only on the chemical composition of steel but also on the holding time and
temperature. Changes in the microstructure of DSS steel and their impact on mechanical
properties have been extensively described in the literature [30,31]. The studies included the
effect of time and temperature of isothermal holding on the microstructure and mechanical
properties but were determined at room temperature. It was found that the extension
of the isothermal holding time increased the intensity of the precipitation of secondary
phases (including σ phase, chromium nitrides and carbides, and γ2 phase), which, in turn,
increased the strength of DSS steel and reduced its plastic properties [18]. It is known
that, at high temperatures, the character of changes in strength and plastic properties is
different [32]. Considering the importance of the impact of the tensile test temperature
on the properties of cast DSS steel, the authors decided to perform strength tests at a
temperature in the range of secondary phase precipitation, i.e., 600 ◦C–950 ◦C. The purpose
of this article was to link selected mechanical properties obtained after the high-temperature
tensile test carried out at 750 ◦C and 900 ◦C with the microstructure of the tested cast 24%
Cr-5% Ni-2.5% Mo-2.5% Cu steel after isothermal holding at 750 ◦C and 900 ◦C for 1 h
and 3 h. Moreover, it was the authors’ intention to show how the temperature and the
time of isothermal holding affect changes in the microstructure and, thus, changes in the
mechanical properties of the tested cast steel. This may prove to be important when the
crack formation is studied in small intricate castings that are made of the tested material
during their cooling in a mould.

2. Materials and Methods

Samples of cast duplex steel with the chemical composition that is presented in Table 1
were used in the tests. The PREN (Pitting Resistance Equivalent Number) is an indicator of
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the resistance of DSS steel to pitting corrosion and depends on the chemical composition of
the steel, the value of the molten cast steel (calculated from the PREN formula: PREN = %Cr
+ 3.3%Mo + 16%N), was 33.25 [33]. It shows the significant influence of Cr, Mo, and N on
the resistance to this type of corrosion. Additionally, it is used in the classification of this
group of alloys. The cast steel was melted in a laboratory induction furnace with a 30 kg
capacity. The charge was composed of Armco iron, Cr-Ni steel scrap, pure elements of Cr,
Mn, Ni, Mo, and Cu, and ferroalloys such as FeSi and FeNb. The bath was deoxygenated
with Al and CaSi. Because the carbon content in the melt was greater than 0.02%, Nb
was introduced to produce Nb carbides and/or carbonitrides in place of Cr carbides. The
“Y” type test ingots were subjected to heat treatment (including solution annealing from
1080 ◦C) in order to provide a two-phase ferritic-austenitic structure that was free from
secondary phases. Then, the tested material was held at two temperatures that fell within
the range of the occurrence of brittle phases, i.e., 600 ◦C–950 ◦C. Temperatures of 750 ◦C and
900 ◦C were selected for the tests. The holding times were 1 and 3 h at each temperature.

Table 1. Chemical composition of tested cast steel.

Melt
C Cr Ni Mo Mn Si Cu P S Nb N

wt. %

DSS 0.06 24.2 5.2 2.55 1.0 0.4 2.7 0.01 0.01 0.25 0.04

Microstructure examinations were carried out on a Leica MEF4M light microscope
(made in Wetzlar, Germany) at magnifications of 100× through 1000× and on a JEOL JSM
7100 F secondary electron (SE) field emission scanning electron microscope (SEM) (made
in Tokyo, Japan) at magnifications of 100× through 7500×. The chemical composition of
the microstructural constituents in the microregions was determined with an EDS detector
from Oxford Instruments (made in Abingdon, UK). The examinations were carried out on
specimens that were etched with Beraha’s reagent (0.3 g K2S2O5, 20 mL HCl, and 80 mL
H2O). For the SEM-EDS and XRD studies, samples after deep etching in a mixture of
hydrochloric and nitric acids were also used. Qualitative and quantitative examinations
of the non-metallic inclusions that were present in the tested cast steel were also carried
out. The examinations were carried out on non-etched samples, which served for the
evaluation of the microstructure after the etching. ImageJ software was used to calculate
the number of non-metallic inclusions. For each sample, the total area of the examined
polished sections was about 2 mm2. The ferrite content in the examined samples was
measured with a Fischer FMP30 feritscope (made in Sindelfingen, Germany). The content
of the ferromagnetic phase (ferrite) was determined by the method of magnetic induction
using a Fischer FMP30 Feritscope. Measurements of ferrite content made with this device
comply with the ISO 17655 standard. Using this device, the ferrite content measuring
range was 0.1–80%. The ferrite fraction was determined in five areas for each of the tested
samples. Hardness was determined on metallographic specimens by the Vickers method
(HV10 and HV0.02) using a Nexus 4000 hardness tester from Innovatest (made in Maastricht,
The Netherlands) [34]. The X-ray qualitative phase analysis was performed on a Siemens
D500 diffractometer (made in Munich, Germany). The parameters of the X-ray diffraction
studies are given in Table 2. At 750 ◦C and 900 ◦C, a uniaxial tensile test was carried out in
accordance with PN-EN 6892-1: 2016-09 [35] using round samples with a diameter of 3 mm
and a datum base length of 24 mm. The tests were carried out at a constant strain rate of
ε = 10−3 [1/s] on an Instron TM5 (made in Norwood, MA, USA) testing machine that was
equipped with a measuring head of 5 kN as well as a resistance furnace with temperature
stabilisation and with an additional system that monitored the sample temperature during
the stretching.
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Table 2. Parameters of X-ray diffraction.

Parameters of X-ray Diffraction Tested Cast Steel

Angular range, deg 2θ 35–110 deg
Step size, deg 0.04

X-ray tube CuKα radiation, λCu = 1.54 Å
Voltage, kV 40

Current, mA 35

3. Results and Discussion
3.1. Non-Metallic Inclusions in Tested Cast Steel

Compared to the arc furnace melting process, the technology of cast steel melting in
an induction furnace is characterised by an increased content of non-metallic inclusions
in the final cast products. The presence of inclusions may adversely affect the properties
of the cast steel; therefore, it was decided to determine the content of these inclusions.
The results of the calculations of the content of the non-inclusions in the examined cast
steel samples (Figure 1) showed similar contents that ranged between 1.02–1.06% for those
samples that were held at 750 ◦C and between 1.03–1.19% for those samples that were held
at 900 ◦C. As for the technology of cast steel melting in an induction furnace, the obtained
values were within acceptable limits. Examinations of the cast steel that were carried out
by light microscopy showed the presence of single polygonal inclusions that corresponded
to the nitrides. These were evenly distributed on the surface and characterised by an
irregular shape.
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Figure 1. Non-metallic inclusions in the tested cast steel.

3.2. Microstructure of Tested Cast Steel

Before the isothermal holding, the cast duplex steel was characterised by a two-phase
microstructure that was composed of ferrite and austenite. Examples of the microstructure
of the examined cast steel after isothermal holding at 750 ◦C and 900 ◦C for 1 and 3 h
are shown in Figures 2 and 3. The microstructure examinations that were carried out by
light microscopy at 100× and 500× magnifications on the cast steel samples that were
held at 750 ◦C for 1 h did not reveal the presence of secondary phase precipitates; these
were only found in the cast steel microstructure after extending the holding time to 3 h
(Figures 2d and 3c,d). Increasing the temperature to 900 ◦C accelerated the precipitation
process of the secondary phases. After both 1 and 3 h, these phases were noticed to
appear at the γ/α interface (Figures 2d and 3d). At both temperatures and both times of
holding, the cast steel microstructure showed the presence of γ2 austenite in the form of fine
coniferous precipitates that were similar to the Widmanstätten structure. The presence of
the σ phase and γ2 austenite was associated with the eutectoid decomposition of the ferrite
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into the σ phase and secondary austenite (γ2) [36]. The examinations that were carried
out with a ferritoscope confirmed the drop in ferrite content along with the extension of
the holding times at both temperatures (Figure 4); thus, it was shown that extending the
holding time from 1 to 3 h was the main factor that reduced the content of the magnetic
phase (i.e., ferrite, at 750 ◦C and 900 ◦C) and promoted the formation of non-magnetic σ
phase [37]. The obtained results demonstrated that in the manufacture of DSS steel castings,
it is necessary to accelerate the casting cooling process in the mould.
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Figure 4. Effect of holding time and temperature on ferrite content in tested cast steel.

The reaction of the ferrite decomposition into the σ phase and secondary austenite (γ2)
was additionally confirmed by the examinations of the microstructure that used scanning
microscopy. The examinations confirmed the presence in the microstructure of this phase,
which occurred mainly at the γ/α boundary. Due to the limited possibilities of light
microscopy, the examinations of the microstructure of the tested cast steel were extended
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and additionally included SEM and XRD. The SEM-EDS studies showed high contents
of Cr (approx. 30–32%), Ni (approx. 4–5%), and Mo (approx. 5–7%) in the examined
precipitates that occurred at 750 ◦C for 1 and 3 h (Figures 5 and 6). The distribution of
the molybdenum in the examined precipitates that were located at the γ/α interface is
shown in Figure 6. The high contents of Mo and Cr in relation to the matrix indicate the
presence of the σ phase; this was further confirmed by X-ray diffraction analysis (Figure 7).
The SEM-EDS studies also showed that the precipitates of the σ phase that were present
in the sample that was held for 1 h did not form a continuous network. On the other
hand, holding for 3 h contributed to the growth of this phase (which assumed the form
of continuous precipitates at the γ/α interface, growing in the direction of the Cr- and
Mo-rich ferrite—Figures 5b and 6).
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Figure 5. SEM image of microstructure of tested cast steel after holding at 750 ◦C for 1 h (a) and 3
h (b) (deep etching); (c) example of spectrum of precipitate occurring at γ/α interface (Point 1, b);
(scanning microscope).

The precipitates of the σ phase were also observed at 900 ◦C for 1 and 3 h (Figure 8).
The chemical composition of the phase after holding at 750 ◦C and 900 ◦C was comparable
in terms of the main constituents. Additionally, the SEM-EDS and XRD studies revealed
the presence of Cr2N nitrides that accompanied this phase (Figure 9); this is very likely
due to the content of 0.04% N in the tested cast steel. Chromium nitrides can be released
within a range of 600◦ through 900 ◦C inside the ferrite grains and at the ferrite/ferrite
interface [38]. Their formation is accelerated by the presence of Cr, Mo, and W, which also
increase their stability at high temperatures.
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Figure 9. Diffractogram of tested cast steel after holding at 900 ◦C for 1 and 3 h: (a) traditional etching;
(b) deep etching (T in denotations).

A comparison of the obtained XRD diffraction records after traditional and deep etch-
ing indicates the etching of the ferritic phase and (along with this phase) fine Cr2N nitrides
(Figures 7 and 9). Additionally, the use of deep etching on the cast steel allowed for con-
firming the presence of the secondary austenite (γ2) with the Widmanstätten morphology
in the SEM-EDS studies (Figure 10). The SEM-EDS analysis of the chemical composition of
the austenite and secondary austenite (γ2) showed that the secondary austenite contained
lower content of Cr and Mo and a slightly higher content of Ni (Table 3) [37].
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Figure 10. Example of precipitates of γ and γ2 phases in microstructure of tested cast steel after deep
etching (at 900 ◦C for 3 h) (scanning microscope).

Table 3. Chemical composition at examined points—Figure 10.

Spectrum
Label

Si Cr Mn Ni Cu Mo Fe

wt. %

γ from Figure 10 0.5 21.4 1.0 7.2 3.7 1.9 Bal
γ2 from Figure 10 0.5 18.6 1.4 8.2 3.5 1.6 Bal
γ at 750 ◦C * 0.4 21.3 1.1 6.9 3.9 1.8 Bal
γ at 900 ◦C * 0.4 21.6 1.15 6.9 3.7 1.8 Bal

* / examinations were carried out on polished metallographic sections.
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The SEM-EDS studies also showed that in the microstructure of the examined cast
steel (at both 750 ◦C and 900 ◦C), precipitates in the form of fine needles were present at the
γ/α interface and in the ferritic phase. The analysis of the chemical composition revealed
extended enrichment in the Nb (approx. 34–49%), Cr (12%), and N (2.1%) (Figure 11). This
may indicate the presence of the complex non-equilibrium nitrides that have been described
in the literature [16]. Their formation was triggered by both the technological process (the
deliberate introduction of Nb) and the supersaturation of ferrite with nitrogen during
the cooling of the tested cast steel. Due to the low chromium content in the examined
precipitates (as compared to the Cr2N or CrN), their impact on the occurrence of pitting
corrosion will be rather moderate. The XRD examinations did not show the presence of
M23C6 chromium carbides; this means that the addition of the Nb that was introduced to
the examined cast steel effectively blocked their release in an amount that did not exceed
the detectability threshold.
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3.3. Effect of Isothermal Holding on Hardness of Tested Cast Steel

Hardness measurements showed an increase in the hardness with the longer time
and higher temperature of the isothermal holding. The presence of the secondary phases
in the microstructure of the examined cast steel also contributed to the recorded increase
in the hardness (Table 4). According to [39], the occurrence of the σ phase can serve as a
means of increasing the abrasion resistance of castings that are made from this grade of
steel to a certain extent. The measured microhardness of the σ phase was within a range
of 560–672 HV0.02. Large differences in the obtained values of the microhardness resulted
from the different sizes of this phase and the depth of its embedding in the matrix (among
others things).

Table 4. Hardness of examined cast steel (averages of five measurements) HV10.

Temperature and Time of Holding [◦C/h]

750-1 750-3 900-1 900-3

Hardness and standard
deviation 234 ± 0.58 247 ± 1.0 253 ± 1.52 275 ± 1.15

3.4. Tensile Strength of Tested Cast Steel at 750 ◦C and 900 ◦C

Examples of the tensile curves that were recorded for the tested cast steel at 750 ◦C
and 900 ◦C are shown in Figure 12. Before the static tensile test, the tested cast steel was
subjected to solution treatment at 1080 ◦C and isothermal holding at 750 ◦C and 900 ◦C in
two time variants, i.e., 1 h and 3 h.
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Figure 12. Characteristics of the stress–strain curves obtained at 750 ◦C and 900 ◦C for samples after
solution heat treatment at 1080 ◦C and isothermal holding at 750 ◦C and 900 ◦C for 1 h and 3 h.

The results of the tensile test showed that the stresses were higher in the tested cast steel
at 750 ◦C as compared to 900 ◦C. At the temperature of 750 ◦C, the tensile strength values
were 250 for the 1 h treatment and 345 MPa for the 3 h treatment. Extending the holding
time at 750 ◦C from 1 h to 3 h increased the yield strength and tensile strength. At the
isothermal holding temperature of 750 ◦C (the initial range of temperatures of secondary
phase precipitation for DSS steel, i.e., 650 ◦C–950 ◦C), the extension of the isothermal
holding time from 1 h to 3 h had a significant impact on the observed microstructure
(Figures 2 and 3). This applies in particular to the reduced ferrite content in the structure
(Figure 4) and the appearance of the sigma phase at the γ/α interface. After isothermal
holding for 3 h, this phase took the form of thin, continuous precipitates growing towards
ferrite, as shown in Figures 5b and 6.

The increase in strength properties at a temperature of 750 ◦C along with the ex-
tension of the holding time, may be due to the increasing content of the precipitated σ
phase, which in small amounts can control the strengthening process of the tested cast
steel (Figures 13c and 14a). On the other hand, the elongation values obtained for these
materials during the high-temperature tensile test at 750 ◦C decreased with the increasing
temperature and amounted to approximately 9 and 7% in the case of samples held at 750 ◦C
for 1 h and 3 h, respectively. This generally corresponds to changes in the mechanical
properties of DSS steel subjected to a static tensile test at room temperature [40].

Another series of tensile tests were carried out at 900 ◦C. The strength values obtained
for cast steel in the tensile test at 900 ◦C were significantly lower than those obtained for
cast steel in the tensile test at 750 ◦C. On the other hand, a significant increase in elongation
was observed (Figure 12).

At the temperature of 900 ◦C, for both holding times, the curves differed only slightly
with the values of 127 (3 h) and 139 MPa (1 h). The elongation at 900 ◦C was higher and
comprised within a range of 35–37%. Due to the limited number of samples used in the
tests, only at a temperature of 900 ◦C, it could be concluded that the holding time of 1
or 3 h had no substantial effect on the stress values, contrary to 750 ◦C, where a longer
holding time increased the stress by nearly 100 MPa. In none of the time variants, the
cast steel after isothermal holding at 900 ◦C showed such a clear growth of the σ phase
as was observed after isothermal holding at 750 ◦C (Figures 2, 3 and 8). Precipitates of
this phase were larger and had a more compact morphology than after isothermal holding
at 750 ◦C (Figures 3 and 8), which explains the minor role of isothermal holding time
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in shaping the mechanical properties obtained in the tensile test carried out at 900 ◦C
(Figures 13d and 14b).
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The UTS and YS values obtained at 750 ◦C and 900 ◦C were much lower than the UTS
and YS values obtained for the cast steel tested at room temperature (UTS: 720–770 MPa,
YS: 600–620 MPa) [13]. Thus, the obtained results confirm the literature data, which claims
that with the increase in test temperature, the strength values decrease and the plastic
properties increase [32]. The increase in the temperature of the static tensile test and the
presence of numerous precipitates of secondary phases in the microstructure of the tested
cast steel contributed to the reduction of strength properties.

The results obtained in the static tensile test at elevated temperatures are confirmed by
the microrelief (character) of fractures.

3.5. Fracture Analysis

The temperature of the tensile test was found to have a significant impact on the
microrelief of the fracture surface (Figures 13 and 14). Reheating the tested cast steel to a
high temperature during the tensile test activated the diffusion process, resulting in the
growth of the existing grains (Figure 13c,d,g,h and Figure 14a,b,e,f) and in the nucleation
of new precipitates of secondary austenite (Figure 13c,d and Figure 14a,b) [41]. These
precipitates improve ductility but reduce corrosion resistance. The nucleation of secondary
austenite precipitates in the ferritic matrix of the tested cast steel is related to the earlier
precipitation of Cr nitrides (Figures 7 and 9) [28]. The SEM analysis revealed that, at the
temperature of 750 ◦C, the ductile fracture prevailed regardless of the cast steel’s holding
time. This was characterised by a typical arrangement of dimples and micro-dimples
(with precipitates visible inside them—Figure 13e,g and Figure 14c,e). The extension of
the time from 1 to 3 h at 750 ◦C resulted in the growth of the precipitates that could
be observed in the fracture. A similar situation occurred when the fractures that were
obtained at 750 ◦C were compared to those that were obtained at 900 ◦C. The central part
of each fracture (in the axis of the sample) was subjected to detailed examinations. Macro
examinations showed varied topographies of the surfaces of the examined fractures. In the
case of cast steel subjected to the tensile test carried out at 750 ◦C, the occurrence of voids
characteristic of the ductile fracture mechanism was observed along with changes in the
planes of crack front movement (Figure 13e,g and Figure 14c,e). In the case of cast steel
subjected to the tensile test carried out at 900 ◦C, the fracture surface was not clear enough
to determine which fracture mechanism was prevailing. The reason was a large number of
finely dispersed precipitates (Figure 13f,h and Figure 14f).
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In fractures obtained from the tensile test carried out at 750 ◦C, the ductile mode of
fracture prevailed. It was accompanied by the presence of characteristic dimples formed
around the precipitates; a brittle fracture mechanism was also observed to occur locally.
On the other hand, in fractures obtained from the tensile test carried out at 900 ◦C, the
sigma phase present in large amounts (Figures 13d and 14b) did not allow for unambiguous
identification of the dominant fracture mechanism. In Figure 13f, voids characteristic of the
ductile fracture mechanism were observed, but in Figure 13h, the characteristic dimples,
similar to those present in cast steel subjected to the tensile test carried out at 750 ◦C, did
not appear (Figure 13g). The same results were obtained for the longer time of isothermal
holding, which means that in cast steel subjected to the tensile test carried out at 750 ◦C,
the fracture could still be clearly identified as ductile. On the other hand, after the tensile
test carried out at 900 ◦C, the density of the emerging phases made an unambiguous
characterisation of the obtained fractures very difficult, although a fragment of the ductile
fracture surface was observed (Figure 14f).

Additionally, the identification of particles present in the fracture was carried out
(Figure 15). Large particles enriched in N, O, and Al were observed; they fractured in a
brittle mode, and, at the same time, they initiated the brittle fracture process in their close
proximity. Because these particles were not dominant inclusions in the tested cast steel,
they did not play a significant role in the cast steel cracking process.
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In addition to the non-metallic inclusions revealed on fractures, the presence of
the σ phase in the microstructure of the examined cast steel (Figures 13c,d and 14a,b—
microstructure obtained in the heads of tensile samples) can be a source of the high con-
centration of tensile stresses, which in combination with thermal stresses can lead to crack
formation in castings. This phenomenon may occur especially during the cooling of cast-
ings. Therefore, in the process of casting DSS steel into foundry moulds, it is very important
to remember that holding castings in the range of 750 ◦C–900 ◦C for even 1 h will favour
the formation of a brittle and hard σ phase. The conducted research has shown that this
is a real threat, especially in the production of medium and large castings (>0.5 Mg) with
varied wall thicknesses [39]. To avoid adverse consequences, castings should be knocked
out from moulds before they enter the range of secondary phase precipitation, i.e., before
they reach 950 ◦C.

4. Conclusions

Microstructure examinations and tensile tests of cast duplex steel led to the following
conclusions:

• As a result of isothermal holding at 750 ◦C and 900 ◦C for the 1 and 3 h, the following
secondary phases precipitated in the examined cast steel: σ phase, γ2 secondary austen-
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ite with Widmanstätten morphology and Cr2N nitrides. These phases contributed to
the increased hardness of the tested cast steel.

• The σ phase present in the microstructure of the examined cast steel contains approx.
30–33% Cr, 3–5% Ni and 5–7% Mo and is characterised by a diverse morphology
depending on the temperature and time of holding. In the cast steel held for 3 h at
both temperatures, it tended to form continuous precipitates at the γ/α interface.

• In the performed static tensile test, higher stress values were obtained at 750 ◦C
than at 900 ◦C. The tensile strength values were 250 and 345 MPa for the 1 and 3 h
treatments, respectively, while the elongation was comprised in a range of 7–10%. At
the temperature of 900 ◦C, the tensile strength decreased significantly and amounted
to 139 and 127 MPa for the 1 and 3 h treatments, respectively, while the elongation
increased to 35–37%.

• SEM studies of the fractures showed that, regardless of the applied temperature of
the isothermal holding, the microrelief of the fracture surfaces was mainly ductile.
Additionally, the increase in the temperature to 900 ◦C increased the dimensions of
the precipitates that could be observed in the fractures. The conducted studies also
revealed the presence of non-metallic inclusions on their surface.
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