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Abstract: This paper presents the research results of multiferroic ceramic composites obtained with
three sintering methods, i.e., free sintering FS (pressureless), hot pressing HP, and spark plasma
sintering SPS. The multiferroic composite was obtained by combining a ferroelectric material of
the PZT-type (90%) and zinc-nickel ferrite (10%). Research has shown that the combination of
a magnetic material and ferroelectric materials maintains the multiferroic good ferroelectric and
magnetic properties of the composites for all sintering methods. A sample sintered with the HP
hot pressing method exhibits the best parameters. In the HP method, the composite sample has
high permittivity, equal to 910 (at room temperature) and 7850 (at the phase transition temperature),
residual polarization 2.80 µC/cm2, a coercive field of 0.95 kV/mm, and the magnetization of 5.3 and
4.95 Am2/kg at −268 ◦C and RT, respectively. Optimal technological process conditions are ensured
by the HP method, improving the sinterability of the ceramic sinter which obtains high density and
proper material compaction. In the case of the SPS method, the sintering conditions do not allow for
homogeneous growth of the ferroelectric and magnetic component grains, increasing the formation of
internal pores. On the other hand, in the FS method, high temperatures favor excessive grain growth
and an increase in the heterogeneity of their size. In obtaining optimal performance parameters
of multiferroic composites and maintaining their stability, hot pressing is the most effective of the
presented sintering methods.

Keywords: multiferroics; ferroelectric-ferromagnetic composites; perovskite-type materials; dielectric
properties; magnetic properties

1. Introduction

Multiferroics and multiferroic ceramic composites are an increasingly developing field
of materials engineering (the area of materials with functional properties) for wide applica-
tions in microelectronics and micromechatronics [1–3]. However, ever greater requirements
and newer applications of materials with functional properties in modern materials engi-
neering make it necessary to obtain ceramic materials with reliable and stable parameters.
In addition to searching for new types of multiferroic materials, an intensive search for
effective technological methods for their production (synthesis and sintering) to meet these
unique requirements has been underway [1,4]. Numerous synthesis methods of ceramic ma-
terials are known, e.g., solid-state reaction technique [5–8], calcination [9–13], sol-gel [14,15],
gel-combustion [16], mechanochemical activation [17–20], and the self-developing synthesis
of SHS [21,22], as well as sintering methods, e.g., free sintering (pressureless sintering) [23],
hot pressing [24–26], microwave sintering [23,27,28], spark plasma sintering SPS [29–32],
and cold-sintering-assisted sintering CSS [33,34]. Well-known methods of synthesis and
sintering are used to improve the functional properties of multiferroic materials, which are

Materials 2022, 15, 8461. https://doi.org/10.3390/ma15238461 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15238461
https://doi.org/10.3390/ma15238461
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-0608-2505
https://orcid.org/0000-0002-6482-3319
https://orcid.org/0000-0003-3682-7184
https://doi.org/10.3390/ma15238461
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15238461?type=check_update&version=1


Materials 2022, 15, 8461 2 of 17

appropriately modified and combined in the technological process. It is widely known that,
during the technological process, the selection of the method and technological conditions
(for both synthesis and sintering) affects the microstructure and crystal structure of ceramic
materials [35,36]. On the other hand, the crystal structure and microstructure of ceramic
materials have a decisive influence on their physical properties, as well as the temperature
and time stability of their valuable parameters [36]. One way to obtain functional materials
with multiferroic properties is to combine a material with high ferroelectric properties
and a material with magnetic properties, in order to form a ceramic composite [37–43].
Increased application possibilities of this type of material depend on the coupling of the
magnetic and electrical subsystems [1,2,4,44–48]. Previous investigations have shown that
the magnetoelectric coupling coefficient in multiferroic ferrite composites is higher for
compositions with higher ferrite content in the composite material [48,49]. However, the
presence of ferrite causes a significant deterioration of the ferroelectric properties, which
makes it necessary to design a type of multiferroic material with a predominance of the
ferroelectric phase [50].

The best-known and widely used material with ferroelectric and piezoelectric proper-
ties is the solid solution Pb(Zr1-xTix)O3 (PZT) which is most often obtained with a solid-state
reaction technique [5,6]. The properties of this material mainly depend on the Zr/Ti con-
tent ratio. The improvement of the physical properties of the PZT-type materials can be
achieved, inter alia, by doping the base composition with appropriate admixtures [9,51–55],
designing multi-component solid solutions [52,56,57], as well as using unique technological
methods [58–62]. PZT-type materials with both tetragonal and rhombohedral phases ex-
hibit extremely high (or low) values of physical properties, which is particularly interesting
in terms of their application [63,64]. In this work, a doped solid solution of the PZT-type
was used to obtain multiferroic composite materials.

In the case of magnetic materials, ferrites with different properties (obtained on the
basis of nickel, zinc, manganese, or cobalt) can be good components of multiferroic com-
posites. Due to the relatively high resistivity of the magnetic materials, nickel-zinc ferrites
seem to be one of the most suitable for the abovementioned applications. The nickel-zinc
ferrite Ni0.64Zn0.36Fe2O4 belongs to a group of soft ferrites with high values of the magnetic
properties B = 380 mT, µi = 125 (at 20 ◦C), high resistivity (~105 Ωm at 25 ◦C), and a working
frequency range of 50–1000 MHz, high Curie temperature, and chemical stability [65,66]. This
type of ferrite is used for low and higher-frequency applications; e.g., as power transformers
and inductors, microwave devices, telecom filters, delay lines, EMI-suppression, wide-band
transformers, etc. [67]. In the technological process, several sintering methods are used to
obtain multiferroic composite materials, including free sintering (pressureless sintering), hot
pressing, and spark plasma sintering [32,35,39,40,68,69]. Each of these sintering methods
has both numerous advantages as well as disadvantages, whereas not all types of materials
subjected to sintering can achieve the desired effect and optimal final properties.

The current study aimed at obtaining multiferroic composites based on a PZT-type fer-
roelectric powder and a ferrite powder, using three sintering methods, as well as studying
the effect of sintering on their physical properties. The research presented in the paper was
intended to select a sintering method characterized by the high sinterability of composite
powders, which would allow for obtaining an appropriate microstructure of the ceramic
materials. The correct microstructure is conducive to maintaining sufficiently high elec-
trophysical parameters (including dielectric properties) and resistivity of the multiferroic
composites, minimizing their deterioration due to magnetic addition in the composition
of the composite. In this study, the percentage of multiferroic composites was 90/10
(ferroelectric/paraelectric).

2. Experimental
2.1. Research Material

The work presents research results of the multiferroic composite samples obtained with
three different sintering methods, i.e., spark plasma sintering (SPS), hot pressing (HP), and
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free sintering (FS), all of which were compared to the PZT material (constituting the matrix
of the composite material). The PZT-type ceramic material (Pb0.90Ba0.10(Zr0.53Ti0.47)O3+
2%at.Nb2O5) was obtained using classic technology (solid state reaction technique), using
a mixture of simple oxides PbO (99.99%, POCH, Gliwice, Poland), BaCO3 (99.99%, POCH,
Gliwice, Poland), Nb2O5 (99.9%, Sigma-Aldrich, St. Louis, MO, USA), ZrO2 (99.5%, Aldrich,
St. Louis, MO, USA), and TiO2 (99.99%, Merck, Darmstadt, Germany). The powders were
mixed in a planetary ball mill, Fritsch Pulverisette 6 (Idar-Oberstein, Germany), for 15 h (wet
method). The synthesis was carried out under the following conditions: 950 ◦C/8 h. The
ceramic sample was obtained by the free sintering (pressureless) method under conditions:
1250 ◦C/2 h. Silver electrodes were applied to both surfaces of the ceramic sample, in order
to carry out electric tests.

The ferrite Ni0.64Zn0.36Fe2O4 material was obtained from simple oxides: NiO (99.99%,
Aldrich, Steinheim, Germany), Fe2O3 (99.98%, Sigma-Aldrich, St. Louis, MO, USA), and
ZnO (99.99%, Aldrich, Steinheim, Germany), which were mixed in a planetary ball mill
(Fritsch Pulverisette 6) for 12 h. Subsequently, the mixture of powders was synthesized at
1100 ◦C/4 h (calcination route), and the nickel-zinc ferrite powder was obtained.

Multiferroic composites were prepared by combining the synthesized PZT powder
with the ferrite powder, in the proportion of 90:10 (P/F) using three sintering methods.
After weighing, the powders were mixed in a planetary ball mill, Fritsch Pulverisette
6 (Idar-Oberstein, Germany), for 24 h (wet method). Subsequently, the multiferroic powder
was synthesized under the following conditions: 1050 ◦C/4 h.

2.1.1. Spark Plasma Sintering Method

The synthesized PF composite powders were sintered by the spark plasma sintering
(SPS) method using an SPS machine manufactured by FCT System GmbH, model HP
D5 [68]. The SPS process conditions were as follows: temperature 900 ◦C, dwell time 3 min,
pressure 50 MPa, atmosphere argon gas, heating rate 50 ◦C/min, and pressing force 4 kN
applied uniformly to the die punch during the SPS process. During the SPS process, a
number of its technological parameters were recorded, i.e., temperature, time, heating and
cooling rates, pressure force, etc., and the changes in the resistance of the sintered material
were visualized [32]. These parameters allowed for selecting optimal parameters for a
specific material. The selection of technological conditions for the SPS process was made
based on experimental research presented in previous studies [32,69]. A more detailed
description of the SPS method is presented in [68]. The multiferroic composite sample
sintered by the SPS method was labeled as PF-SPS.

2.1.2. Hot Pressing Method

The synthesized PF composite powders were sintered by the hot pressing method
(HP). In the HP process, the multiferroic powder was pressed into a plate mold and
consecutively placed in a die in the furnace chamber using a protective powder. The
final densification was carried out under conditions: 1200 ◦C/1 h/20 MPa. The device
uniformly and simultaneously applied pressure with increasing temperature. The selection
of technological conditions of the HP process was made based on experimental research
presented in [70,71]. The multiferroic composite sample sintered by the HP method was
labeled as PF-HP.

2.1.3. Free Sintering Method

The synthesized PF composite powders were sintered using the free sintering method
(FS), i.e., pressureless sintering (a method commonly used for sintering ceramic materials).
In the FS process, the multiferroic powder was pressed into a plate mold and placed in a
ceramic crucible surrounded by protective powder. Pressureless sintering was performed
in a furnace under 1250 ◦C/2 h. The multiferroic composite sample sintered by the FS
method was labeled as PF-FS. The selection of technological conditions for the FS process
was made based on experimental research presented in [70–72].
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After the technological process, the ceramic samples were ground and polished, and
then silver electrodes were placed on their measuring surfaces for electrical tests.

2.2. Investigations

The XRD measurement of the composite sample was performed at room tempera-
ture (RT) using an X’Pert Pro diffractometer (PANalytical, Eindhoven, Netherlands) with
CuKα= 1.54056 Å radiations, at the range of 2θ, from 14◦ to 66◦, in the step-scan mode:
0.05 degrees and 4 s/step, and the copper radiations CuKα. Phase identification was made
according to the ICDD PDF-4 (International Center for Diffraction Data Powder Diffraction
Files) database. The morphology of the surfaces of the ceramic materials were analyzed by
scanning electron microscopy, JSM-7100F TTL LV (Jeol Ltd., Tokyo, Japan). Two image cap-
ture techniques were used, i.e., the BSE technique (signals from the backscattered electron
detectors) and the SB standard method (both signals from the secondary and backscattered
electron detectors). Point, linear, and surface analyses of the chemical composition were
performed using energy dispersive spectrometry (EDS, Jeol Ltd., Tokyo, Japan). The distri-
bution of elements on the surface of the composite samples were determined by electron
probe microanalysis (EPMA)—Jeol Ltd., Tokyo, Japan). For microstructure analysis, the
surfaces of the samples were covered with a gold layer (Smart Coater DII-29030SCTR, Jeol
Ltd., Tokyo, Japan). The average grain size was designated using the ImageJ program.
The relative density of the ceramic samples was specified according to the Archimedes
method. The dielectric properties were carried out with a QuadTech 1920 Precision LCR
Meter (Maynard, MA, USA), at a temperature range from RT to 450 ◦C and a frequency
range from 20 Hz to 1 MHz (a heating rate of 2 deg./min). The DC electrical conductivity
was performed with a Keithley 6517B electrometer (Cleveland, OH, USA) in a temperature
range from RT to 420 ◦C. Ferroelectric tests (P-E hysteresis loop) were carried out with a
Sawyer-Tower circuit (using an A/D, D/A transducer card—National Instruments Corpo-
ration) and a high voltage amplifier (Matsusada Inc. HEOPS-5B6 Precision (Kusatsu, Japan).
The magnetic properties of the composite samples were conducted in the low-temperature
range (from −268 ◦C to 130 ◦C) using a SQUID (MPMS XL-7 Quantum Design, San Diego,
CA, USA) magnetometer in a range of external magnetic field ±7 T.

3. Results and Discussion
3.1. Properties of the PZT-Type Material

Figure 1 presents the X-ray diffraction and SEM tests, as well as dielectric and ferro-
electric properties of the ferroelectric material Pb0.90Ba0.10(Zr0.53Ti0.47)O3 + 2%at.Nb2O5
(P), i.e., the matrix element of composite materials. The material exhibits a perovskite-type
structure both from tetragonal and rhombohedral phases (i.e., a morphotropic area closer
to the rhombohedral phase). The coexistence of phases is indicated based on broad reflex
(before 2θ = 45◦) with the rhombohedral (ICDD 01-073-2022) and tetragonal peaks (ICDD
00-033-0784). The microstructure of the ferroelectric P ceramics is characterized by a firmly
compacted structure and tightly packed grain. The sample breaks through the grain, cre-
ating a firmly solidified and uniform grain structure with grain boundaries that are not
clearly visible. In some places on the ceramic sample, the fracture reveals individual grains
on the surface morphology (Figure 1b).
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Figure 1. X-ray diffraction (a), SEM microstructure (b), temperature dependence of permittivity (c),
and dielectric loss factor (tanδ) (d) for P ceramics. Inside (Figure 1c) ferroelectric hysteresis loop.

Ferroelectric P material has excellent dielectric properties and high resistivity at RT
(2.20 × 1010 Ωm). High values of permittivity occur both at RT (ε = 1910, for 1 kHz) and at
the phase transition temperature (εm = 14,020, for 1 kHz). The phase transition (from the
ferroelectric phase to the paraelectric phase) takes place in a narrow temperature range
(Tm = 592 ◦C). At the same time, the dielectric loss expressed as the tangent of the dielectric
loss angle (dielectric loss factor) remains at low values, even up to 400 ◦C (Figure 1c). The
P material also exhibits high piezoelectric and ferroelectric parameters. The P-E hysteresis
loop is wide, characteristic of perovskite ferroelectrically hard materials (with the coercive
field Ec = 1.54 kV/mm), with high values of spontaneous polarization (Ps = 32 µC/cm2) and
residual polarization (Pr = 27.5 µC/cm2). Additionally, the doped PZT-type materials show
a high temperature and time stability in terms of their electrophysical parameters [73]. The
excellent physical properties of this ceramic material predispose it to design multiferroic
ceramic composites as a ferroelectric matrix component.

3.2. Structure Tests of Composite Samples

Figure 2 depicts the X-ray diffraction patterns for the PF composite samples measured
at RT. Two sets of well-defined peaks, corresponding to the ferroelectric (P) and magnetic
(F) phases, were clearly identified for all tested PF composite samples. In the case of the P
ferroelectric component, the XRD analysis showed the coexistence of two phases, i.e., the
tetragonal phase (with good pattern matching to ICDD 00-033-0784) and the rhombohedral
phase (with good pattern matching to ICDD 01-073-2022), closer to the rhombohedral phase.
The identified phases have the following space groups: P4mm and R3m, respectively [73].
The peak occurring before 2θ = 45◦, is not sharp but blurred (Figure 2), which confirms the
presence of two phases in the structure of the material. In the case of the ferrite material
(Ni0.64Zn0.36Fe2O4), the X-ray diffraction patterns show a cubic spinel crystal structure
(space group Fd−3m) with good pattern matching ICDD 01-077-9718.
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Figure 2. X-ray diffraction patterns for the PF multiferroic composites.

3.3. Microstructure Measurements of Composite Samples

Multiferroic composites obtained based on the ferroelectric P material (composite ma-
trix) and ferrite have a similar microstructure appearance to P ceramics. In the morphology
of the composite surface, it is possible to distinguish exposed grains with regular and dis-
tinct boundaries (Figure 3a–c). The correct separation of magnetic grains and ferroelectric
matrix grains, as well as complete visualization of the distribution of magnetic grains in
the composite matrix, is possible due to the BSE image capture technique (signals from
the backscattered electron detectors). In this method, zones with a group of elements with
a lower mass are depicted as dark areas (ferrite grains). In contrast, zones with a group
of higher elements are depicted as bright regions (ferroelectric grains). Observation of
the backscattered electrons allows the differences in the composition of the multiferroic
composite sample to be visualized using different levels of contrast (Figure 3d–f). The SEM
BSE image was captured from the same area of the sample surface as in the case of the SEM
SB standard technique.
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Figure 3. SEM images of the PF multiferroic composites: (a,d) PF-SPS, (b,e) PF-HP, and (c,f) PF-FS,
made using the standard SB method (a–c) and BSE method (d–f).

The microstructure of the composite sample obtained with the SPS method (PF-SPS) is
fine-grained (Figure 3a,d). The matrix grains (ferroelectric phase) are strongly agglomerated,
and their breakage occurs through the grain. Fine grains predominate; however, there
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are also much larger grains, which makes the microstructure heterogeneous in terms of
grain size. The sintering conditions used in the SPS method (suitable for other multiferroic
composite materials of this type, e.g., [32,69]) do not effectively affect the uniform grain
growth for use in the present ferroelectric P component, which results in the formation of
internal pores in the sample volume. It decreases the composite sample density. In contrast,
the grains of the magnetic component are much larger with clearly visible grain edges. It
shows that the sintering conditions used in the SPS process for the magnetic component are
correct. The average size of the magnetic grains for the PF-SPS sample is 1.52 µm (Figure 4,
Table 1).
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Table 1. Parameters of the PF multiferroic composites.

Parameter PF-SPS PF-HP PF-FS

ρ (kg/m3) 1 6.26 × 103 7.12 × 103 6.72 × 103

ra (µm) 1.52 1.60 2.46

ρDC (Ωm) 1 1.35 × 109 7.86 × 109 2.39 × 109

M (Am2/kg) 2 5.27 5.30 5.26

M (Am2/kg) 1 4.85 4.95 4.97

Tm (◦C) 3 327 309 350

ε1, 3 1000 910 750

εm
3 5340 7850 5720

tanδ 1, 3 0.013 0.016 0.014

Ea (eV) 1.09 0.95 0.89

Pr (µC/cm2) 1, 4 1.50 2.80 1.72

Pm (µC/cm2) 1, 4 6.13 7.48 5.90

Ec (kV/mm) 1, 4 0.71 0.95 0.97
1 at RT, 2 at –268 ◦C, 3 for 1 kHz, 4 for E = 3 kV/mm.

In the case of the composite sample (PF-FS) obtained by the FS method, in the process in
which the highest sintering temperatures were applied, the magnetic grains are enormously
expanded and show significant grain size heterogeneity (Figure 3c,f). The magnetic grains
of the ferrite component with a characteristic pyramidal shape grow into the composite
phase matrix and are randomly distributed (Figure 3f). The grain boundaries have clearly
visible edges. The average size of the magnetic grains for the PF-FS sample is 2.46 µm
(Figure 4). In contrast, the ferroelectric grains constitute a strongly sintered microstructure
creating a firmly solidified surface.
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The most ordered composite microstructure is for the multiferroic composite sample
obtained by hot pressing method (PF-HP)—Figure 3b,e. Adequately reducing the sintering
temperature and sintering time during the technological process (compared with the FS
method), with the simultaneous application of external pressure, has a positive effect on
both the ferroelectric and magnetic components of the multiferroic composite materials.
In the case of the ferroelectric matrix, the surface morphology is similar to that of the P
ceramics with tightly compacted and solidified grains without visible boundaries. On the
other hand, the magnetic grains do not grow in an uncontrolled manner, as occurs during
the FS method. However, they show greater grain size uniformity in the volume of the
composite microstructure (Figure 3e). In addition, the edges of the magnetic grains are
clearly visible, and the grains are of a regular shape. The average size ra of the magnetic
grains for the PF-HP sample is 1.60 µm (Figure 4).

Figure 5 depicts a set of microstructure analyses of the exemplary PF-HP composite
sample, i.e., SEM images captured by the BSE technique, lines and point EDS analyses, and
EPMA tests. The point EDS analysis (Figure 5a,b) showed that the bright areas visible in
the SEM BSE images belong to the ferroelectric phase (001—Figure 5b), i.e., elements with a
higher atomic number, while the dark ones belong to the magnetic phase (002—Figure 5b),
i.e., elements with a lower atomic number. The linear EDS analysis (Figure 5a,c) registers a
change in intensity of the waveforms for individual elements in the variable measurement
region (according to the red line in Figure 5a). In the area of the ferrite grain, there is
a decrease in the intensity of the signal coming from the ferroelectric phase (minima of
the Pb, Ba, Zr, Ti, and Nb waveforms), with a simultaneous increase in the intensity of
the signal from the elements of the magnetic component (maxima of the Fe, Ni, and Zn
waveforms). The opposite tendency is observed in the area of the matrix of the ferroelectric
composite. The EPMA method of visualizing the surface of the composite microstructure
of the sample creates an image (map) of the distribution of individual elements in an
illustrative manner. An area with a magnetic grain surrounded by a ferroelectric composite
matrix was selected for the analysis (Figure 5d). The mappings expose areas rich in
magnetic components (Fe, Ni, and Zn) and rich in ferroelectric components (Pb, Ba, Zr, Ti,
and Nb). The presented studies complement each other, showing the distribution of the
magnetic and ferroelectric phases in a multiferroic composite sample. The BSE technique,
as well as point and linear EDS analyses, show the most significant compliance. On the
other hand, EPMA maps can provide an approximate visualization of the microstructure of
the ferroelectric-ferromagnetic composite samples.
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(d) EPMA maps of the distribution of individual elements in the PF-HP composite sample.

The EDS surface tests (Figure 6) on the larger measuring area of the sample (at low×1500
magnification) were performed to verify the correctness of obtaining the assumed composition
of multiferroic composites. The theoretical percentages of elements for individual elements were
compiled based on the stoichiometric calculations of chemical compositions by the chemical
reaction of the obtaining thereof. The results of the EDS tests (tables inside Figure 6) are the
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average values of five randomly selected measurement areas. The EDS analysis showed a slight
excess of the ferroelectric component (Pb, Ba, Zr, Ti, and Nb) and a slight deficiency of the
magnetic component (Ni, Zn, and Fe). Both in the case of the ferroelectric and the magnetic
components, these deviations are within the permissible error. At the same time, the EDS
analysis confirmed the absence of foreign elements. The most stable chemical composition
(closest to the theoretical one) shows a composite sample sintered by hot pressing method
(PF-HP).
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Figure 6. The EDS surface analysis for the PF composite samples: PF-SPS (a), PF-HP (b), and PF-FS (c).

The density of multiferroic composite samples determined by the Archimedes method is
6.26 × 103 kg/m3 for PP-SPS, 7.12 × 103 kg/m3 for PF-HP, and 6.72 × 103 kg/m3 for PF-FS.
Considering the sinterability during the technological process, the correct compaction of the
material, and the highest density, the HP hot sintering method is the most suitable technology
for multiferroic composites. Appropriate densification of the multiferroic composite sample
ensures the correct microstructure is obtained, thanks to which a material with optimal and
stable physical properties and high resistance to electrical breakdown is obtained.

3.4. Ferroelectric Properties and Electric Conductivity of Composite Samples

Figure 7a shows P-E hysteresis loops for the PF composite samples made at RT (5 Hz).
The presence of ferrite in the PF multiferroic composites reduces the residual polarization,
the coercive field, and the correct saturation of the hysteresis loop. The values of the
Pr residual polarization are 1.50, 2.80, and 1.72 µC/cm2, for PF-SPS, PF-HP, and PF-FS
samples, respectively (Figure 7b), while the Ec coercive field is 0.71, 0.95, and 0.97 kV/mm
for PF-SPS, PF-HP, and PF-FS samples, respectively (Figure 7c). The composite sample,
sintered by hot pressing, retains the most ferroelectric properties (PF-HP), and shows the
highest resistance to electric breakdown. Table 1 summarizes the values of the residual
polarization, maximum polarization, and the coercive field for composite materials.
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At RT, the composite samples have correspondingly high values of the ρDC resistivity,
i.e., 1.35 × 109 Ωm (for PF-SPS), 7.86 × 109 Ωm (for PF-HP), and 2.39 × 109 Ωm (for
PF-FS). Above 50 ◦C, with increased temperature, there is a systematic increase in DC
electrical conductivity (Figure 7d), which is related to the increased drift mobility of
thermally activated charge carriers [74]. In the case of PF-SPS and PF-HP composite
samples, the observed increase shows a stable trend, while in the PF-FS sample above
200 ◦C, the increase in conductivity is much more rapid. The temperature dependence of
DC electrical conductivity obeys the Arrhenius law (1) very well. The activation energies
Ea of the multiferroic composite samples were calculated according to the linear slope of
the lnσDC(1000/T) curves and the Arrhenius Equation (1).

σDC = σ0 exp
(

Ea

kBT

)
, (1)

where: σ0—pre-exponential factor, kB—Boltzmann’s constant, T—absolute temperature,
Ea—the activation energy [75].

The calculated activation energy for PF multiferroic composites shows lower values
than the P ceramics (1.45 eV), i.e., 1.09 and 0.95 eV for PF-SPS, and PF-HP, respectively.
In the case of the PF-FS sample, the activation energy was calculated for two areas of the
curve, namely 0.89 eV (at a lower temperature) and 1.68 eV (at a higher temperature).
Generally, in the case of perovskite-type materials, DC conductivity is mainly associated
with oxygen and lead vacancies, defect dipolar effects, etc. [76,77], whereas, in the case
of ferrite materials, it is connected with the hopping mechanism [78,79]; i.e., the hopping
of charge carriers between the iron ions available in different valence states [80]. Volatile
components can easily create the oxygen vacancies (VO) at high temperatures during
sintering, leading to the creation of singly/doubly ionized oxygen vacancies V′O/V′′O, an
ionization of which creates conducting electrons [75]. The calculation Ea shows that the
thermal excitation of carriers dictates the electrical conduction from the second ionization
of oxygen vacancies. This suggests that the oxygen vacancies migration dominates the
electrical conductivity, changing from a single to a doubly ionized mechanism around the
ferroelectric phase transition [75]. The presence of ferrite in the multiferroic composite
samples makes the materials more conductive (higher hopping rate of charge carriers),
especially for the FS method.

3.5. Dielectric Properties of Composite Samples
3.5.1. Temperature Dependence of Dielectric Properties

Ferroelectric P ceramics have high permittivity and low values of dielectric loss factor
(tanδ), and the ferroelectric phase transformation takes place in a narrow temperature
range (Figure 1c,d). The connection to form a multiferroic composite, two materials, i.e.,
ferroelectric and ferrite materials, reduces the permittivity values; however, constantly,
they remain at a sufficiently high level (Table 1). For RT ε it is 1000 for PF-SPS, 910 for
PF-HP, and 750 for PF-FS, while at Tm it is 5340, 7850, and 5720, for PF-SPS, PF-HP, and
PF-FS, respectively. Furthermore, the width of the temperature interval in which the
phase transition takes place is significantly widened, and for lower frequencies of the
measurement field, the ε(T) waveforms in the area of the phase transition are blurred
(Figure 8). The PF-HP sample is characterized by a lower degree of phase transition
blurring, as it retains the highest permittivity values from the analyzed series (Figure 8b).
The obtained values of the permittivity of composite materials are higher than those
obtained in the works [81], and the phase transition blurring is much smaller.
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Temperature dielectric measurements have also shown that the sintering method
used in the PF technological process of multiferroic composites does not cause significant
changes in the value of the dielectric loss factor (Figure 9). The dielectric loss factor (tanδ)
is related to the dielectric relaxation process and is given as the ratio of the imaginary
part ε′′ and the real part ε′ (tanδ = ε′′/ε′). The ε′′ (dielectric loss) represents the energy
loss and occurs when the polarization shifts behind the applied electric field caused by
the grain boundaries [82]. In dielectric materials, the dielectric loss originates from the
following factors: space charge migration (interfacial polarization contribution), DC direct
current conduction, and the movement of the molecular dipoles (dipole loss) [78]. At RT,
the tanδ values of multiferroic composite samples (Table 1) are in the range of 0.013–0.016
(compared with P ceramics, tanδ = 0.013 at RT). In contrast, the increase in dielectric loss of
composite samples at higher temperatures is more significant (see Figure 1d). The dielectric
loss factor values obtained by the three methods (FS, HP and SPS) are much lower than
the tanδ values for composite materials synthesized by a powder-in-sol precursor hybrid
processing route [81].
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3.5.2. Frequency Dependence of Dielectric Properties

In the frequency dependence graphs of the real part of permittivity (ε′) for multiferroic
composite materials (Figure 10a–c), the ε′ decreased fast with the increase in frequency.
With a further increase in frequency, ε′ remains nearly constant. The plots also show that
ε′ increased with temperature growth (for a specific frequency). The phenomenon of the
dielectric dispersion can be explained by the dominance of the grain boundaries’ effect
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(rather than by the grains) and is attributed to the Maxwell-Wagner type of interfacial
polarization based on Koop’s phenomenological theory [83]. According to this model, the
microstructure of polycrystalline ceramics consists of semiconducting grains separated by
an insulating layer of grain boundaries. Defects arising in the ceramic sample during the
technological process, i.e., oxygen vacancies, create space charges at the interface between
the sample and the electrode’s space-charge polarization, whose polarization responds to
the applied electric field [76]. These charges have enough time at low frequencies to move
longer distances in the sample, creating larger electronic polarization (a high dielectric
constant value). As the frequency increases, the charge carriers cannot follow the applied
external field, and polarizability decreases (value of dielectric constant decreases) [75].
The frequency dependence of the dielectric loss (ε′′) at different temperatures is shown
in Figure 10e–f. The ε′′(f ) curves show similar behavior to ε′(f ). The high value of ε′′ at a
low frequency can be attributed to the high resistivity of grain boundaries. All analyzed
multiferroic composite samples show similar behavior ε′′(f ) curves.
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3.6. Magnetic Properties of Composite Samples

Figure 11a–c shows the temperature dependencies of M magnetization in an exter-
nal magnetic field of 0.1 T (in the temperature range from –268 to 30 ◦C) for a series of
ceramic composite samples. For the composite sample, the highest magnetization val-
ues occur at very low temperatures (–268 ◦C) and then slightly decrease with increasing
temperature. The magnetization values in the measured temperature range are from 5.3
to 4.85 Am2/kg (Figure 11, Table 1). Temperature measurements of magnetization show
dependence typical of ferroelectric-ferromagnetic composite materials, i.e., a strong sig-
nal from the ferrimagnetic phase and a weak signal from the paramagnetic phase [42].
Because multiferroic composites have the same amount of ferrite, all examined samples
reveal the same magnetic characteristics. The type of synthesis method used does not
firmly affect the magnetic properties of the multiferroic composite, as does the type of
ferroelectric phase [69]. Magnetic properties of the nickel-zinc ferrite depend from many
factors, i.e., on the exchange interactions between octahedral and tetrahedral sub-lattices,
magneto-crystalline anisotropy, spin-canted effect, super-exchange interaction, and dipolar
interactions between the moments [84]. Therefore, a more detailed study of the magnetic
properties was performed on an exemplary sample (PF-FS). Figure 11d shows the M(T)
test measured over a temperature range from −268 to 780 ◦C. A characteristic well-defined
at the Curie point (ferro/ferri to paramagnetic phase transition) can be observed on the
curve. In this case, the Curie temperature, determined as an inflection point of dM/dt
curve, is ~340 ◦C. Figure 11e shows a set of magnetic hysteresis loops measured at different
temperatures for the PF-FS sample. The shapes of the hysteresis are typical for soft mag-
netic materials with saturation magnetization Ms equal 10.6, 8.9, and 6.75 Am2/kg, and
coercivity 59, 40, and 20 Oe, for −268, −173, and 27 ◦C, respectively. A similar shape of
the magnetic loop was presented in [85] for other mutiferroic composites but with a much
lower magnetization value for the composition with 90/10 (ferroelectric/ferrimagnetic)
content compared to the multiferroic composites in this study.
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4. Conclusions

In this study, multiferroic composite samples were successfully obtained using three
different sintering methods, i.e., spark plasma sintering (SPS), hot pressing (HP), and free
sintering (FS). The multiferroic composite materials consisted of 90% ferroelectric material
(Pb0.90Ba0.10(Zr0.53Ti0.47)O3 + 2%at.Nb2O5) and 10% ferrite (Ni0.64Zn0.36Fe2O4). In the
case of ferroelectric materials, the XRD tests detected peaks originating from tetragonal
and rhombohedral phases, while ferrite material detected peaks originating from a cubic
spinel crystal structure. The research has shown that the multiferroic composite materials
obtained by three methods exhibit good ferroelectric and magnetic properties. The multi-
ferroic composite materials acquire magnetic properties while maintaining good dielectric
properties; however, the ferroelectric properties deteriorate. When comparing the test
results of the three sintering methods, it can be concluded that a sample sintered with the
HP hot pressing method shows the best set of physical parameters. The PF-HP composite
sample has high permittivity 910 (at RT) and 7850 (at the Tm), high residual polarization
2.80 µC/cm2, a coercive field of 0.95 kV/mm, and magnetization 5.3 and 4.95 Am2/kg at
−268 ◦C and RT, respectively. The optimal technological process conditions are ensured by
the HP method, improving the sinterability of the ceramic sinter, which obtains high density
and proper material compaction. The other two sintering methods (SPS and FS) show some
disadvantages that affect the final properties of composite materials. In the case of the SPS
method, the sintering conditions do not allow for simultaneous homogeneous growth of
the ferroelectric and magnetic component grains, increasing the formation of internal pores.
Similarly, in the FS method, high temperatures favor excessive grain growth and a rise in
grain size heterogeneity. In obtaining the optimal final parameters of multiferroic compos-
ites and maintaining their high stability, hot pressing is the most effective of the presented
sintering methods. Appropriate densification of the multiferroic composite sample ensures
that the correct microstructure is obtained. Thanks to the aforementioned (apart from opti-
mal physical properties), multiferroic composite materials with high resistance to electrical
breakdown are obtained. The properties of multiferroic composites predispose this group
of materials to be used in microelectronics and micromechatronics, e.g., as elements for the
construction of various types of sensors, phase modulators, magnetoelectric transducers,
and piezoelectric-magnetostrictive accelerometers.
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18. Branković, Z.; Branković, G.; Jovalekić, Č.; Maniette, Y.; Cilense, M. Mechanochemical synthesis of PZT powders. Mater. Sci. Eng.
A 2003, 345, 243–248. [CrossRef]

19. Ahmad, M.M.; Mahfoz Kotb, H. Giant dielectric properties of fine-grained Na1/2Y1/2Cu3Ti4O12 ceramics prepared by
mechanosynthesis and spark plasma sintering. J. Mater. Sci. Mater. Electron. 2015, 26, 8939–8948. [CrossRef]

20. Bochenek, D.; Bartkowska, J.A.; Kozielski, L.; Szafraniak-Wiza, I. Mechanochemical activation and spark plasma sintering of the
lead-free Ba(Fe1/2Nb1/2)O3 ceramics. Materials 2021, 14, 2254. [CrossRef]

21. Kvashenkina, O.E.; Gabdullin, P.G.; Osipov, V.S. Using the novel capable of SHS-reaction multilayer nanostructured material for
soldering of lead-zirconate-titanate piezoceramic elements. J. Phys. Conf. Ser. 2019, 1236, 012023. [CrossRef]

22. Shishkovsky, I.; Morozov, Y.; Kuznetsov, M. Layering fabrication, structure, and electromagnetic properties of perovskite phases
by hybrid process: Self-propagated high-temperature synthesis and selective laser sintering. Phase Transit. 2013, 86, 1085–1093.
[CrossRef]

23. Ramana, M.V.; Kiran, S.R.; Reddy, N.R.; Kumar, K.S.; Murthy, V.R.; Murty, B.S. Investigation and characterization of
Pb(Zr0.52Ti0.48)O3 nanocrystalline ferroelectric ceramics: By conventional and microwave sintering methods. Mat. Chem. Phys.
2011, 126, 295–300. [CrossRef]

24. Lopatin, S.; Lopatina, I.; Lisnevskaya, I. Magnetoelectric PZT/ferrite composite material. Ferroelectrics 1994, 162, 63–68. [CrossRef]
25. Wang, W.; Fu, Z.; Wang, H.; Yuan, R. Influence of hot pressing sintering temperature and time on microstructure and mechanical

properties of TiB2 ceramics. J. Eur. Ceram. Soc. 2002, 22, 1045–1049. [CrossRef]
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