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Abstract: We presented an explicit empirical model of the thermal resistance of AlGaN/GaN high-
electron-mobility transistors on three distinct substrates, including sapphire, SiC, and Si. This model
considered both a linear and non-linear thermal resistance model of AlGaN/GaN HEMT, the thick-
ness of the host substrate layers, and the gate length and width. The non-linear nature of channel
temperature—visible at the high-power dissipation stage—along with linear dependency, was con-
structed within a single equation. Comparisons with the channel temperature measurement procedure
(DC) and charge-control-based device modeling were performed to verify the model’s validity, and
the results were in favorable agreement with the observed model data, with only a 1.5% error rate
compared to the measurement data. An agile expression for the channel temperature is also important
for designing power devices and monolithic microwave integrated circuits. The suggested approach
provides several techniques for investigation that could otherwise be impractical or unattainable
when utilizing time-consuming numerical simulations.

Keywords: AlGaN/GaN; self-heating phenomenon; modeling; substrates; thermal resistance

1. Introduction

Owing to their high frequency and power handling potentialities, AlGaN/GaN high-
electron-mobility transistors (HEMTs) are expected to play substantial roles in future
satellite and information technologies [1–4]. The majority of the power of such devices is
dissipated over relatively small areas of about 0.5–1 µm around the gate contact, resulting
in local Joule self-heating [5–10]. The performance of a device is usually influenced by self-
heating; this can be identified by evaluating the thermal impedance on various epi-structures
and substrates (Si, SiC, and sapphire) [11–13]. The sapphire substrate, when compared to
SiC and Si, exhibits exceptional self-heating effects, with an increase in gate voltage [14–17].
On the other hand, excessive power density increases the risk of high-power dissipation
and high operation channel temperature, both of which have a detrimental effect on the
performance and reliability of GaN HEMTs [18–23]. Consequently, it is critical to determine
the thermal effects. There are a few reports in the literature concerning research into thermal
resistance [24–26]. Numerous complex models have been introduced, some of which are
based on physics and others which are empirical [27–32].
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Darwish et al. [13] proposed a thermal resistance calculation method for multiple gate fin-
gers. For single-gate HEMTs, Masana [33,34] proposed a gate-angle-related thermal resistance
calculation that requires a huge number of estimates, many different components, and a
complex model with various parameters. As a result, a concise thermal model for HEMTs
is necessary for efficient computation and initial investigation. In order to anticipate values
that are close to the findings of the measurements, this study illustrates one such simplified
thermal resistance model, with a Taylor series expansion for the power dissipation function.
To validate the modeled data, another thermal resistance charge-control-based model was
applied. Comparing the thermal resistance values between the DC channel resistance
measurements, the extracted thermal resistances from the charge-control model, and our
proposed method provided adequate findings. To the best of our knowledge, this is a
pioneering work on a simple and reliable empirical model for primary thermal resistance
calculations of HEMTs considering both constant and non-linear thermal conductivity.

2. Technology and Thermal Measurements

The AlGaN/GaN HEMT structures used in this research were manufactured on 430 µm
sapphire, 389 µm 4H-SiC, and 625 µm Si wafers, each 3 inches in size, using the MOCVD
technique. The cross-sectional diagram is shown in Figure 1. The epi-structures consist of
an 8 nm Al0.45Ga0.55N barrier layer, a 420 nm channel layer, and a 270 nm GaN buffer in the
SiC; a 28 nm Al0.21Ga0.79N barrier layer, 50 nm channel layer, and 200 nm AlGaN buffer
in the Si; a 28 nm Al0.25Ga0.75N barrier layer, a 150 nm channel layer, an AlN nucleation
layer (the thickness is very thin and is not shown in cross sectional diagram), a 200 nm GaN
buffer, and a 2.6 µm high-resistance GaN layer in the sapphire. The Schottky contact was
formed using Ni/Au, while the ohmic contacts for the source and drain were created using
Ti/Al/Ni/Au by e-beam evaporation, followed by annealing at 900 ◦C for 1 min in a nitrogen
environment. This process was the same for all samples. With the support of a Keysight
1500 semiconductor parameter analyzer, the I–V characteristics were measured. Thermal
analyses were then conducted using a Temptronic TP03000 thermo-chuck controller.
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Figure 1. Cross-sectional diagram of AlGaN/GaN HEMT on sapphire (a), SiC (b), and Si (c), with a
highly localized heat source under the gate (d).
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Thermal Resistance Model

Three HEMT structures, on different substrates, are shown in Figure 1a–c, with a highly
localized heat source under the gate, as shown in Figure 1d, and we assume the device area
(length Lg × width Wg). In each case, the AlGaN barrier layer thickness is insignificant
and is not anticipated to be a factor in the additional thermal resistance. The thermal
conductivities of the majority of semiconductor materials, such as Si, GaAs, and GaN,
decrease with increasing temperature [35–38]. As a necessary consequence, the effects
of temperature-dependent thermal conductivity contribute an additional temperature
increment that should be considered in the thermal analysis of GaN-based electronics.
The nonlinear heat conduction equation for the temperature-dependent thermal conduc-
tivity can be solved using finite element analysis (FEA) models [39–42]. However, the
computation times are far greater than those for the linear problem with constant thermal
conductivity. In order to address the complications arising with steady-state conduction
heat transfer, Kirchhoff’s thermal conductivity is temperature-dependent and is introduced
as function U as the basis for an integral transform [43]:

U = K{T} =
∫ T

k(τ)dτ (1)

The findings by Joyce [44] explicitly stated that the evident temperature can be ex-
pressed as

θ = T0 +
1
k0

∫ T

T0

k(τ)dτ (2)

where T0 is the boundary temperature of the heat sink in the context of the electronic
thermal spread complications. If the temperature difference between the channel and
substrate (bottom) of the chip is ∆T, then Kirchhoff’s transform can be rewritten as

∆T =
1

k0(T)

∫ T

T0

k(T
′
)dT

′
(3)

where k(T0) is the thermal conductivity at the backside contact temperature T0. Hence, a
closed-form expression for the channel temperature can be determined using Kirchhoff’s
transformation, as noted by Canfield et al. [44,45]:

∆T
T0

=
1− (1− Pdiss

4P0
)

4

(1− Pdiss
4P0

)
4 (4)

where P0 is denoted by

P0 =
πk(T0)WgT0

ln( 8tsub
πLg

)
(5)

where Pdiss is the power dissipation, Lg is the gate length, Wg is the gate width, and tsub
is the substrate thickness. To obtain a clearer approach, the preceding equation can be
illustrated as [46]:

Tch =

1− (1− Pdiss
4P0

)
4

(1− Pdiss
4P0

)
4 Tsub

+ Tsub (6)

and

P0 =
πk(Tsub)WgTsub

ln( 8tsub
πLg

)
(7)

For AlGaN/GaN HEMTs, this modeling equation estimates the channel temperature
Tch within a scale of feasible values. In our case, we have used AlGaN/GaN HEMTs grown
on three different substrates, namely sapphire, Si, and 4H-SiC wafers, for determining the
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channel temperature. Next, Equation (7) (above), is modified into temperature dependence
thermal conductivity using Kirchhoff’s transformation, depicted as [25]

k(T) = kT0

(
T
T0

)−α

(8)

where α is the constant, and kT0 is the thermal conductivity at temperature T0. The value
of α is one for perfect crystal [25]. Putting this value of k(T) into Equation (7), P0 can be
written as

P0 =
πkT0Wg(Tsub)

1−αT0
α

ln( 8tsub
πLg

)
(9)

Although the channel temperature and dissipation power determine the thermal re-
sistance, accurate channel temperature determination is necessary in order to precisely
estimate the thermal resistance. First, we performed the DC channel temperature mea-
surement technique noted in [47] and compare the measured results with the modeling
Equation (6) for all three substrates.

3. Experimental Results and Discussion

Figure 2a–c depict the typical I–V characteristics (output) of the sapphire, SiC, and Si
substrates based HEMT, respectively at room temperature. It is clearly observed that the
sapphire substrate shows a more negative differential resistance than either Si or SiC at the
saturation region with an increase in gate voltage (VGS) because of the device’s self-heating
effects. Self-heating occurs when the added power to the device generates heat that is not
efficiently conducted away, thereby allowing the device to remain at the substrate’s ambient
temperature [48]. When the drain bias is high, self-heating effects enhance the device’s
lattice temperature and degrade physical properties, including mobility (µ (m2/V · s)) and
carrier saturation velocity (VSAT) [49–52]. The mobility decreases with increasing tempera-
ture as (1/T)2.3, with a resulting decrease in DC and RF performance [53]. Although we are
interested in heat dissipation, we plotted the drain current (Ids) as a function of the power
(W/mm) applied to the device, rather than the bias. The saturated drain current (Idsat) at
each gate bias is then measured; the present curves are then normalized and redrawn as
a function of the added power, as shown in Figure 2d–f. The normalization value of the
drain current (Ids) is selected from the maximum saturated drain current (Idsat). The red
dashed line indicates the self-heating boundary limit. For various gate voltages (VGS), the
self-heating incident is clearly observable. In the case of sapphire, self-heating is obvious
from VGS = 0 V to 2 V, and no self-heating is detected at VGS = −1 V, which is outside the
red line (Figure 2a). Consequently, SiC shows self-heating effects at VGS = 2 V (Figure 2b),
and Si indicates self-heating at VGS = 1 V to 2 V (Figure 2c). In order to determine the
channel temperature, we analyzed the temperature dependence of the drain current [54,55],
as depicted in Figure 3.
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For approximation of the channel temperature without measurement, we evaluated
the model using Equation (6). All practical parameters are used in the modeling. For sim-
plicity, we showed the modeling for only the sapphire substrate in Figure 4. There is a large
discrepancy between the previously modeled data (shown in red) and the measured data
(black circle). As modeling parameters, the following values are used: substrate thickness,
tsub = 430 µm; thermal conductivity of the substrate, ksub = 49(27/Tsub) W/m-C; gate length,
Lg = 14 µm, T0 = 25 ◦; and gate width, Wg = 50 µm.
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Figure 4. Previous model (marked as half-red triangle) over-estimates Tch, which does not match
with the experimental results (black sphere).

The thermal conductivity of GaN is negligible because its thickness is lower, as com-
pared to the substrate thickness. In the modeled (previous) data, the junction temperature
Tch is overestimated, showing a large discrepancy with the practical results. Considering
this, we developed a novel modeling approach that is empirical in nature, but which
can be substantiated in terms of the thermal modeling assumption. Here, we review the
Equation (6) again:

∆T
Tsub

=
1− (1− Pdiss

4P0
)

4

(1− Pdiss
4P0

)
4 = (1− Pdiss

4P0
)
−4
− 1 (10)

We can use the Tylor series formula for the expansion of the mathematical term

(1− Pdiss
4P0

)
−4

This term can be rewritten as,

= 4
(

Pdiss
4P0

)
+ 10

(
Pdiss
4P0

)2
+ 20

(
Pdiss
4P0

)3
+ 35

(
Pdiss
4P0

)4

= Pdiss
P0

+ 0.63
(

Pdiss
P0

)2
+ 0.313

(
Pdiss
P0

)3
+ 0.14

(
Pdiss
P0

)4 (11)

The first and second terms of this expansion series show a quadratic non-linear fit,
and the other terms can be disregarded. We rearrange the thermal model equation in the
expression below:

Tch = Tsub
Pdiss
P0

+ λ1

(
Pdiss
P0

)2
+ Ta (12)

where λ1 is the polynomial coefficient, and Ta is the ambient temperature. The 1st term
and the 2nd term will be used for linear and non-linear thermal conductivity, respectively.
Figure 5a–c depicts the linear and nonlinear calculation (based on thermal conductivity) of
all the samples. First, we calculated P0 from Equation (9), with both linear and non-linear
thermal conductivity. With constant thermal conductivity, P0 is all over constant. After
obtaining the channel temperature (Tch) linear relationship with the dissipated power, P0 is
again calculated for non-linear thermal conductivity. Table 1 shows the over-all process of
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calculation. The thermal conductivity of sapphire, which was used for the calculation, is
given below [26]:

ksapphire(T) = 49
(

T
27

)−1
W/m−C (13)
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Table 1. Calculation of linear and non-linear channel temperature (sapphire substrate).

Pdiss
P0

[Constant k(T)]
Channel

Temperature (Tch)
P0

[Non-Linear k(T)]

Channel
Temperature (Tch)

[from Non-Linear k(T)]

0.0039 0.0441 27.24 0.0083 27.34
0.0039 0.0441 27.26 0.0095 27.36
0.0082 0.0441 29.63 0.0116 29.86
0.0083 0.0441 29.72 0.0133 29.95
0.0124 0.0441 32.01 0.0189 32.37
0.0127 0.0441 32.18 0.0213 32.55
0.0474 0.0441 51.84 0.0343 54.07
0.0587 0.0441 58.28 0.0345 61.39
0.1024 0.0441 83.09 0.0371 90.79
0.1243 0.0441 95.48 0.0372 106.21
0.1599 0.0441 115.66 0.0405 132.49
0.1913 0.0441 133.42 0.0405 156.46

In our empirical modeling, we calculated one non-linear term and added it to the
linear channel temperature, without changing any parameters of thermal conductivity.
Table 2 shows the estimation and the quadratic fit where only λ1 needs to be adjusted.
Here, we used λ1 = 0.63 from original Equation (11). The average percentage of error is
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approximately ≈1.5% compared to the non-linear channel temperature calculation (Table 1)
and our modeling, which is shown in Figure 6 and Table 2.

Table 2. New model and measurement data (sapphire substrate).

Pdiss
P0

[Constant k(T)]
Pdiss

P0

(
Pdiss

P0

)2 Non-Linear
Model

Percentage of Error (%)
with Measurement

0.0039 0.0441 0.089 0.0080 27.25 0.328
0.0039 0.0441 0.090 0.0082 27.27 0.330
0.0082 0.0441 0.185 0.0343 29.67 0.621
0.0083 0.0441 0.188 0.0356 29.76 0.630
0.0124 0.0441 0.281 0.0787 32.093 0.865
0.0127 0.0441 0.287 0.0825 32.267 0.881
0.0474 0.0441 1.074 1.1530 52.998 1.979
0.0587 0.0441 1.331 1.7724 60.056 2.173
0.1024 0.0441 2.324 5.3994 88.491 2.539
0.1243 0.0441 2.819 7.9499 103.438 2.607
0.1599 0.0441 3.626 13.1513 128.813 2.780
0.1913 0.0441 4.337 18.8081 152.223 2.706
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For various gate lengths (Lg), gate widths (Wg) and substrate thicknesses (tsub), the
channel temperature, as well as thermal resistance, changes, as shown in Figure 5d–f. In
the case of the Si sample, changes in channel temperature are very negligible, while the
substrate thickness increases, as shown in Figure 5d.

4. Modeled and Extraction Data Verification

Based on the design of our sample structure, we developed a 2D analytical thermal
model (recommended by Wang et al. [56]) to evaluate the validity of our empirical thermal
model. The extraction procedure is provided in Figure 7 through a flowchart. The device
energy band diagram and the structures of the AlGaN/GaN HEMTs considered in the
present work are shown Figure 7. The basic charge control equation for 2DEG along the
channel is obtained from Poisson’s and Schrodinger equations [29,57]. The relationship
between the 2DEG concentration ns and the gate voltage VGS can be expressed as

ns =
ε

qd

(
VGS −Vo f f − E f

)
(14)

E0 = γ0ns
2/3&E1 = γ1ns

2/3 (15)

where q is the electron charge, and d and ε are the total thickness and permittivity of the
AlGaN layer, respectively. Voff is the threshold voltage, and Ef is the Fermi energy level
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with respect to the bottom of the conduction band. E0 and E1 are the levels of the two
lowest sub-bands. Voff is defined as [57]:

Vo f f = ϕb − ∆EC −
qNDd2

2ε
−

σpz

ε
d (16)

where ϕb is the Schottky barrier height, and d is the thickness of the AlGaN barrier. ND
is the doping concentration of the AlGaN layer, σpz is the polarization induced charge
density, and ∆Ec is the conduction band offset at the AlGaN/GaN interface. A polynomial
expression can be used to represent Ef as a function of ns [58]:

E f = k1 + k2ns
1/2 + k3ns (17)

ns =

−k2 +
√

k22 + 4k3
′(VGS −Vo f f − k1)

2k3
′

2

(18)

where k1, k2, and k3 are temperature-dependent parameters and k’3 = k3 + qd/ε. Considering
three consecutive polynomial expressions, the parameters can be expressed as below:

k3 =
(
√

ns2 −
√

ns3)(E f 1 − E f 2)− (
√

ns2 −
√

ns3)(E f 2 − E f 3)

(ns1 − ns2)(
√

ns2 −
√

ns3)− (ns2 − ns3)(
√

ns1 −
√

ns2)
(19)

k2 =
(ns2 − ns3)(E f 1 − E f 2)− (ns1 − ns2)(E f 2 − E f 3)

−(ns1 − ns2)(
√

ns2 −
√

ns3) + (ns2 − ns3)(
√

ns1 −
√

ns2)
(20)

and
k1 = E f 1 − (k2

√
ns1 + k3ns1) (21)

where Ef1, Ef2, Ef3, ns1, ns2, and ns3 are the three regional states of the Fermi energy levels
and the positions of the 2DEG concentrations. Figure 7a–c verifies that the 1st sub-band of
all the samples in our model are below the Fermi levels. As seen from the figure, the 2nd
sub-band (E1) is significantly larger than E0. Therefore, the second sub-band’s contribution
to ns can be omitted [19].
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Current-Voltage Characteristics

In the linear region, the model depends on three temperature parameters that can be
expressed as [59]:

IDLIN =
ζ

4k4
2 [δ(D1)− δ(D2)]; ζ =

qµ0W

(L + VD
EC

)
(22)

where δ(D) = k2
2D + D2

2 −
4
3 k2D3/2, µ0 = low field mobility, and EC = critical electric field.

The values of D1 and D2 are defined as

D1 = k2
2 + 4k4(VG0) (23)

D2 = k2
2 + 4k4(VG0 −VD) (24)

VG0 = VG −Vo f f − k1 (25)

In the saturation region, the electron velocity is saturated at VSAT and is defined by:

IDSAT = qWVSAT

−k2 +
√

k22 + 4k4(VG0 −VDSAT )

2k4

2

(26)

By introducing the self-heating effect, the total drain current expression can be written
as [56]

IDSH = IDSAT [1−
η(IDSAT VDSRTH)

T0 IDSAT VDSRTH + T02 ] (27)

Here, η = fitting parameter = 500 K, and T0 = absolute temperature. Considering these
equations, we modeled the transfer and output characteristics of all the samples, as shown
in Figure 8. The parameters used in modeling are shown in Table 3. It can be explained that
negative differential resistance has no constant values at different levels of gate voltages.
AlGaN/GaN on sapphire suffers from a negative output differential resistance that starts
from VG = 0 V. The modeling data does not cover the negative gate voltages because there
is no self-heating effect observed at that voltage level in any of the samples. The SiC and Si
devices show insignificant self-heating effects, in contrast to sapphire, as seen in Figure 8e,f.
Table 4 displays the charge-control model’s extracted thermal resistances, which are then
compared to the results of our model and the measured data.

Table 3. Parameters used in modeling.

Symbol SiC Si Sapphire

x 0.45 0.21 0.20
k1 −0.11 −0.12 −0.11

k2 (V · cm) 1.76 × 10−9 1.96 × 10−9 1.74 × 10−9

k3 (V · cm2) 1.76 × 10−18 1.10 × 10−18 1.80 × 10−18

d (nm) 8 28 28
VSAT (V/m) 9.5 × 108 9.0 × 108 4.5 × 108

Voff (V) −0.88 −1.54 −2.63
µ0 (m2/V · s) 0.0126 0.0186 0.016
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Table 4. Comparison of thermal resistance in the DC measurement method, the charge control model,
and our proposed model.

Sample Drain
Voltage Range

Measured
Rth (◦C/W)

Charge
Control based Rth (◦C/W)

[Average]

Our Model Rth
(◦C/W)

VGS = 2 V VGS = 1 V VGS = 0 V

Sapphire
10–13 V 645 605 554

630 62514–16 V 650 705 729
17–20 V 673 714 830

SiC
13–15 V 136 178 -

150 12716–20 V 140 165

Si
10–13 V - 593 683

705 71214–16 V - 636 800
17–20 V - 846 905

Materials 2022, 15, x FOR PEER REVIEW 11 of 15 
 

 

0 1G G offV V V k= − −  (25)

In the saturation region, the electron velocity is saturated at VSAT and is defined by: 

0

2
2

2 2 4

4

4 ( )
2

SAT

SAT

G D
D SAT

k k k V V
I qWV

k

 − + + −
 =
 
 

 (26)

By introducing the self-heating effect, the total drain current expression can be writ-
ten as [56] 

2
0 0

( )
[1 ]SA T

SH SA T

SA T

D D S TH
D D

D D S TH

I V R
I I

T I V R T
η

= −
+

 (27)

Here, η = fitting parameter = 500 K, and T0 = absolute temperature. Considering these 
equations, we modeled the transfer and output characteristics of all the samples, as shown in 
Figure 8. The parameters used in modeling are shown in Table 3. It can be explained that neg-
ative differential resistance has no constant values at different levels of gate voltages. Al-
GaN/GaN on sapphire suffers from a negative output differential resistance that starts 
from VG = 0 V. The modeling data does not cover the negative gate voltages because there 
is no self-heating effect observed at that voltage level in any of the samples. The SiC and 
Si devices show insignificant self-heating effects, in contrast to sapphire, as seen in Figure 
8e,f. Table 4 displays the charge-control model’s extracted thermal resistances, which are 
then compared to the results of our model and the measured data. 

 
Figure 8. Charge control-based modeling data showing the transfer characteristics of sapphire (a), SiC 
(b), and Si (c). Modeled output characteristics and measurement data of sapphire (d), SiC (e), and Si (f). 

  

Figure 8. Charge control-based modeling data showing the transfer characteristics of sapphire (a),
SiC (b), and Si (c). Modeled output characteristics and measurement data of sapphire (d), SiC (e),
and Si (f).

From Table 4, the extracted thermal resistance values from the charge control model of
the sapphire substrate and silicon are high compared to those for SiC. The reason behind
this high thermal resistance found in silicon is due to the high substrate thickness (625 µm).
We used η = 500 K for all calculations. The results could be modified by adjusting the
temperature-dependent mobility (α ≈ 1.6–1.8) [56].

5. Conclusions

An accurate empirical model was used to estimate the thermal resistances of Al-
GaN/GaN HEMTs. Combining experimental results with data from the charge-control model
forecasts favorable results for the validation of this model. The heat resistance levels of three
distinct substrates were analyzed and contrasted. The measurements and comparisons en-
compassed more than 30 devices on each substrate. The issue of overestimating the channel
temperature presents difficulties for an accurate computation of thermal resistance using
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a prior model, which is resolved in this work by utilizing a fundamental mathematical
model technique. In future research, this proposed empirical model will be implemented
in RF MMIC (monolithic microwave integrated circuit) devices to accurately estimate the
channel temperature for better prediction reliability.
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