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Abstract: Due to the engine’s start/stop system and a sudden increase in speed or load, the devel-
opment of alloys suitable for engine bearings requires excellent tribological properties and high
mechanical properties. Including additional elements in the Al-rich matrix of these anti-friction
alloys should strengthen their tribological properties. The novelty of this work is in constructing a
suitable artificial neural network (ANN) architecture for highly accurate modeling and prediction of
the mechanical properties of the bearing aluminum-based alloys and thus optimizing the chemical
composition for high mechanical properties. In addition, the study points out the impact of soft and
more solid phases on the mechanical properties of these alloys. For this purpose, a huge number of
alloys (198 alloys) with different chemical compositions combined from Sn, Pb, Cu, Mg, Zn, Si, Ni, Bi,
Ti, Mn, Fe, and Al) were cast, annealed, and tested for determining their mechanical properties. The
annealed sample microstructure analysis revealed the formation of soft structural inclusions (Sn-rich,
Sn-Pb, and Pb-Sn phases) and solid phase inclusions (strengthened phase, Al2Cu). The mechani-
cal properties of ultimate tensile strength (σu), Brinell hardness (HB), and elongation to failure (δ)
were used as control responses for constructing the ANN network. The constructed network was
optimized by attempting different network architecture designs to reach minimal errors. Besides
the excellent tribological characteristics of the designed set of alloys, soft inclusions based on Sn
and Pb and solid-phase Cu inclusions fulfilled the necessary level of mechanical properties for anti-
friction alloys; the maximum mechanical properties reached were: σu = 197 ± 7 MPa, HB = 77 ± 4,
and δ = 20.3 ± 1.0%. The optimal ANN architecture with the lowest errors (correlation coefficient
(R) = 0.94, root mean square error (RMSE) = 3.5, and average actual relative error (AARE) = 1.0%)
had two hidden layers with 20 neurons. The model was validated by additional experiments, and
the characteristics of the new alloys were accurately predicted with a low level of errors: R ≥ 0.97,
RMSE = 1–2.65, and AARE < 10%.

Keywords: aluminum alloys; anti-friction materials; material design; mechanical properties; mi-
crostructure; neural network

1. Introduction

Due to their high mechanical and good tribological properties, lead, and tin-lead
bronzes remain the most frequently used material for journal bearings. In addition, friction
forces and their effects consume approximately 23% of the world’s energy today [1–3].
Due to the substantial cost savings associated with bearing production and subsequent
maintenance, the transition from bronze to aluminum-based alloys has become a driver
for the engine-building industry’s development [4]. Compared with copper-based alloys,
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aluminum-based alloys are three times lighter, 2.5–2.7 times cheaper, easier to process
and manufacture, and require less energy to cast than copper by 15–20%. Aluminum,
unlike bronze, does not act as a surfactant on steel and does not attack it through the
Rehbinder effect [5]. As a result, further chemical-thermal treatment of steel shafts can be
avoided when using aluminum-based anti-friction bearings, and thus anti-friction alloys
have gained significant interest [6–10]. Figure 1 demonstrates the construction of Al-metal
bearing shells, as well as their constructions and positions on the crankshaft, as one example
of the various uses of metal bearings. The aluminum anti-friction bearing shell is assembled
on the steel back substrate using the aluminum bonding layer (Figure 1a). The anti-friction
bearing alloys were developed to fulfill various requirements such as good mechanical
properties, high corrosion and wear resistance, excellent thermal conductivity, and lubricity,
and they should be cost-effective materials [11–13]. Figure 1b shows the positions of
the bearing on the crankshaft and the bearing construction used in the modern high-
speed internal combustion engine [14]. Any bearing material must have high compressive
strength and fatigue resistance to prevent permanent deformation and the formation of
permanent deformation and forming surface fatigue cracks.
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The proper selection of bearing materials is crucial for securing the operation of friction
units and avoiding failure. Materials of monometallic bearings for capacity expansion and
toughness operations should exhibit good mechanical properties with good anti-friction
properties [15–20]. Lead and tin are considered the most common alloying elements in
aluminum anti-friction alloys [21–24]. Because of its excellent tribological performance,
the Al-20%Sn-1%Cu alloy is regarded as a fundamental alloy for designing novel anti-
friction materials. However, due to its inadequate mechanical characteristics, it can only be
used in bimetallic bearings. As previously demonstrated [1,11,25–27], multicomponent Al-
based alloys display excellent tribological characteristics due to the synergetic interaction
between alloying elements of the multicomponent alloys. In addition, Sn, Pb, and Bi
are used as components that create soft-phase components. Silicon (Si), like iron (Fe), is
always present as an impurity with aluminum. In bearing alloys, magnesium (Mg) is
added in small amounts (up to 2%) to increase the strength of these alloys [11]. Mg can be
problematic in the presence of tin (Sn) since it forms a chemical compound Mg2Sn with
Sn. However, with complex multicomponent alloying, the formation of the Mg2Sn phase
can be suppressed or completely absent. In this case, Si addition results in the formation of
the Mg2Si phase and the Guinier–Preston zone, which contribute to the alloy’s hardening
during the aging process. Copper (Cu) increases the modulus of elasticity of Al-based
alloys, and is considered one of the main alloying additives that sharply harden aluminum
alloys. Natural aging is capable of hardening Al-Cu alloys. Fe has a detrimental effect
on the aging process of Al alloys, while the addition of small Mg additives (0.02–0.03%)
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restores the aging ability of these alloys. Zinc (Zn) is an ineffective solution hardener,
making its use as the only alloying element impractical. Nevertheless, when it is alloyed
with other additives together, particularly with Mg and Cu, it significantly influences the
properties of the produced alloys. Adding Mn to Al-based alloys strengthens them by the
formation of a solid solution. This solution decomposes during subsequent technological
heating at elevated temperatures, resulting in the formation of secondary aluminides,
thereby hardening the alloys. In addition to hardening, transition element additives, such
as Ti, often improve the workability of alloys by refining the grain. The addition of a
small amount of Ni significantly increases the volume fraction of the eutectic and improves
the casting properties. Alloying the strontium (Sr) to Al-Si-based alloys changes the Si
morphology to fibrous structure from needle shape, resulting in a substantial improvement
in the wear resistance of these alloys [28].

Several researchers have chosen computational analysis approaches, such as Finite
element analysis [29] and ANN [30–34], for solving many engineering problems to avoid
high-cost experimental methods that would need a lot of time, effort, raw materials,
and expense. The prediction of the mechanical properties of the anti-friction aluminum
alloys with a large number of alloying elements prior to their production is too complex.
In order to resolve this problem, a large number of alloys are required to construct an
accurate predictive model. ANN is the most popular modeling and predictive approach
for simulating and predicting material properties. Additionally, it is an ML technique
that originated and progressed from mimicking the human brain [30–32]. In recent years,
ANN has provided fundamentally novel and different materials processing and modeling
control approaches compared to numerical or statistical methods [33,34]. One of the
primary advantages of ANN over constitutive analysis is that there is no need to postulate
a mathematical model prior to employing neural networks. ANN learns from recognized
trends and examples in a series of output and input values without any prior assumptions
about the nature of the output and input values. Furthermore, the ANN model does not
have any physical understanding of deformation and restoration requirements. Because of
its ability to retain data in memory and its precise ability to deal with discrete data, ANN is
highly recommended for modeling adoption. It also has a significant capacity to adapt the
configuration of the old network to match the current experimental results [35]. ANN is
well suited to estimating flow stress from available experimental data due to its inherent
high parallelism.

Input, one/more hidden, and output layers make up a typical network linked by
processing units known as neurons. All of the network’s neurons are connected together
by weights. The output layer distributes the results to operators, and the input layer
collects data from the outside. The hidden layer with a fixed number of neurons aims to
avoid the complication of non-linear problems. The ANN model has the following steps:
gather experimental results, define output/input variables; pre-process and analyze the
gathered data; ANN training and monitoring; evaluate its performance. The main objective
is to reduce the errors between the measured experimental targets and the ANN outputs.
Backpropagation (BP) is a powerful machine learning approach for multi-layer expectations
that involves adjusting weights and biases using a gradient descent strategy to reduce error
for a specific training sequence [36,37].

Though the ANN is widely and effectively used in modeling the behavior of materials,
from the literature, there is a huge knowledge gap in using the ANN for predicting the
mechanical properties of anti-friction aluminum-based alloys. In this context, this work
aims to: (1) Provide an accurate ANN architecture for predicting the mechanical properties
of the anti-friction aluminum-based alloys (alloying elements: Sn, Pb, Cu, Mg, Zn, Si, Ni,
Bi, Ti, Mn, and Fe) without performing extra experiments, thereby saving the time, effort
and materials, and reducing the overall cost. (2) Understanding the impact of soft phases
and the solid strengthened phases on the mechanical properties of these alloys. The soft
inclusion elements provide the desired tribological properties, while the hard inclusion
elements provide the required level of mechanical properties. It should be noted that this
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work is part of a more significant effort to replace bronze-based bearing materials with
aluminum-based anti-friction alloys [26,27,38]. Consequently, the additional elements were
selected considering the aim of this series of work, achieving good tribological properties
with an acceptable level of mechanical properties without softening and failure. The ANN
for modeling and prediction of the mechanical properties of such huge alloys is a feasible
study for time and material saving, and to our knowledge, such a study has been performed
here for the first time.

2. Materials and Methods
2.1. Samples Preparation

Figure 2a depicts the schematic flow chart of this work, including the preparation and
casting of the proposed alloy, the characterization step (microstructure and mechanical
characterization), and the creation of the ANN model. In the current study, 198 Al-based
alloys containing Sn, Pb, Cu, Mg, Zn, Si, Ni, Bi, Ti, Mn, and Fe elements were investigated.
The content of the elements varies within the limits tabulated in Table 1. Pure Al (99.95), Sn
(99.90), Pb (99.985), Bi (97), and Zn (97.5) were used for sample casting (all numbers are in
wt%). Master alloys of Al-20Cu, Al-15Ni, Al-10Cu-10Ni, Al-10Si, and Al-12Mg were used
to incorporate Cu, Ni, Si, and Mg elements. The master alloys were initially prepared from
Al with mono metal Cu (99.90), Ni (99.7), Si (98.8), and Mg (99.95). According to the Russian
standard, GOST (11069, 860-75, 3778-98, 10928-90, 3640-94, 859-2014, 849-2018, 2169-69, and
804-93), the purity of the alloying elements and the amount of the elements in master alloys
were selected [39], as well as the binary phase diagram of each master alloy. Ti was added
into the melted alloys in the form of salts hexafluorotitanic and hexachloroethane as part of
the degasser-modifier “Zernolit-2” [40,41].
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The melting processes of the investigated alloys were carried out in a high-frequency
induction furnace using a graphite-fireclay crucible with a weight capacity of 15 kg. In
order to ensure a good homogenization and distribution of elements, the melted alloys were
maintained at 800–840 ◦C for 40 min. In addition, the melt was automatically mixed by
eddy currents. First, aluminum was melted and held at a temperature range of 800–810 ◦C,
then Al-20Cu, Al-15Ni, Al-10Cu-10Ni, Al-10Si, and Al-12Mg master alloys were added
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to the melt according to the composition of the desired experimental alloys. Prior to
the pouring process, the corresponding weights of low-melting elements (Zn, Sn, Pb, Bi)
were added last. Degassing and modifying of the investigated alloys were carried out
using an intermediate crucible. Finally, the melt was poured at a temperature range of
740–760 ◦C into cast-iron molds with a diameter of 50 mm pre-heated to 200 ◦C. Figure 2b
shows the casted ingots. The total duration of the pouring process, including the time
required to leave the furnace and pour the entire quantity, was limited to between 150 and
180 s. During the casting process, the temperature was controlled by a chromel–alumel
thermocouple. The ingots were subjected to a heat treatment that included annealing in
a Nabertherm N 30/65A (Nabertherm GmbH, Lilienthal, Germany) electrical-resistance
furnace at 250 ◦C for 3 h to stabilize the microstructure, followed by cooling with the
furnace at room temperature [42].

Table 1. The chemical composition of the added alloying elements to Al-based anti-friction alloys.

Element
Composition, wt.%

Element
Composition, wt.%

From To From To

Sn 4.63 13.77 Pb 0 3.76
Cu 0.45 9.63 Mg 0 0.36
Zn 0 1.44 Si 0.01 5.54
Ni 0 4.15 Ti 0 0.14
Mn 0 0.14 Bi 0 1.04
Fe 0 0.43 Al Balance

2.2. Chemical Analysis

The casted alloys’ chemical compositions were measured using the spectral technique
on Spectrolab-S installation (SPECTRO Analytical Instruments GmbH, Kleve, Germany).
For this purpose, 30 × 30 × 20 mm samples were cut from the casted ingots. Before the
chemical composition detection, the longest sides of the investigated samples were well-
ground and polished. For precise measurements, the chemical composition was detected
and recorded for five points on the longest sides of the samples.

2.3. Microstructure Analysis

For metallographic analysis, including grains morphology and study of formed phases,
samples with different compositions (Table 2) were sectioned from annealed ingots, me-
chanically ground using various grades of SiC grinding papers ranging from 600 to 4000,
and polished with emery cloth in a colloidal silica suspension, containing 20% water solu-
tion. Scanning electron microscopy (SEM), Tescan-VEGA3 (Tescan Brno s.r.o., Kohoutovice,
Czech Republic) with an X-MAX80 (Oxford Instruments plc, Abingdon, UK) energy disper-
sive spectrometry (EDS) system was used for microstructure analysis, chemical analysis of
alloy composition and phase microanalysis.

Table 2. The chemical compositions (wt.%) of the investigated alloys.

Alloy Sn Pb Cu Si Zn Mg Ni Ti Mn Fe Bi Al

Al-7.6Sn 7.6 3.3 4.0 1.0 0.5 0.07 0.05 0.06 0.020 0.12 0 Balance
Al-6.4Sn 6.4 2.9 4.1 0.9 1.9 1.4 0.01 0.14 0.001 0.08 0 Balance
Al-5.7Sn 5.7 2.7 4.1 1.5 2.3 1.5 0.14 0.03 0.004 0.14 0 Balance

2.4. Mechanical Characterizations

The tensile tests were conducted via a Zwick Z250 tensile testing machine (Zwick Roell
Group, Ulm, Germany) using a cylindrical sample, with dimensions as shown in Figure 3,
according to the ASTM E8 standard. Three tensile samples were tested for each alloy, and
the mean of the three results was utilized to calculate the reported value. The tensile tests
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were performed at a crosshead speed of 5 mm/min. Each alloy’s tensile characteristics,
such as tensile strength (σu, MPa), and elongation (δ, %), were determined via the tensile
test. HB of the investigated alloys was carried out by the Universal Hardness Testing
Machine KB 3000 (Germany, KB Prüftechnik GmbH, Hochdorf-Assenheim). According to
the ASTM E10 standard, the test conditions were ball indenter diameter = 2.5 mm, testing
load = 612.9 N, and holding time = 30 s.
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2.5. Mechanical Properties Modeling

The experimental data of tensile and HB were utilized to construct an ANN predictive
model. A comparison study between one, two, and three hidden layers of network architec-
ture was illustrated based on the prediction accuracy of each one. Statistical indices shown
in Equations (1)–(3) were employed to assess the effectiveness of constructed networks. It
is noted that the approach value of R is the unity while the approach values of RMSE and
RMSE are both zero.

R =
∑N

i=1
(
Wi −W

)(
Zi − Z

)√
∑N

i=1
(
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)2
∑N

i=1
(
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)2
(1)
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√√√√ 1
N

N

∑
i=1

(Wi − Zi)
2 (2)

AARE =
1
N

N

∑
i=1

∣∣∣∣Wi − Zi
Wi

∣∣∣∣ (3)

where

- Wi/Zi—experimental/predicted values,
- W/Z—average of the experimental/predicted values,
- N is the number of the casted alloys.

3. Results
3.1. Microstructure Analysis

Figure 4 shows the SEM microstructures (Figure 4a–c) and corresponding element
distribution maps (Figure 4d–f) of the selected alloys, Al-7.6Sn (Figure 4a,d), Al-6.4Sn
(Figure 4b,e) and Al-5.7Sn (Figure 4c,f) after heat treatment at 250 ◦C for 3 h and cooled
in the furnace to room temperature. The Al-7.6Sn exhibits a dendritic cell structure with
a size ranging from 10–110 µm (Figure 4a). In addition to the aluminum solid solution
(Al), the elements distribution maps (Figure 4d) reveal the presence of soft structural
inclusions of Sn-and Pb-rich phases (Sn-rich, Sn-Pb, and Pb-Sn phases), as well as the
solid phase inclusions of Al2Cu (θ) phase, as confirmed by [23,43–45]. Due to the close
atomic numbers of Al and Si, the backscattered electrons (BSE) SEM images do not reveal
the presence of a small amount of the (Si) phase in the microstructure. However, the Si
distribution map demonstrates its presence. Zn and Mg are dissolved in the Al-matrix and
soft inclusions, and they do not form their phases or concentration zones, which was noted
by [1]. The EDS point analysis of the Al-7.6Sn alloy (Figure 5a,b) confirms the presence of



Materials 2022, 15, 8394 7 of 21

the following components: Al-solid solution with copper, zinc, and silicon (Point 1), the
soft phase inclusions based on tin (Sn-rich phase) (Point 2), soft phase inclusions with Sn
and Pb (Sn-Pb and Pb-Sn phases) (Points 3,4), and solid-phase inclusions Al2Cu (θ-phase)
(Points 5,6). The detected phases’ chemical compositions and corresponding EDS spectrums
are presented in Figure S1. The formed phases, Al-solid solution, Sn-and Pb-rich phases
(Sn-rich, and Pb-Sn phases) and Al2Cu (θ), were confirmed by the XRD analysis (Figure 6).
The soft structural inclusions are located on the dendritic cell boundaries and exhibit a
globular and elongated shape (Figure 4a). The globular soft inclusions’ size ranged from
3 to 16 µm, the elongated inclusions’ thickness ranged from 4 to 9 µm, and length ranged
from 12 to 38 µm. The distribution of Sn- and Pb-rich phases in a single soft inclusion is
depicted in Figure 5a,b. Solid inclusions of the Al2Cu phase are primarily located along
the dendritic cell boundaries and have an elongated shape with a length ranging from
5 to 45 µm and a thickness from 2 to 10 µm.
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The Al-6.4Sn and Al-5.7Sn alloys exhibit a similar microstructure to Al-7.6Sn alloy: a
dendritic cell structure with a size ranging from 15–115 µm for Al-6.4Sn alloy and 10–75 µm
for Al-5.7Sn alloy (Figure 4b,c). The element distribution maps (Figure 4e,f) also indicate the
presence of the Al-solid solution, the soft structural inclusions of Sn-and Pb-rich phases (Sn-
rich, Sn-Pb, and Pb-Sn phases), the solid phases inclusions of Al and Cu-rich phase (Al2Cu)
and a small fraction of the (Si) phase. The presence of these phases was confirmed by XRD-
analysis (Figure 6). The soft and solid phase inclusions have a shape and distribution similar
to the Al-7.6Sn alloy. For both alloys, the predominant structure of the soft inclusions is the
globular shape ranging in size from 3 to 15 µm. In addition, there are a small number of
elongated inclusions with a thickness of 2–4 µm and 3–5 µm and a length ranging from 9 to
41 µm and from 10 to 18 µm for the Al-6.4Sn alloy and the Al-5.7Sn alloy, respectively. The
solid inclusions of the Al2Cu phase are mainly located along the dendritic cell boundaries
and have an elongated shape (the thickness ranged from 2 to 5 µm for the Al-6.4Sn alloy
and from 2 to 4 µm for the Al-5.7 alloy, respectively). The length of the solid phases usually
does not exceed 50 µm for the Al-6.4Sn alloy and 38 µm for the Al-5.7 alloy. The EDS
point analysis of the investigated Al-6.4Sn and Al-5.7Sn alloys (Figure 5c–f) also indicates
the presence of the structural components: the Al-solid solution with copper, zinc, and
silicon, soft phase inclusions with Sn and Pb (Sn-rich, Sn-Pb, Pb-Sn phases), and solid
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inclusions of Al2Cu phase. The detected phases’ chemical compositions and corresponding
EDS-spectrums of the Al-6.4Sn and Al-5.7Sn alloys are presented in Figures S2 and S3.
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3.2. Mechanical Characterization

Table 3 illustrates the mechanical properties of the selected alloys coded as Al-7.6Sn,
Al-6.4Sn, and Al-5.7Sn after heat treatment at 250 ◦C for 3 h and cooling to room temper-
ature with the furnace. The composition of the studied alloys has a substantial impact
on mechanical characteristics. (Table 3). The alloy Al-7.6Sn exhibits good mechanical
properties, with σu = 136MPa, δ = 4.7% and 50 HB due to the combined impact of the
complex alloying of the alloy. Table 4 summarizes the mechanical properties of the investi-
gated alloys that exhibit the maximum values and the best combinations of the mechanical
properties. Generally, the maximum ultimate tensile strength was 197 MPa obtained for the
alloy with the chemical composition shown in Table 4, first row. The maximum ultimate
tensile strength was reported in alloys with high concentrations of Ni and Cu elements.
The maximum HB was 77HB obtained for the alloy with the chemical composition shown
in Table 4, second row. From the third to the eighth row of Table 4, the optimal chemical
composition combination for good mechanical properties is tabulated. The alloy with
the highest concentration of Sn, 1% Pb, and a relatively low value of Cu had the highest
elongation to failure (Table 4, third row).

Table 3. Mechanical characteristics of the selected alloys.

Alloy Ultimate Tensile Strength (σu), MPa Brinell Hardness (HB) Elongation (δ), %

Al-7.6Sn 163 ± 7 50 ± 2 4.7 ± 0.5
Al-6.4Sn 136 ± 4 55 ± 3 2.3 ± 0.3
Al-5.7Sn 140 ± 6 55 ± 2 2.1 ± 0.3

Table 4. Chemical composition combinations corresponding to maximum and good mechanical properties.

Concentration, wt.% Mechanical Properties

1 Si Fe Cu Mn Mg Ni Zn Ti Bi Pb Sn Al σu, MPa HB δ, %
2 0.25 0.33 3.61 0 0 4.18 0.01 0.04 0 0 0.36 Balance 197 ± 7 55 ± 3 12.7 ± 0.7
3 0.42 0.25 2.7 0 0 3.7 0.02 0.08 0 0 0.26 Balance 177 ± 6 77 ± 4 17.9 ± 0.8
4 0.14 0.02 1.84 0 0 0 0.34 0.03 0 1.02 7.28 Balance 140 ± 5 37 ± 2 20.3 ± 1.0
5 0.27 0.04 4.54 0 0 0 0.79 0.03 0 2.48 7.21 Balance 180 ± 7 45 ± 2 14.1 ± 0.8
6 0.42 0.06 8.44 0 0 0 1.44 0.04 0 2.23 6.22 Balance 160 ± 6 53 ± 3 3.2 ± 0.4
7 3.85 0.32 1.79 0.09 0.02 0.05 0.48 0.06 0 2.33 7.47 Balance 164 ± 7 55 ± 3 5.3 ± 0.5
8 1.01 0.03 4.49 0 0 0 1 0.03 0 2.1 6.66 Balance 173 ± 7 47 ± 2 8.9 ± 0.9

3.3. Artificial Neural Network Model

In the present work, the chemical compositions of the added elements (Fe, Si, Mn,
Mg, Cu, Ni, Ti, Zn, Bi, Pb, and Sn) of the investigated alloys were selected to be the inputs,
and the tensile strength (MPa), elongation to failure (%), and HB were set as the outputs
control responses. There were numerous trials, including attempting one, two, and three
concealed layers. In addition, various numbers of neurons were tested in each hidden
layer. It is well known that the influence of the number of neurons in hidden layers on the
output of a network is complex. If the design of the model is overly simplistic, the trained
network will not be able to correctly learn the process and determine the relationship
between input and output variables. Alternatively, it may fail to align during training,
or the training data may be overfitted. Consequently, various network structures in the
hidden layer with varying numbers of neurons were investigated. Figure 7 shows the flow
chart of the implemented ANN model. The trial-and-errors strategy was launched with
one neuron in the hidden layer and progressed with additional neurons to determine the
optimal number of neurons. Figure 6 demonstrates how the number of neurons in one
hidden layer affects the proposed network’s effectiveness, tested using mean square error
(MSE) and correlation coefficient (R) indicators. The MSE was lowest when the number
of neurons was 20, corresponding to the maximum linear correlation coefficient (R) value
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between the experimental and predicted data. Figure 8 schematically illustrates the one
(Figure 8a), two (Figure 8b), and three (Figure 8c) hidden ANN architectures, respectively.
Prior to training the network, the input and target variables were unified within the range
of 0 to 1 to achieve a functional form for the network to read and improve the efficiency of
neural network training. Equation (4) is the most commonly used formula for unification.

I′ =
I − 0.95Imin

1.05Imax − 0.95Imin
(4)

where
I is the experimental data or input data,
Imax and Imin are the max. and the min values in experimental data,
I’ is the unified value corresponding to I.
Training refers to the process of refining network predictions to match experimental

data. The network architecture, including the transfer function, training functions, and
training methods, must be selected based on the availability of data and the consistency of
the output. In this investigation, the tansigmoid and purelinear transfer functions were
utilized. The trained network must then be tested to ensure its dependability and precision.
The neural network can be trained using various learning algorithms, with the BP algorithm
being one of the most common. The weights are modified in an ANN with a BP algorithm,
and the changes are saved as knowledge.

This work utilized three different ANN architectures with one, two, and three hidden
layers to determine the ideal network’s accurate prediction. For all networks, 11 input
neurons (values of Si, Fe, Mn, Cu, Mg, Ni, Zn, Tic, Bi, Pb, and Sn), the hidden layers
with 20 neurons, and three output neurons (tensile strength (MPa), elongation to failure
(%), and hardness (HB)) were used with ‘tansigmoid’ transfer function for hidden layers
and ‘purelinear’ transfer function for outputs. For the network training, a feed-forward
backpropagation algorithm is chosen. The used parameters for network training are listed
in Table 5. The study was conducted using the MATLAB 2015b software’s neural network
toolbox. After approximately 80,000 epochs, the network training was stopped when the
goal was achieved and stable. A complete run through a sequence of input-output pairs is
an epoch during network training.

Table 5. Training parameters used in the current work.

Parameter Contents

Network BP
Performance function MSE
Training function TrainLM
Goal 1 × 10−7

Training epoch 80,000
The transfer of the function output layer Purelin
The transfer function of hidden layers Tansig.

Figure 9 depicts a comparison between the experimental stress (black lines) and the
ANN model’s predicted stress with one, two, and three hidden layers and 20 neurons for
each hidden layer (blue lines). Table 6 represents the comparison indicators R, RMSE, and
AARE (%) between the predicted and experimental stress for the different numbers of the
hidden layers. The ANN model with two hidden layers exhibited the strongest correlation
between the predicted and experimental stress (Figure 9b,e) compared to the other ANN
models (Figure 9a,c,d,f). Using a network with two hidden layers yielded the highest
R and lowest RMSE and AARE (%) (Table 6). The ANN model with one hidden layer
exhibited undesirable correlation coefficients and error levels between the experimental
and predicted stress. Based on Figure 9 and Table 6, the most efficient network contained
two hidden layers.
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Figure 7. Flow chart of the constructed model and the impact of neurons on the MSE and correla-
tion coefficient.

Table 6. The R, RMSE, and AARE (%) of experimental and predicted stress for different numbers of
hidden layers.

One Hidden Layer Two Hidden Layers Three Hidden Layers

R 0.72 0.94 0.88
RMSE 7.8 3.5 4.8
AARE, % 3.7 1.0 1.8

Figure 10 shows the relative error histograms and relative error plots of the predicted
stress using one, two, and three hidden layers. The relative errors of the predicted stress
obtained by two hidden layers were distributed about zero with the lowest standard
deviation (SD) of 2.636 (Figure 10c). The distribution of the relative errors of the predicted
stress obtained by the one hidden layer was the widest, with an SD of 5.458 (Figure 10a).
In comparison, relative errors of the predicted stress obtained by the three hidden layers
(Figure 10e) were narrowly distributed compared with those of one layer and wider than
those of two layers. The relative error of the predicted stress using two hidden layers ANN
model was lower than that of the other used models, namely, one- and three-layers ANN
models (Figure 10b,d,f).
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Figure 8. Schematic representation of the utilized ANN architecture: (a) one-hidden layer, (b) two hid-
den layers, and (c) three hidden layers.
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Figure 9. Experimental stress compared to the predicted stress of the ANN model with (a,d) one
layer, (b,e) two hidden layers, and (c,f) three hidden layers.

Since the ANN model with two hidden layers has proven its efficiency in predicting
the stress, it was also used for predicting the elongation to failure (%) and the hardness
(HB). Figure 11 illustrates a comparison between the experimental (black lines) and the
predicted elongation to failure (%) and hardness (HB) of the ANN model with two hidden
layers (blue lines). Table 7 depicts the comparison indicators R, RMSE, and AARE (%)
between the experimental and predicted elongation to failure (%) and hardness (HB) using
the ANN model with three hidden layers.

Figure 11 and Table 7 prove the high efficiency of the used ANN model in predicting
the elongation to failure (%) and hardness (HB). A stronger agreement was observed
between the predicted and experimental hardness (HB) via two hidden layers network
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(Figure 11a,b) than that for elongation to failure (%) (Figure 11c,d). The all-comparative
indicators, R, RMSE, and AARE (%) in the case of hardness (HB), are better than those
of the elongation to failure (%), Table 7. Despite that, it is possible to efficiently use the
constructed ANN model to predict the elongation to failure (%).

Table 7. The R, RMSE, and AARE (%) of experimental and predicted elongation to failure (%) and
hardness (HB) using two hidden layers network.

Elongation Hardness

R 0.90 0.93
RMSE 1.67 1.59
AARE (%) 8 1.1
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Figure 11. Experimental data compared to the predicted data of the ANN model with two hidden
layers (a,b) elongation to failure, %, and (c,d) hardness, HB.

Model Verification

Four different alloys were cast and tested to evaluate and verify the precision of the
two hidden layers proposed network. Their properties (stress, elongation %, hardness HB)
were then predicted. The chemical composition of the casted alloys is tabulated in Table 8.
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Table 8. Chemical composition of the verification alloys.

Alloy/Elements Si Fe Cu Mn Mg Ni Zn Ti Bi Pb Sn Al

Alloy 1 0.616 0 0.56 0.001 0 0 0.129 0.0301 0 1.95 12.15 Balance
Alloy 2 0.058 0.222 1.69 0.08 0 2.31 0.135 0.046 0.686 2.8 10.53 Balance
Alloy 3 0.741 0.034 0.993 0 0 0.972 0.156 0.05 0.375 1.83 10.14 Balance
Alloy 4 5.24 0.323 1.46 0.144 0.333 0.471 0.351 0.065 0 2.41 7.25 Balance

Figure 12 shows a comparison among the predicted and the experimental stress,
elongation to failure (%), and hardness (HB) values for the four alloys (Table 8). Table 9
represents the comparison indicators R, RMSE, and AARE (%) between the experimental
and predicted data. The properties of stress, elongation to failure %, and hardness (HB) of
the newly prepared four alloys were accurately predicted with a low level of error. The
experimental and predicted characteristics were found to be in excellent agreement, as
shown in Figure 12. It is observed that the predicted values are located within the interval
of the experimental values for all controlled parameters, stress, elongation to failure, and
hardness, demonstrating the excellent predictive power of the constructed model.
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(c,d) elongation to failure, %, and (e,f) hardness, HB.
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Table 9. The R, RMSE, and AARE (%) of experimental and predicted data of the verification alloys.

Properties R RMSE AARE, %

Stress, MPa 0.98 2.65 1.9
Elongation, δ, % 0.97 1.0 10
Hardness, HB 0.97 2.5 4

The indicator R for the stress was closer to that for the elongation and hardness; it was
around 0.97–0.98. In addition, there was an insignificant difference between RMSE for all
properties; however, elongation to failure had the lowest value. The predicted properties
of stress, elongation to failure %, and hardness (HB), showed a significant difference in
AARE %. The largest AARE was obtained for elongation to failure, the highest at 10%, but
this is still within the acceptable error range. The prediction of stress yielded the lowest
value (1.9%).

4. Discussion

The solid solution of Si, Zn, Cu, and Mg in the Al-based solid solution as well as the
microstructure analysis of as-cast samples, reveals the presence of Al2Cu solid inclusions
and soft inclusions based on Sn and Pb (Figures 4 and 5). Zn and Mg are incorporated into
the Al-based solid solution and soft inclusions and do not form their own phases [1]. The
investigated alloys’ characteristics are compared to those of cast Br.Sn4Zn4Pb17 bronze,
which is extensively utilized as a bearing material [15,46]. The Br.Sn4Zn4Pb17 bearing
bronze has an ultimate tensile strength of 148MPa, elongation to failure of 8.8%, and
hardness of 65 HB [15]. The experimental aluminum alloys (Table 7) exhibit higher strength
than those of Br.Sn4Zn4Pb17 bronze. The hardness and elongation to failure vary around
those of the Br.Sn4Zn4Pb17 bronze. Alloys 1 and 5 in Table 7 have the best mechanical
characteristics of all the aluminum alloys; they are stronger than Br.Sn4Zn4Pb17 bronze
and have more plasticity but are characterized by lower hardness. Alloy 3 (Table 7) exhibits
larger strength, higher plasticity, and greater hardness than Br.Sn4Zn4Pb17 bronze.

The mechanical properties, ultimate tensile strength, elongation to failure, and hard-
ness were modeled and predicted using an ANN model. It is well known that the prediction
accuracy of the ANN models is significantly affected by the number of hidden layers and
the number of neurons in the hidden layers [47–49]. The BPANN may not accurately predict
when the number of hidden layer neurons is insufficient. However, the more hidden layer
neurons there are, the longer the training process will take. A sufficient number of hidden
layer neurons should be used to compromise prediction accuracy and training duration.
In this work, the minimal MSE was obtained when using two BP network hidden layers
with 20 neurons (Figures 7 and 9). It was observed that the relative error of the predicted
stress using a two hidden layer ANN model was lower than that of one- and three-layer
ANN models. The distribution of the relative errors of the predicted stress about the
zero obtained by the two hidden layers was narrower than that of one- and three-layer
ANN models. Since the ANN model with two hidden layers has proven its efficiency in
predicting the stress, it was also used for predicting the elongation to failure (%) and the
hardness (HB).

In addition, the constructed model with two hidden layers was evaluated and assessed
via new experiments. New four alloys were cast and annealed, similar to the modeled
alloy, and their mechanical properties: stress, elongation to failure %, and hardness HB,
were characterized. The mechanical properties of the new four alloys were predicted by
the constructed model to assess the predictability of the BP ANN model. As it showed, the
constructed model demonstrated high efficiency in predicting the mechanical properties
of these alloys with minimum errors (Table 9 and Figure 12). The correlation coefficient R
between the experimental and the predicted mechanical properties of the new four alloys
was greater than 0.97. An ANN with 40 hidden neurons was developed by Jimenez-
Martinez et al. [50] to determine the chemical constituents of a new aluminum alloy based
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on the criteria of having a high fatigue strength. The constructed ANN achieved a high
level of correlation with an average of 99%. Compared to Jimenez-Martinez et al., our
constructed model with 20 neurons in two hidden layers achieved a lower error rate.
Fu et al. [51] developed an ANN model with three layers with 12 neurons to model the
mechanical properties and microstructure of heat-treated Mg-4.2Zn-1.7RE-Ca-Sr Alloys. In
the present study, the inputs consisted of 11 variables, including the contents of the alloying
elements, while in Fu et al.’s work, the inputs were Ca and Sr contents and different heat
treatment conditions, aging time, and aging temperature. However, the large number
of inputs in the present work demonstrated high accuracy in predicting the responses
compared with [50,51]. Even though the constructed ANN model accurately predicts the
mechanical properties of the designed set of alloys, additional effort is necessary to establish
a correlation between the tribological behavior and the mechanical properties of these alloys.
Therefore, genetic algorithms will be used in future work to optimize the alloying elements
for an excellent combination of tribological behavior and the mechanical properties of
these alloys, simultaneously. Consequently, in future research, we will determine the
optimal chemical composition to simultaneously achieve maximum wear resistance and
mechanical properties.

5. Conclusions

The microstructure and mechanical properties of the anti-friction aluminum-based
alloys with different concentrations of Sn, Pb, Cu, Mg, Zn, Si, Ni, Bi, Ti, Mn, and Fe elements
were investigated. As a result, one hundred ninety-eight alloys were cast from different
combinations of the added elements to optimize the chemical composition of these alloys
for good mechanical properties and their high wear resistance. The set of experimental data
was used to construct an ANN predictive model for predicting their mechanical properties.
From the results, we can conclude that:

- The microstructure analysis confirmed the formation of the soft phase inclusions based
on tin (Sn-rich phase), soft phase inclusions with Sn and Pb (Sn-Pb, Pb-Sn phases),
and solid-phase inclusions of the Al2Cu phase.

- The formed phases have a significant impact on the mechanical properties of these
alloys. The maximum values of the ultimate tensile strength, HB, and elongation to
failure were 197 ± 7 MPa, 77 ± 4, and 20.3 ± 1.0 %, respectively. The obtained levels
of mechanical properties are acceptable, besides the excellent tribological properties
of these alloys.

- The optimization of the ANN architecture showed that utilizing a network with
two hidden layers and 20 neurons for each layer provided a minimal level of errors. For
all the modeled mechanical properties, the obtained level in comparative indicators:
R ≥ 0.90, RMSE ≤ 3.5, AARE < 8.0%, indicated the constructed model’s high quality.

- The predictability accuracy of the constructed ANN model was evaluated by compar-
ing the simulated data generated by the ANN model to new, unmodeled experimental
data. The results demonstrated a high degree of concordance between the predicted
and newly acquired data with low error rates. All predicted mechanical properties
have comparative indicators of R ≥ 0.97, RMSE = 1–2.65, and AARE < 10%.

In future research, the relationship between the controlled responses (tribological
behavior and mechanical properties) will be determined, along with constructing a model
based on a genetic algorithm for optimizing the chemical composition for the maximum
mechanical properties simultaneously with excellent tribological behavior.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15238394/s1, Figure S1: SEM-EDS spectrums taken from (a)
the aluminium-based solid solution (point 1), the Sn-rich phase (point 2), the Pb-Sn phase (point 3), the
Sn-Pb phase (point 4) and the Al2Cu phases (points 5 and 6) in the Al-7.6Sn alloy. Figure S2: SEM-EDS
spectrums taken from (a) the aluminium-based solid solution (point 1), the Sn-rich phase (point 2),
the Pb-Sn phase (point 3), the Sn-Pb phase (point 4) and the Al2Cu phases (points 5 and 6) in the
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Al-6.4Sn alloy. Figure S3: SEM-EDS spectrums taken from (a) the aluminium-based solid solution
(point 1), the Sn-rich phase (point 2), the Pb-Sn phase (point 3), the Sn-Pb phase (point 4) and the
Al2Cu phases (points 5 and 6) in the Al-5.7Sn alloy.

Author Contributions: Conceptualization, E.G.K. and I.S.G.; Methodology, A.O.M., E.G.K. and
A.D.K.; Software, A.O.M.; Validation, E.G.K., A.D.K. and I.S.G.; Formal analysis, A.O.M., A.D.K.
and A.E.M.; Investigation, E.G.K. and A.E.M.; Resources, A.D.K.; Data curation, A.O.M.; Writing—
original draft, E.G.K.; Writing—review & editing, A.O.M.; Visualization, I.S.G.; Supervision, I.S.G.
and A.E.M. All authors have read and agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge the financial support of the scientific school NSh-
1752.2022.4 for microstructural analysis and Ministry of Science and Higher Education of the Russian
Federation (project No 0707-2020-0025) for ANN modeling.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors gratefully acknowledge the financial support of the scientific school
NSh-1752.2022.4 for microstructural analysis and Ministry of Science and Higher Education of the
Russian Federation (project No 0707-2020-0025) for ANN modeling.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

ANN Artificial neural network
ML Machine learning
BP Backpropagation
MSE Mean square error
I Experimental data or input data
Imax The maximum value in experimental data
Imin The maximum value in experimental data
I’ The unified value corresponding to Y
BP Backpropagation algorithm
R Correlation coefficient
RMSE Root mean square error
AARE Average actual relative error
Ei, Experimental values
Pi Predicted values
E Average of the experimental values
P Average of the predicted values
N Number of the casted alloys
σu Ultimate tensile strength
HB Brinell hardness
δ Elongation to failure
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