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Abstract: Admittedly, the design requirements of compactness, low frequency, and broadband
seem to constitute an impossible trinity, hindering the further development of elastic metamaterials
(EMMs) in wave shielding engineering. To break through these constraints, we propose theoretical
combinations of effective parameters for wave isolation based on the propagation properties of
Lamb waves in the EMM layer. Accordingly, we design compact EMMs with a novel ultralow-
frequency bandgap, and the role of auxeticity in the dissociation between the dipole mode and the
toroidal dipole mode is clearly revealed. Finally, under the guidance of the improved gradient design,
we integrate multiple bandgaps to assemble metamaterial barriers (MMBs) for broadband wave
isolation. In particular, the original configuration is further optimized and its ultralow-frequency and
broadband performance are proven by transmission tests. It is foreseeable that our work will provide
a meaningful reference for the application of the new EMMs in disaster prevention and protection
engineering.

Keywords: negative effective parameters; elastic metamaterial; gradient design; wave isolation;
ultralow frequency

1. Introduction

The first two decades of the 21st century have witnessed frequent climatic anomalies
and natural disasters, especially super earthquakes and their triggering of secondary
disasters such as tsunamis with horrific destructive power, which have been a nightmare
for mankind [1]. In addition, the wave energy of various types of traffic systems, large
machinery, and even explosive weapons can spread through the ground and strata, and
these vibrations can bring about detrimental effects on sensitive targets in specific frequency
ranges. Therefore, the construction of tailored and wide-domain effective wave protection
engineering has been of considerable academic and practical value.

In recent years, the effectiveness of subwavelength-scale elastic metamaterials (EMMs)
for wave attenuation at the ground surface has been demonstrated in engineered experi-
ments [2,3]. Distinguished from traditionally civil-reinforced structures [4–7], EMMs offer
a new promising solution for wave protection engineering based on refraction, reflection,
and artificial modulation of elastic waves [8]. More impressively, driven by burgeoning
new needs, EMMs are flourishing with their unique physical properties in areas such as
programmable robotics [9], lensing and super-resolution imaging [10–13], stealth [14–19],
non-reciprocal wave control [20,21], and topological insulators [22–28]. Undoubtedly, new
discoveries in the field of metamaterial physics are inspiring people to design even more
magical metamaterial barriers (MMBs) to accomplish better seismic resistance or vibration
isolation. In terms of application, the most pivotal property for EMMs is the presence of
bandgaps. According to the formation mechanism of the bandgaps, it can be physically
classified into local resonance (LR) and Bragg scattering (BS) mechanisms. In general, all the
above band gaps are the result of a combination of Mie scattering and structural periodicity,
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but the former is oriented to scatterer resonance while the latter is more dependent on
periodicity [29–34]. Of course, the resonance of monopole, dipole, and even quadrupole
features introduced by the multiple inclusions also adds diversity to the band structure.

Most of the time, in the semi-infinite space model, it is believed that the main compo-
nent of the destructive energy is carried by surface waves, so a great deal of research has
focused on the use of buried mass resonators or surface resonators to attenuate Rayleigh
waves [35–38]. What is less concerned is that, in fact, in the natural multi-layered geological
structures, it has been proved that the wave energy can propagate in the Lamb mode in the
harder stratum [39]. Moreover, in civil engineering, there are often cases where stratified
strata are constructed and, in addition to above-ground buildings, underground structures
such as storage containers also need to be protected, so the isolation of Lamb waves is also
worth studying [40–43]. Although a great deal of experience has been gained with surface
wave isolation engineering, designing compact MMBs with ultralow frequency (especially
0.1–20 Hz) and broadband Lamb wave attenuation is still challenging.

In terms of low-frequency and even ultralow-frequency vibration isolation of seismic
waves, researchers have explored this in depth from multiple perspectives. For example,
wide zero-frequency stop bands have been observed in a deep medium due to the strong
confinement between the pile and the soil substratum, which offered the possibility of
ultralow-frequency seismic wave modulation [44]. Later, in Matryoshka-like structures
with different numbers of tube layers, the generation of new bandgaps accompanied by fre-
quency shifts to lower-frequency ranges was found [45]. In particular, Ungureanu et al. [46]
achieved seismic wave modulation in the frequency range from 1 Hz to 40 Hz using auxetic-
like metamaterials via investigating the bandgap properties of auxetic materials. Further, a
square cross-sectional EMM composed of auxetic foam and steel was recently proposed [47]
and its ability to attenuate low-frequency Lamb waves was verified by simulations on a
plate model, although its attenuation range was not wide. Noteworthy research advances
have also shown that the intercalation of novel materials such as auxetic materials into
metamaterial structures with different topological configurations can lead to designable
and extraordinary mechanical properties [48–55]. The above studies provide ideas for
solving the challenge of restraining seismic waves at low and even ultralow frequencies.
Certainly, the low-frequency bandgap caused by inertial amplification can also be used
to isolate seismic waves, but the additional mechanical structure introduced may greatly
increase its cost [56,57].

When considering the optimization of attenuation range, the gradient effect [58,59]
and the rainbow trapping [60,61] have been proposed and validated in order to achieve
a wider range of wave attenuation or vibration energy absorption. It is also noteworthy
that Muhammad and Lim et al. [62–64] introduced embedded or semi-embedded multi-
resonators, which made an enlightening contribution to the realization of broadband
seismic Rayleigh wave attenuation. Furthermore, the research on the EMMs composed of
square steel profiles illustrates that it can generate a relatively wide complete bandgap, but
the structural size of this scheme is still too large to be used in practice [65]. Actually, the
wave attenuation bandwidth caused by the local resonant bandgap alone, especially the
first bandgap (FBG), is relatively narrow [66–68]. Therefore, researchers have begun to pay
attention to the second bandgap (SBG) in the higher-frequency band or the relatively wide
bandgap formed by the BS mechanism [69–71]. If the advantages of both can be exploited,
it will be possible to contrive MMBs with ultralow-frequency and ultra-broadband wave
attenuation capabilities. Recently, experimental results have shown that coupling FBG and
SBG can create wider Rayleigh wave attenuation, where the distance between the different
bandgaps is critical [72]. In the latest research on the introduction of strong nonlinearity into
resonators arranged on free surfaces, the dispersion of low- and higher-order harmonics
spreading through the metasurface has been found, which provides an opportunity to
broaden the bandgap, but it is still difficult to reduce the effective frequency to an ultralow
level [73,74].
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At present, to some extent, the compactness of MMBs (or artificial embedded struc-
tures), the low operating frequency, and the broadband wave attenuation capability seem to
constitute the impossible trinity (as shown in Figure 1) that shackles the further application
of EMMs in vibration prevention engineering. In other words, in traditional designs, the
true situation is more likely to occur on three sides of a larger triangle (i.e., the sides where
the vertices of the orange triangle are located). That is, the three main properties are often
satisfied with at most two of them.

Figure 1. Diagram of the impossible trinity in MMB design.

To break through these constraints, this work aims to design a more compact EMM
to isolate Lamb waves, and furthermore, reveal and utilize the new ultralow-frequency
bandgap without introducing additional mass or complex devices. Here, the emergence of
the ultralow-frequency bandgap is induced by the negative Poisson’s ratio of the substrate
material, inspired by the dissolution of degeneracy near the Dirac point that opens in
graphene-like two-dimensional materials. In Section 2, we investigate the propagation
behavior of Lamb waves in the EMM layer and indicate effective parameter combinations
to isolate Lamb waves. Then, three EMM cells with different scatterer cross-section shapes
are proposed according to the effective parameters. In Section 3, we discuss in detail the
influence of factors such as geometry and material properties on the band structure and
explain them based on the effective parameter theory. Further, in Section 4, we construct the
assembled MMB based on an improved gradient design and verify its ultralow-frequency
wave isolation performance by transmission analysis. Finally, the conclusions of this work
are set out in Section 5.

2. Methods and Models
2.1. Propagation Behavior of Lamb Waves in EMM Layer

Figure 2a illustrates a schematic diagram of the EMM layer that extends infinitely in
the q1 direction and takes up a thickness of 2h in the q2 direction, while its upper and lower
surfaces are non-traction boundaries. In addition, ρeff, Eeff, and µeff denote the effective
mass density, effective P wave modulus, and effective S wave modulus of the medium,
respectively. When the Lamb wave propagates within the layer shown in Figure 2a, the
preliminary displacement potential functions can be written as [75]

∂2 ϕ

∂q2
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+

∂2 ϕ

∂q2
2
=

1
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L

∂2 ϕ
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∂q2
1
+

∂2ψ

∂q2
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∂2ψ
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where cL =
√

Ee f f /ρe f f and cT =
√

µe f f /ρe f f are the corresponding effective wave
velocities. Moreover, the displacement potentials can be expressed as

ϕ = [A1 sin(kLq2) + A2 cos(kLq2)]e
j(k1q1−ωt) (3)

ψ = [B1 sin(kTq2) + B2 cos(kTq2)]e
j(k1q1−ωt) (4)

where kL =
√

ω2/c2
L − k2

1 represents the wave numbers of the P wave in the thickness direction,

and kT =
√

ω2/c2
T − k2

1 denotes S wave numbers in the same direction (i.e., the q2 direction).
In addition, ω is the circular frequency and k1 is the wave number in the q1 direction.

Figure 2. (a) Schematic diagram of the EMM layer; (b) quadrant diagram of the effective parameter
combinations when the effective mass density is positive or (c) negative.

It should be noted that Equations (3) and (4) contain both symmetric and antisymmetric
fluctuation solution components. Based on the stress conditions at the free boundaries
(q2 = ±h), the classical Rayleigh-Lamb equation can be obtained as

tan(kTh)
tan(kLh)

= −
4k2

1kLkT

(k2
T − k2

1)
2 (5)

tan(kTh)
tan(kLh)

= −
(k2
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1)

2

4k2
1kLkT

(6)

Among them, the wave number k1 will possess a finite real or pure imaginary form at a
given frequency, but there are infinite solutions in the complex field. Then, considering the
phase velocity and the frequency-thickness product, Equations (5) and (6) are normalized
to obtain the dispersion relations of symmetric and antisymmetric Lamb waves, as follows:
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Theoretically, when the wave number k1 is a positive real number, which implies a
travelling wave mode that can propagate efficiently along the direction of the elastic layer
(i.e., the q1 direction), then the wave number kL (or kT) of the P wave (or S wave) in the
thickness direction can only be a positive real or pure imaginary number.

As there are many combinations between the positive and negative values of the
three effective parameters of the EMM layer, the traveling wave modes determined by
Equations (7) and (8) are also various. In general, due to the frequency dependence of the
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effective medium parameters, we often design the imaginary phase velocity to convert
the original traveling wave into the evanescent mode. Here, we can list all parameter
combinations with imaginary effective wave velocities, as shown in Table 1.

Table 1. Possible combinations when the effective wave velocity exists imaginary.

Effective Velocity Effective Parameters Properties of Wave Numbers Wave Velocity

c2
L > 0&c2

T < 0
ρ > 0, E > 0, µ < 0 kL: Im kT: Im 0 < c < cL
ρ < 0, E < 0, µ > 0 kL: Re kT: Im 0 < cL < c

c2
L < 0&c2

T > 0
ρ > 0, E < 0, µ > 0 kL: Im kT: Im 0 < c < cT
ρ < 0, E > 0, µ < 0 kL: Im kT: Re 0 < cT < c

c2
L < 0&c2

T < 0
ρ > 0, E < 0, µ < 0 kL: Im kT: Im
ρ < 0, E > 0, µ > 0

However, due to the boundary effect at the free boundary of the elastic medium, the
coupling of the P wave and SV wave will be induced, and the P or SV wave potential
in the thickness direction can exhibit a surface traveling wave mode in the form of an
evanescent wave [76]. In other words, even in the EMM layer with double imaginary wave
velocities, where both kL and kT are imaginary, traveling wave transmission can still occur.
Hence, further determination of the range of effective parameters is needed to inform the
design of metamaterials with stable Lamb wave isolation. Considering the case where both
wave velocities are imaginary (c2

L < 0&c2
T < 0), it can be determined that the effective

modulus ratio is σ = Ee f f /µe f f = c2
L/c2

T > 0. Meanwhile, after introducing the simplified

parameters α =
√

1− c2/c2
L, β =

√
1− c2/c2

T , and γ = Ω/c, Equations (7) and (8) can be
refined to

(eγα − 1) · (eγβ + 1)
(eγα + 1) · (eγβ − 1)

=
4αβ

(β2 + 1)2 (9)

(eγα − 1) · (eγβ + 1)
(eγα + 1) · (eγβ − 1)

=
(β2 + 1)2

4αβ
(10)

Clearly, if the waveguide exists, then c > 0 and, hence, α > 1, β > 1, and γ > 0. Next,
when σ ≥ 1, there is 1 < α ≤ β. To analyze the existence of the solution, the following
function is constructed with Equation (9) as an example:

f (α) =
(eγα − 1) · (eγβ + 1) · (β2 + 1)2

(eγα + 1) · (eγβ − 1) · (4αβ)
− 1 (11)

where f = 0 is equivalent to Equation (9). Then, the derivative of the function to α can be
expressed by

d f
dα

=
eγβ + 1
eγβ − 1

· (β2 + 1)2

4β
· eγα(2γα− eγα) + 1

α2(eγα + 1)2 (12)

where flα > 0, so eγα(2γα− eγα) + 1 < 0, and then we have d f /dα <0.
In addition, when we assume that α = β, f (β) = (β2 − 1)2/4β2 > 0 holds. Hence, in

the case of 1 < α ≤ β, we obtain the following relationship:

f (α) ≥ f (β) > 0 (13)

Therefore, f = 0 is impossible, which implies that Equation (9) has no solution when
σ ≥ 1, that is, there is no corresponding traveling wave mode at this time. Likewise, we
can use the construction function method to derive that the solution of Equation (10) is
also nonexistent under the case of σ ≥ 1. Further, for the case of 0 < σ < 1, the solutions
of Equations (9) and (10) can be found based on similar function processing or numerical
methods. Thus, as shown in Figure 2b,c, these two specific combinations of the effective
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parameters ρe f f > 0, Ee f f < 0, µe f f < 0 and Ee f f /µe f f ≥ 1, and ρe f f < 0, Ee f f > 0, µe f f > 0
and Ee f f /µe f f ≥ 1, can be used to tailor EMMs to efficiently isolate Lamb waves.

2.2. MMB Design and Band Structure Calculation

Three types of metamaterial units with hexagonal cross-sections proposed can be
seen as composites of substrate-wrapped scatterers, and their structural characteristics are
drawn in Figure 3. In more detail, the dimensional parameters and material components
of each unit are marked in Figure 3. Among them, the green filled area represents the
substrate, which is composed of auxetic foam, while the light-gray-filled area is the scatterer,
and its material is steel. Specifically, the dimensional parameters of the units are listed in
Table 2, while the parameters of the materials can be found in Table 3. In addition, it should
be noted that the feature size (a0) of these units is 2 m, while the other size parameters vary
within a certain range as required.

Figure 3. Schematic diagram of the metamaterial units with: (a) solid cylindrical scatterers (Type I),
(b) solid hexagonal cross−sectional scatterers (Type II), and (c) hexagonal cross−sectional scatterers
containing hollow circular holes (Type III).

Table 2. Geometric parameters of the unit cell (units: m).

a0 b0 r0 r1 H

2 (0, a0)
(

0,
√

3a0
2

) (
0,
√

3b0
2

)
2.5a0

Table 3. Materials properties.

Material Poisson’s Ratio Young’s Modulus (Pa) Density (kg/m3)

Auxetic foam −0.80~0 2.50 × 104 120
Rubber 0.47 1.20 × 105 1300

Soil 0.30 2.00 × 107 1800
Steel 0.30 2.10 × 1011 7850

Here, we consider the propagation of Lamb waves in the plane and carry out numerical
analysis by means of the FEM. As shown in Figure 4a–c, as the MMB composed of the
above-mentioned metamaterial units can be regarded as the periodic system in the two-
dimensional plane, the dispersion of the unit cell with the lattice constant a0 can be studied
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by applying the periodic boundary condition (PBC). The periodic boundary is marked by
solid red lines; in other words, the diamond-shaped region represents the unit cell while the
red dotted line encircles the supercell. The governing equation of elastic wave propagation
in the plane is given by [77]

∇ · [C(r) : ∇u] + ρ(r)ω2u = 0 (14)

where r, u, C(r), and ρ(r) represent the position vector, the displacement vector, the elastic
tensor, and mass density, respectively;ω is circular frequency; “·”and “:” denote the vector
dot product and double-dot product, respectively; ∇ is the differential operator.
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Referring to the Floquet−Bloch theory to research the dynamic behavior of waves
in periodic unit cells, the displacement vector in Equation (14) can be expressed in the
form [78]:

u(r) = ei(k·r)uk(r) (15)

where k is the Floquet-Bloch wave vector in the first Brillouin zone of the reciprocal lattice,
and i is the imaginary unit. Specifically, uk(r) represents the periodic modulation function
of the displacement vector defined as

uk(r) = uk(r + a) (16)

where a is the lattice translation vector. Substituting Equation (16) into Equation (15), the
periodic boundary condition for the unit cell is obtained as

u(r + a) = ei(k·a)u(r) (17)

Associating Equations (14) and (17), the dispersion relation of the periodic system can
be transferred into an eigenvalue equation:(

S(k)−ω2M(k)
)

U = 0 (18)

where S(k) and M(k) are the stiffness and mass matrix of the unit cell, respectively.
Then, the dispersion relation can be regarded as the implicit function between the

wave vector and the eigenfrequency. Obviously, when calculating all wave propagation
modes, the wave vector k should sweep the boundary of the first irreducible Brillouin
zone (IBZ), as shown in Figure 4d. It should be noted that when calculating the dispersion
characteristics of supercells, the sweep range of the wave vector will no longer be limited in
the IBZ. Whether to take unit cell or supercell for calculation depends on the specific modal
observation requirements. In this study, the frequency domain solver of finite element
software is used to analyze the dispersion relationships.
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3. Parametric Analysis and Discussion

Before evaluating the shielding performance of the MMB against Lamb waves, the
band structures of the various metamaterial units are studied to make comparative analysis
and optimize the design. Specifically, the cross-sectional shape and the hollowness ratio of
the scatterer, the filling ratio, and materials parameters of the units are discussed in detail
in this section.

3.1. Topological Configuration of the EMMs

Fundamentally, the microstructure and arrangement of metamaterial units together
determine the topological characteristics of the MMB system. In this section, the dispersion
curves of metamaterials composed of type I and type II units are analyzed to explore the
influence of the cross-sectional shape of the scatterer on the bandgap borders and relative
band width (RBW). More specifically, we define RBW as 2( fu − fl)/( fu + fl), where fu and
fl are the upper and lower boundary frequencies of the bandgap, respectively. It should be
added that for these two types of metamaterial units, the filling ratio here is defined as the
volume fraction of the scatterer in the unit body. Further, the filling ratio (η0) of the unit
can be expressed as η0 = Vscatterer/Vunit. In other words, the filling ratio is proportional
to (r0/a0)

2 and (b0/a0)
2 in unit bodies (type I and II) of the same height, respectively. In

view of the principle of controlling variables, the default unit height H is set to 2.5a0. In
addition, in Figure 5, the final results of Zhang et al. [65] are denoted as Ref. 1, and the
optimal results of Huang et al. [47] are labeled as Ref. 2 in order to facilitate the comparison
of the computational results in this paper with those of previous studies.

Figure 5. Dispersion relations and concerned vibration mode shapes of EMMs in (a) Type I and
(b) Type II when η0 = 0.81 and H = 2.5a0; (c) the bandgap boundaries and (d) the RBW of Type I and
Type II EMM when the filling ratio varies between 0.60 and 0.85.

With the calculation method introduced in Section 2, typical dispersion curves of the
metamaterials composed of type I and type II units are presented in Figure 5a,b, respectively.
At this time, the filling ratio η0 is set as 0.81. It can be clearly seen from Figure 5a,b that
the first complete bandgap (CBG) obtained by the two types of metamaterials lies between
1.920 and 19.402 Hz, and 1.794 and 31.613 Hz, respectively. Meanwhile, the vibration
modes corresponding to the bandgap boundaries are depicted on the right side of the
dispersion diagram. For the convenience of observation, we synthesize the displacement in
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the vibration mode diagram and mark it with black arrows. It is not difficult to find from
A1 and B1 mode diagrams that, corresponding to the lower boundary of the bandgap of the
two types of metamaterials, the periphery of the scatterer produces obvious circumferential
relative displacement with respect to the interior. Similarly, corresponding to the upper
boundary of the bandgap, both A2 and B2 vibration mode diagrams indicate the out-of-
plane motion at the corner of the substrate foam.

Further, when the filling ratio η0 changes (as shown in Figure 5a,b), the start and
end frequencies and the RBW of the bandgap exhibit different trends. On the one hand,
the lower boundaries of the bandgaps of Type I and II rise slightly with increasing filling
ratio and are very close to each other but do not yet reach below 1 Hz. On the other
hand, the upper boundary of the bandgaps obviously rises with the increase in the filling
ratio, wherein the upper boundary of Type II is not only higher but also able to jump to
extremely high levels at high filling ratio. At the same time, the center frequencies of the
respective bandgaps of Ref. 1 and Ref. 2 are marked with round black dots in Figure 5c,
while the upper and lower boundaries of the bandgaps are indicated by short horizontal
lines. Combined with Figure 5d, it is obvious that both Ref. 1 and Ref. 2 just provide a
narrower RBW, compared to the Type I and II schemes proposed in this paper.

Therefore, we have learned that the metamaterial structure with hexagonal cross-sectional
scatterers has convincing potential to generate a more considerable wide bandgap than those
with circular cross−sectional scatterers. Moreover, it cannot be ignored that although Ref.
2 reduces the effective frequency of the bandgap and widens the RBW on the basis of Ref. 1, it
still maintains the unit size of 10 m. What is striking is that the Type II scheme proposed in this
paper not only reduces the cell feature size by almost an order of magnitude, but also produces
a much wider bandgap. In fact, in research and practical applications, these metamaterial units
with C6 symmetry proposed in this paper have advantages over the previous configurations
(e.g., Ref. 1 and Ref. 2), which possess lower rotational symmetry.

However, it is still critical to note that the lower boundary of the bandgap for Ref. 2
in Figure 5c dips even below 1 Hz, so can that level be reached for the Type II scheme?
Naturally, this issue triggers our next work.

3.2. Filling Ratio of the Unit and Negative Effective Parameters

After the comparative analysis in the previous section, we have recognized the wide
bandgap characteristics of type II metamaterials under large filling ratio. Further, on this
basis, this section studies the possibility of this type of metamaterial in generating a CBG
at lower frequencies (especially below 1 Hz). More importantly, we interpret the band
structure in conjunction with effective parameters with frequency dependence.

According to Figure 4c, it seems that the lower boundary frequency of the CBG
can further decrease with the decline in the filling ratio. Then, when the filling ratio is
sufficiently lowered to 0.200 and H remains 2.5a0, the dispersion curves and the bandgap
boundary mode diagrams, as shown in Figure 6a, are obtained. Apparently, Figure 6a
shows two complete bandgaps, where the FBG lies between 0.946 Hz and 1.551 Hz, while
the SBG is situated between 1.759 Hz and 4.657 Hz. For the edge of the SBG, the vibration
mode diagrams corresponding to the lower and upper boundary frequencies are shown as
C3 and C4, respectively. As the vibration modes corresponding to the bandgap boundaries
are almost the same, the SBG in Figure 6a is filled with yellow color as the bandgap in
Figure 5b. Actually, we are able to confirm that this kind of bandgap can be classified as the
LR bandgap. From the vibration mode diagram C1 corresponding to the lower boundary
of the FBG, it can be found that the scatterer has local translation near the surface layer, and
the movements near upper and lower layers are reversed. In addition, vibration mode C2
corresponding to the upper boundary of the FBG exhibits a rotational motion mode of the
periphery of the scatterer. Unlike the SBG, this FBG is a narrow band-gap dominated by
the localized mode of the scatterer alone. To distinguish each other, FBGs of this type are
filled with light green.
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Figure 6. Dispersion relations and concerned vibration mode shapes of Type II EMM when
(a) η0 = 0.200 and H = 2.5a0, and (d) η0 = 0.723 and H = 2.5a0; (b) effective material parameters
of Type II EMM when η0 = 0.200 and H = 2.5a0; (c) range of the CBGs of Type II EMM when the filling
ratio varies between 0.200 and 0.750.
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Further, in order to reveal the origin of the bandgaps, we calculate the effective
parameters at this point based on Lai’s method [79] and revised Lai’s method [80]. The
results are shown in Figure 6b, where the red circles indicate Lai’s method, while the
black dots are the results of the revised version. In this case, all effective parameters
are normalized according to the parameters of the substrate material. It is easy to see
that the results of the two methods can basically match, but the latter, which has been
improved for the long-wave limit case, displays a higher resolution. In the first and
second CBGs, ρe f f < 0, Ee f f > 0, µe f f > 0 and Ee f f /µe f f ≥ 1, so it can be determined
that these two bandgaps are dominated by dipole resonance. At the same time, we
also find that the FBG and SBG are separated by a negative dispersion band (NDB)
with negative curvature (as shown in the red shaded area in Figure 6b). Obviously,
within the NDB, the effective parameters are as follows: ρe f f < 0, Ee f f > 0, µe f f < 0.
According to the criterion at Section 2.1, this NDB is unlikely to be utilized for Lamb
wave isolation.

In order to investigate the variation laws of the above two kinds of bandgaps more
comprehensively, we perform precise calculations and record the frequencies of the
bandgap boundaries over a larger range of filling ratios, as summarized in Figure 6c.
By observing Figure 5c, it is not difficult to find that the FBG narrows slowly with
the increase in the filling ratio η0, and its lower boundary reaches the lowest value of
0.876 Hz when η0 is about 0.423 (as point D shown in the local enlarged view), while
when η0 is about 0.723 (as point F), the FBG completely disappears. Here, in order to
preliminarily explain the disappearance of the first CBG, the band structure and the
bandgap boundary mode diagram at the “vanishing point” F are plotted in Figure 6d.
The vibration mode diagrams F1 and F2 show that the characteristic frequency of the
local translational mode (represented by point F1) of the surface layer of the scattering
body gradually approaches the characteristic frequency of the local rotational mode
(represented by point F2) of the outer edge of the scattering body with the increase in
the filling ratio. When the characteristic frequencies of the above two vibration modes
coincide, the first CBG disappears. In addition, Figure 6c also shows us that the SBG
widens rapidly with the increase in the filling ratio, and its lower boundary reaches the
lowest value of 1.415 Hz when η0 is about 0.490 (as point E shown in the local enlarged
view), while its upper boundary can easily break through 20 Hz under the condition of
high filling ratios.

3.3. The Poisson’s Ratio of the Substrate and the Emerging New Band Gap

As mentioned in the previous section, the combination of effective parameters deter-
mines the formation and location of the CBGs. Thus, when the physical parameters of
the substrate auxetic foam, especially the Poisson’s ratio, change, the range of the CBGs
will also shift due to the change in the effective parameters. As depicted in Figure 7a,
we calculate the boundary frequencies of the FBG and SBG by keeping the filling ratio of
point D constant and varying the Poisson’s ratio of auxetic foam (νAF) between −0.8 and
0 [48,81]. As the Poisson’s ratio νAF approaches 0, the range of the FBG shrinks and its
lower boundary frequency eventually drops to around 0.433 Hz.

In fact, as the substrate, the most distinctive difference between auxetic foam and other
conventional materials is the negative Poisson’s ratio property. Of note is the emergence of
the new CBG at such a low frequency, which has not been previously reported in auxetic-
related metamaterials. Thus, to clarify the formation of this ultralow-frequency bandgap,
we conduct an in−depth analysis of the mode evolution of metamaterials with different
components.
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Figure 7. (a) Range of the CBGs of Type II EMM when η0 = 0.423, H = 2.5a0, and νAF varies between
−0.8 and 0; (b) dispersion relations and the representative modes of Type II EMM with η0 = 0.423
and H = 2.5a0 when the substrate is soil and (c) rubber; (d) dispersion curves of Type II EMM when
η0 = 0.423, H = 2.5a0, and νAF varies among 0.3, 0, and −0.8, with the critical state close to the
dissolution of degeneracy.

Specifically, we maintain the filling ratio of the Type II EMM at 0.423 and replace
the substrate with soil and rubber for dispersion analysis. The parameters of these two
conventional materials are listed in Table 3. For the convenience of observation, the modes
independent of the generation of the lowest bandgap can be ignored. In essence, the
off-plane mode is not inherently involved in this physical process, so the model can be
reduced to the in-plane dimension. As shown in Figure 7b,c, the first three main dispersion
curves represent the first dipole mode, second dipole mode, and toroidal dipole mode.
For conventional substrate materials, they cannot untangle the entanglement between the
basic modes at the bottom. In other words, CBG dominated by dipole resonance cannot
be formed here. However, when the substrate becomes the auxetic foam with negative
Poisson’s ratio, there is a dissociation between the second dipole mode and the toroidal
dipole mode (as shown in Figure 7d). With the increase in negative Poisson’s ratio, the
above two modes are further away from each other, and the ultralow-frequency bandgap
is then created and widened. In addition, Figure 7d also depicts the degeneracy point
when Poisson’s ratio is 0.3, which is extremely close to the critical state where the bandgap
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is about to be born. Therefore, this ultralow-frequency bandgap can be regarded as an
auxeticity-induced version to some extent.

3.4. Radius of Circular Hole in the Hollow Scatterer

The previous subsections demonstrate the ability of the Type II EMM to provide a
broadband CBG at high filling ratios. Nevertheless, a high filling ratio implies more steel
consumption. Therefore, the introduction of the hollow scatterer structure can further save
steel usage and, thus, improve the economy of the MMB system.

In this subsection, the Type III EMM, which is formed by hollowing out the scatterer
on the basis of the Type II EMM, is investigated. The effect of the hollowing degree of the
hollow scattering body (measured by r1/a0) on the bandgap structure of the metamaterial
is the focus of this section.

From the trend diagram of the bandgap boundary variation shown in Figure 8a, it can
be found that when maintaining b0/a0 = 0.9 and H/a0 = 2.5, gradually increasing the value of
r1/a0 in the range of 0.25−0.70 has almost no effect on the upper boundary (about 31.600 Hz) of
the CBG, while it has a weak lifting effect on the lower boundary (from 1.802 Hz to 2.615 Hz).
From the typical vibration mode diagram corresponding to the lower boundary of the bandgap,
with the increase in r1/a0, the wall of the hollow scatterer becomes thinner, and the frequency of
the toroidal dipole resonance increases slightly. Evidently, the locally off-planar resonance of
the substrate rather than the scatterer explains the fact that the upper boundary of this CBG
remains constant.

Figure 8. (a) Boundaries of the CBG and concerned vibration mode shapes of Type III EMM when
b0/a0 = 0.9, H/a0 = 2.5, and r1/a0 varies between 0.25 and 0.70; (b) dispersion relations of Type III
EMM when b0/a0 = 0.9, H/a0 = 2.5, and r1/a0 is 0.75; (c) typical vibration mode shapes corresponding
to the intervening dispersion curves.
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However, when the value of r1/a0 is further increased to about 0.75, that is, when the
wall of the scattering body becomes quite thin, the CBG will be broken (as shown in Figure 8b).
Representatively, the L1 (located at 20.570 Hz) and M1 (located at 20.980 Hz) vibration patterns
in Figure 8c indicate that too thin scatterer walls induce unstable resonance in the middle of
the boundary, which, in turn, disrupts the continuity of the original forbidden band.

4. Isolation of Ultralow-Frequency Lamb Waves by MMB Based on Improved
Gradient Design

Actually, the periodic structures used for shielding waves in engineering are non-infinite,
and in order to verify the accuracy of the bandgap prediction, a finite-scaled system for transmis-
sion spectrum analysis is constructed in this paper (Figure 9a). The system mainly consists of
perfectly matched layers, soil matrix layers, and an MMB area. Among them, perfectly matched
layers (PMLs) are arranged at both ends of the X direction to prevent the wave reflection effect
of the boundary. The whole system is matched with the MMB area in the thickness and width
direction. In addition, the number of MMB layers along the waveguide direction is denoted by
Nx,Q, where the subscript Q represents the EMM layer with diverse parameters. In the tests, the
propagation of the Lamb wave is simulated by applying low-amplitude harmonic displacement
load (Ain) to the interface between the PML and the left matrix layer. Meanwhile, the output
displacement signal (Aout) is collected in the matrix layer at the other end, and the transmission
spectrum calculation formula is set as T = 20 × log10(Aout/Ain). The MMB is embedded in
the middle of the system, which contains one or more types of meta-units, while the top and
bottom are established as non-traction boundaries.

Figure 9. (a) Schematic diagram of the MMB system containing single or multiple kinds of EMMs;
(b) bandgap edge distribution diagram used to provide reference for improved gradient design.

It can be seen from Section 3.2 that the lower boundary of FBG and SBG does not
change monotonously with the filling ratio, but there is a “bottom point”, which is instruc-
tive for using an improved gradient design to overlap the bandgaps. Specifically, ensuring
that the upper boundary of the low-frequency bandgap (as shown in the blue triangle in
Figure 9b) is higher than the lowest point of the lower boundary of the high-frequency
bandgap (as shown in the red inverted triangle in Figure 9b) is the key to reduce the
grouping required for gradient design, to design MMB systems with ultra-wideband wave
attenuation.

For the purpose of clearly demonstrating the advantages of the gradient MMB system in
low-frequency and broadband wave attenuation, several control groups as listed in Table 4
are set-up for the transmission test. Among them, groups 1, 2, and 3 contain only single-
component Type II metamaterial units, while group 4 contains all the component units of
the first three groups and is arranged in a gradient (as shown in Figure 9a). Moreover, as an
optimized design for the fourth group, group 5 replaces partial layers in group 4, replacing
Type II EMMs (with η0 = 0.81) to Type III (see Table 4 for the specific parameters).
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Table 4. MMB of different components and their serial numbers.

Category Types of EMMs Included Parameters of Each Component Layer

No.1 Type II η0 = 0.20, Nx,1
No.2 Type II η0 = 0.42, Nx,2
No.3 Type II η0 = 0.81, Nx,3

No.4 Type II η0 × Nx,Q =
{0.20× Nx,1, 0.42× Nx,2, 0.81× Nx,3}

No.5 Type II, III II : η0 × Nx,Q = {0.20× Nx,1, 0.42× Nx,2};III :
b0/a0 = 0.9&r1/a0 = 0.7, Nx,4

4.1. Broadband Suppression of Lamb Waves by MMB

In the characteristic curves of Figure 10a–c, the transmission test results of groups 1, 2,
and 3 are shown, respectively. The green and yellow shaded areas in the figure represent the
CBGs predicted by the dispersion curves of the metamaterials of each component. Among
them, the predicted bandgaps of group 1 are located at 0.946–1.551 Hz and 1.759–4.657 Hz, the
predicted bandgaps of group 2 are at 0.876–1.124 Hz and 1.431–7.929 Hz, and the predicted
bandgap of group 3 lies at 1.794–31.613 Hz. By comparing with the significant attenuation
region in the transmission characteristic curve, we can find that the accuracy of the prediction
range of the bandgap is quite high, and the attenuation effect in the SBG (indicated by the
yellow shaded area) is stronger.

Figure 10. (a) Transmission spectrum of group 1, (b) group 2, and (c) group 3 in the range of 0–35 Hz;
(d) transmission spectrum of groups 4 and the control group with pure substrate; (e) the displacement
field of group 4 with frequencies of 0.100 Hz and (f) 3.250 Hz.
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Further, the transmission curve (blue solid line) of group 4 is drawn in Figure 10d
and the substrate transmission test result (black solid line) without any scatterer is added.
From Figure 10d, it can be found that under the effect of the hybrid region of the FBG
and SBG, the attenuation of the transmission curve continues, and finally, the broadband
attenuation is achieved in the range of 0.876-31.613 Hz. Moreover, compared with the
results of the pure substrate transmission test, the attenuation effect of this hybrid MMB
system is significant, and the attenuation peak can reach −350 dB. To be more intuitive,
the displacement response diagrams (corresponding to group 4) at frequencies outside
the bandgap (at 0.100 Hz) and within the bandgap (at 3.250 Hz) are selected, as shown
in Figure 10e,f, and then the excellent wave shielding performance of the MMB can be
observed. Lamb waves outside the forbidden band can smoothly propagate to the other
end (Figure 10e), while waves within the forbidden band are effectively limited to the
originating end (Figure 10f).

4.2. Broadband Suppression of Lamb Waves by Optimized MMB

As it is known from the results of the transmission test of the group 4: the component
of η0 = 0.81 mainly affects the upper boundary of the attenuation band, the component of
η0 = 0.42 actually determines the lower boundary of the attenuation band, and the compo-
nent of η0 = 0.20 acts as bridges to ensure the continuity of the attenuation band. Therefore,
based on the findings in Section 3.4, we are able to carry out a weight reduction design for
the group 4 MMB, the optimized design (group 5) of which is demonstrated in Figure 11.
Here, the three functional areas are efficiently integrated to form an assembled MMB. In
the comparative tests, the Nx,Q of each area remains as 3, while Ny is 6. Correspondingly,
the results of their transmission characteristics are depicted in Figure 11.

Figure 11. Schematic diagram of the optimized assembled system containing hollowed EMMs.

In Figure 12a, the results of group 5 (red solid line) are highly similar to those of
group 4 (black dashed line) in the range of the attenuation band. With the RBW up to
1.892 still, this demonstrates the feasibility of optimal design of weight reduction. The
introduction of hollow scatterers does not weaken the broadband filtering performance
of the original MMB system. More concretely, the strong isolating effect of the improved
MMB on symmetric or antisymmetric Lamb waveguides is evident from Figure 12b,c.
As a contrast, Lamb wave modes outside the wave shielding region are also reflected in
Figure 12d,e, where the symmetric waveguide is predominantly in the form of body modes
(as shown in Figure 12f), while the antisymmetric waveguide presents a hybrid of surface
and body modes (as shown in Figure 12g).
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at 0.1 Hz; displacement fields in the Z direction (above) and X direction (below) of (f) symmetrical
mode and (g) antisymmetric mode of the 5th group MMB at 0.1 Hz.

For the setting of an appropriate number of layers of the functional EMMs in the MMB,
more comparative tests are performed. More functional layers are set-up in the waveguide
direction, in turn, and the detailed transmission test results are shown in Figure 13. The
results show that the introduction of more functional layers does enhance the wave attenu-
ation amplitude, especially for the ultralow-frequency region. Normally, each functional
EMM occupying about 4 layers is sufficient to provide adequate wave attenuation.
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Figure 13. Transmission spectrum of MMBs in group 5 with various layers of component EMMs.

5. Conclusions

In this paper, the propagation of Lamb waves in the EMM layer is investigated with
reference to effective medium theory and the concept of homogenization under long-wave
conditions. Subsequently, two combinations of effective parameters for robust isolation
of Lamb waves are summarized and EMMs containing different scatterer configurations
are designed accordingly. All types of bandgaps, including the newly discovered ultralow-
frequency bandgap, are verified by the effective parameter theory. Finally, a new type of
assembled MMB is proposed to isolate Lamb waves based on the improved gradient design,
which is further optimized for weight reduction, and its ultralow-frequency and ultra-
broadband shielding effectiveness is demonstrated by transmission tests. The conclusions
are drawn as follows:

(1) With the auxetic foam as the substrate and the steel core pile as the scatterer, it is
feasible to design compact EMMs to isolate Lamb waves at ultralow frequencies such
that the effective velocities of both transverse and longitudinal waves are imaginary
and the effective modulus of the transverse waves is not greater than the effective
modulus of the longitudinal waves.

(2) For the proposed EMMs with a higher symmetry configuration, the negative Poisson’s
ratio of the auxetic substrate can be exploited to dissociate the dipole mode and the
toroidal dipole mode, thus opening a new complete bandgap at the ultralow-frequency
region (below 1 Hz).

(3) The improved gradient design can integrate the ultralow-frequency FBG separated by the
NDB with the SBG of wider bandwidth, effectively realizing broadband wave isolation
with an RBW of up to 1.892 (or 189.2%), far exceeding those of conventional configurations.

(4) To obtain wider bandwidths, the characteristic size of the required scatterer tends
to become larger. In this case, through-holes can be dug inside the scatterer to save
steel investment and keep the upper limit of the attenuation band constant. However,
there is a limit to the degree of cavitation of the scatterer beyond which the original
intact bandgap structure will collapse.

There is no doubt that the superior designability of the auxeticity-induced scheme
without introducing additional weight will inspire people to realize efficient wave isolation
in the desired frequency domain and further expand the engineering applications of novel
assemblable EMMs based on the improving economics and feasibility.
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