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Abstract: Precise machining of micro parts from difficult-to-cut materials requires using advanced
technology such as wire electrical discharge machining (WEDM). In order to enhance the productivity
of micro WEDM, the key role is understanding the influence of process parameters on the surface
topography and the material’s removal rate (MRR). Furthermore, effective models which allow us to
predict the influence of the parameters of micro-WEDM on the qualitative effects of the process are
required. This paper influences the discharge energy, time interval, and wire speed on the surface
topography’s properties, namely Sa, Sk, Spk, Svk, and MRR, after micro-WEDM of Inconel 718 were
described. Developed RSM and ANN model of the micro-WEDM process, showing that the discharge
energy had the main influence (over 70%) on the surface topography’s parameters. However, for
MRR, the time interval was also significant. Furthermore, a reduction in wire speed can lead to a
decrease in the cost process and have a positive influence on the environment and sustainability of
the process. Evaluation of developed prediction models of micro-WEDM of Inconel 718 indicates that
ANN had a lower value for the relative error compared with the RSM models and did not exceed 4%.

Keywords: wire electrical discharge machining; surface topography; RSM; ANN; Inconel

1. Introduction

The application of new micro-mechanisms to materials that are difficult to cut, such
as nickel superalloys, requires the development of new machining technologies that will
allow us to obtain the appropriate dimensional accuracy in terms of the microelements
and achieve the desired surface quality. One of the technologies that allow the production
of geometrically complex microelements made of nickel superalloys is wire electrical
discharge machining. In WEDM, electric discharges occur between the wire electrode and
the workpiece, causing the material to be locally removed by melting and evaporation as a
result of the impact of the thermal processes of the discharge [1–4]. In order to meet the
demands of shape and dimensions accuracy of micro parts, a branch of WEDM, micro-
WEDM, is used. The main advance of micro WEDM is the possibility to obtain a smaller
gap and corner radius in manufacturing micro parts by using the micro discharge energy
(<10 mJ) per pulse and wire with a diameter below/equal to 100 µm. However, using thin
wires in the micro-WEDM process is required to conduct new research that will allow for
effective control of the process.

Applications of microwire electrical discharge machining in precision manufacturing
of microparts in materials that are difficult to cut, such as Inconel 718, are limited by the
properties of the surface texture and the low material removal rate. Currently, research
is being conducted on understanding the influence of the parameters and conditions of
machining on the qualitative effects of WEDM [5–8]. Nevertheless, two major groups of
parameters of WEDM have the most important influence on the process. The first group
of parameters is the factors that have an influence on the discharge energy. Research
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conducted by Chen et al. [9] indicated that an increased open voltage leads to an increase in
the discharge energy and ultimately causes an increase in the amount of material removed
during discharge. Ishfaq et al. [10] indicated that the discharge current has a strong
influence on the cutting speed and kerf width. The second important factor that has a strong
influence on the parameters of WEDM is the conditions of machining. Ilkhchi et al. [11]
indicated that in addition to the parameters that define the discharge energy, the dielectric
flow has an influence on the process of material removal. The turbulent dielectric flow
in the gap increases the efficiency of flushing in the gap and removing molten material
from the craters, which have a strong influence on the surface morphology. Research
carried out by Vijayakumar et al. [12] indicated that the material of the wire electrode
has a strong influence on the morphology and roughness of the surface. Using a zinc-
coated brass electrode leads to a decrease in surface roughness compared with uncoated
brass. Furthermore, research carried out by Abhilash et al. [13] indicated that using zinc-
coated brass allowed an increase in the cutting speed. Among the treatment conditions of
the micro-WEDM process that significantly affect the morphology and roughness of the
surface is the number of trim offsets. Sharma et al. [14] and Burek et al. [15] indicated that
surface morphology significantly depends on the number of machining passes. The use
of additional passes allows a decrease in the parameters of surface roughness. Research
carried out by Ali et al. [16] indicated that by using dry micro-WEDM, it was possible to
reduce the size of the kerf during cutting, which had a strong influence on the geometry of
the cut micro parts.

Because of the complexity of the physical phenomena occurring during electrical
discharge machining, a significant part of the research has focused on the development
of predictive models for the process. One of the most frequently used methodologies
that allow us to determine the relationship between the input factors and the results
of process optimization are the response surface methodology [17–21], artificial neural
networks [22–24], desirability functions [25–28], the fuzzy possibility approach [29,30],
and gray relational analysis [31–33]. The study provided by Jatakar et al. [34] shows that
using the ANN algorithm can effectively diagnose and self-monitor complex manufacturing
processes without human intervention. Furthermore, the study conducted by Patli et al. [35]
provides that the Deep learning algorithm based on the ANN models used to monitor
the manufacturing process had a higher accuracy than models developed with Machine
Learning (ML) classifiers. Therefore, using the ANN algorithm for building prediction
model processes is the main part of Industry 4.0.

The surface topography after machining has a strong influence on fatigue strength
and other tribological properties [36–38]. Depending on the type of treatment used, the
properties of the surface topography may differ significantly despite similar values of the
typical parameters describing surface roughness, such as Ra. From a tribological point of view,
it is necessary to apply additional parameters to characterize the surface obtained [39–42].
In the production of micro parts, the properties of the surface topography will have even
more influence on the fatigue strength. Research conducted so far on WEDM of the Inconel
718 alloy [43–45] has shown that many factors have an influence on the surface roughness and
the material removal rate. Relatively few studies [46–48] have described the influence of the
parameters of micro-WEDM on the surface topography’s properties. However, the influence
of the discharge energy, the time interval, and the wire speed on the surface topography and
the material removal rate after micro-WEDM of Inconel 718 has not been considered enough.
Furthermore, industrial applications of microwire EDM require prediction models, which
would allow us to choose favorable parameters to archive specific features of the topography
and the MRR. For that reason, the main goal of this study was to determine the impact of
the discharge energy, the time interval, and wire speed on the surface topography and the
material removal rate. In order to achieve this goal, prediction models of micro-WEDM
of Inconel 718 with RSM and ANN were developed. The main purpose of applying two
different methodologies for building the predictive models was to evaluate the influence of
the methodology on the accuracy.
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2. Materials and Methods
2.1. Workpiece Material

Heat-resistant superalloys based on nickel are increasingly being used in the aviation,
space, chemical, and energy industries. Inconel alloys are widely used for the production
of turbine blades, discs, shafts, and valves. Because of its properties, such as its low thermal
conductivity (11.4 W/mK), good mechanical properties, and a high tendency to work
hardening, Inconel 718 has been classified as a material that is difficult to cut. The chemical
composition of Inconel 718 is presented in Table 1.

Table 1. Chemical composition of Inconel 718 (mass %).

Ni Cr Nb Mo Ti Al Co C Mn Si P S B Fe

50–55 17–21 4.75–5.5 2.8–3.3 0.65–1.15 0.2–0.8 <1.0 <0.015 <0.5 <0.35 <0.015 <0.015 <0.06 Balance

2.2. Experimental Setup

This study focused on analyzing the influence of the parameters of micro-WEDM
on the surface topography’s properties and the material removal rate. The research was
divided into several stages. In the first stage of the research, the ranges of stable machining
parameters were determined with no wire breaks during cutting. The second stage was
an analysis of the influence of the discharge energy, the time interval, and wire speed on
the properties of the surface topography of Inconel 718 after machining. In the next stage,
prediction models for microwire EDM using the response surface methodology (RSM)
and an artificial neural network (ANN) were developed. In the final stage, the prediction
models were evaluated.

In order to achieve these tasks, experimental studies were carried out on the Charmilles
Robofill 440 WEDM machine (GF Solutions, Bienne, Switzerland). The samples of the
Inconel 718 alloy for cutting had dimensions of 10 × 10 × 5 mm, the electrode was a brass
wire with a diameter of 0.1 mm, and deionized water was used as the dielectric.

In the first stage of research, a measurement circuit consisting of a NI5133 oscilloscope
card (National Instruments, Austin, TX, USA), a current sensor (Pearson, London, UK),
and a voltage probe (Tektronix, UK Ltd., Berkshire, UK) was developed for analyzing the
discharge current and the voltage waveforms (Figure 1).

Materials 2022, 15, x FOR PEER REVIEW 4 of 23 
 

 

  

Figure 1. Schematic illustration of the measuring circuit with the registered current and voltage 

waveforms. 

The material removal process in Micro WEDM has a complex nature and depends on 

many parameters and conditions. The classification of parameters considers the division 

into parameters influencing the discharge energy, parameters related to the working elec-

trode such as wire speed and wire tension, and processing conditions characterizing the 

method and pressure of the dielectric supply. Preliminary research has shown that for the 

machine control system adopted here, some of the processing parameters are not separate 

from each other. A change in the pulse time causes a simultaneous change in the discharge 

current’s value. An analysis of the registered voltage and the current waveforms allowed 

us to establish a relationship between the pulse time and the discharge current and to 

calculate the discharge energy according to Equation (1): 

𝐸 = ∫ 𝑈(𝑡) ∙ 𝐼(𝑡)𝑑𝑡    (mJ),
𝑡𝑜𝑛

0

 (1) 

where: 

U—average discharge voltage, 

I—the height of the peak current during discharging, 

ton—pulse time. 

In micro-wire electrical discharge machining, the material is removed from the work-

piece due to a series of discharges occurring in the gap. Material is removed from the 

workpiece during the pulse time ton. Next, during the time interval toff, the eroded ma-

terial is removed from the gap between the working electrode and the workpiece. The 

time interval is responsible for the stabilization of the condition in the gap between dis-

charges. Furthermore, have an influence on the frequency of discharges. 

Parameters related to the working electrode, such as wire speed, influence the shape 

of the discharge carter and surface topography [49]. During the WEDM process, the wire 

electrode is rewound from the spool to prevent wear of the electrode, which influences 

the stability of the process. Furthermore, reducing wire speed can decrease the cost pro-

cess and positively impact the environment and sustainability of the process. 

By considering the above relations, the following parameters were chosen in the ex-

perimental studies: discharge energy, time interval, and wire speed. Table 2 presents the 

conditions of the experiment. 

  

Figure 1. Schematic illustration of the measuring circuit with the registered current and voltage waveforms.

The material removal process in Micro WEDM has a complex nature and depends
on many parameters and conditions. The classification of parameters considers the divi-
sion into parameters influencing the discharge energy, parameters related to the working
electrode such as wire speed and wire tension, and processing conditions characterizing
the method and pressure of the dielectric supply. Preliminary research has shown that
for the machine control system adopted here, some of the processing parameters are not
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separate from each other. A change in the pulse time causes a simultaneous change in the
discharge current’s value. An analysis of the registered voltage and the current waveforms
allowed us to establish a relationship between the pulse time and the discharge current
and to calculate the discharge energy according to Equation (1):

E =
∫ ton

0
U(t)·I(t)dt (mJ), (1)

where:

U—average discharge voltage,
I—the height of the peak current during discharging,
ton—pulse time.

In micro-wire electrical discharge machining, the material is removed from the work-
piece due to a series of discharges occurring in the gap. Material is removed from the
workpiece during the pulse time ton. Next, during the time interval toff, the eroded mate-
rial is removed from the gap between the working electrode and the workpiece. The time
interval is responsible for the stabilization of the condition in the gap between discharges.
Furthermore, have an influence on the frequency of discharges.

Parameters related to the working electrode, such as wire speed, influence the shape
of the discharge carter and surface topography [49]. During the WEDM process, the wire
electrode is rewound from the spool to prevent wear of the electrode, which influences the
stability of the process. Furthermore, reducing wire speed can decrease the cost process
and positively impact the environment and sustainability of the process.

By considering the above relations, the following parameters were chosen in the
experimental studies: discharge energy, time interval, and wire speed. Table 2 presents the
conditions of the experiment.

Table 2. Machining conditions.

Electrode Brass wire, diameter 0.1 mm
Workpiece material Inconel 718
Height of specimen 5 mm
Discharge energy 0.21–1.46 mJ
Time interval toff 5–11 µs
Open voltage U0 220 V

Dielectric Deionized water
Wire mechanical tension 0.2 daN

Experimental studies on the influence of the discharge energy E, the time interval toff,
and the wire speed WS on the parameters describing properties of the surface topography
and the material removal rate of Inconel 718 after micro-WEDM were conducted using
Hartley’s experimental design with three five-level parameters. Table 3 shows the levels
of the machining parameters used in the experiment. Using five-level DOE allows for
investigation in a wide range (five levels) influence input parameters on the investigated
output. For example, in the preliminary research, the range of parameters for micro-WEDM
of Inconel 718 was established for criteria: stable discharges (observed current and voltage
waveforms) without the wire breaking.

The parameters of the surface texture were measured with the Talysurf series 2 scan-
ning profilometer (Taylor Hobson, Leicester, UK). For each cutting surface, an area of
1 × 3 mm was measured in a discretization step (10 µm), as well as the Y-axis and X-axis.
The EDS spectrum of the cutting surface was investigated on a JEOL JCM-7000 NeoScope
(Tokyo, Japan).
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Table 3. The design of the experimental matrix.

Level

Parameter

Discharge Energy
E (mJ)

Wire Speed
(m/min)

Time Interval
toff (µm)

−1.68 0.21 6 5
−1 0.42 7 6
0 0.70 9 8
1 1.04 11 10

1.68 1.46 12 11

The material removal rate was calculated by dividing the lateral surface area of the
cut sample by the cutting time:

MRR =
l × h

∆t

[
mm2

min

]
(2)

where l is cutting length, h is sample height, and ∆t is the time of manufacturing.
The data obtained from experimental studies of the micro-WEDM of Inconel 718 were

used to build predictive models of the process using the response surface methodology and
artificial neural networks. Next, an evaluation of the newly developed predictive models
was conducted by comparing the predictive errors. The scheme of the experimental setup
is presented in Figure 2, and the overall framework of experiments is presented in Figure 3.
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3. Results and Discussion
3.1. Analysis of the Surface Topography

In the micro-WEDM process, the material is removed as a result of the impact of the
electric discharges occurring in the gap between the working electrode (in the form of a
thin wire) and the surface of the workpiece. As a result of the heat flux from the discharges,
a small amount of material melts and evaporates on the surface of the electrodes. At the
end of the discharges, the plasma channel collapses, and some part of the melted material
which was not evaporated resolidifies on the surface. In the place of the discharge, a crater
occurs. Overlapping craters create a specific topography of the surface (Figure 4).

Electrical discharge occurs in the gap, leading to the melting of both the working
electrode and the workpiece. The intense boiling and evaporation of the electrode material
during discharge causes the diffusion of this material to the resolidified layers. An EDS
analysis of the surface topography after the micro-WEDM process indicated the presence
of elements from the working electrode on the processing surface (Figure 5).
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Figure 5. EDS spectrum of the surface of Inconel 718 after micro-WEDM: E = 1.46 mJ, WS = 9 m/min,
and toff = 8 µs.

The surface topography after micro-WEDM has a complex structure. In order to
describe the surface’s properties, the following functional parameters were chosen: the
arithmetic means of the deviations from the mean Sa (the average value of the absolute
height over the entire surface), Sk (the roughness of the core), Spk (the roughness of the
peak), and Svk (the roughness of the valleys). The roughness parameters Sk, Spk, and Svk
describe the load capacity of the surface (Figure 6). The roughness parameter Svk and
that of the lower bearing surface (Smrk2) give information about the surface’s lubrication
properties, i.e., the ability of fluid to flow through the sliding surfaces. The roughness of the
peak (Spk) can give information about the surface’s resistance to abrasion. The higher the
Spk value is, the lower the resistance to abrasion. The roughness of the core (Sk) determines
the depth of the roughness after the initial breaking-in period.
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Figure 6. Abbott-Firestone curves after micro-WEDM of Inconel 718: (a) E = 0.21 mJ, WS = 9 m/min,
and toff = 8 µs; (b) E = 1.46 mJ, WS = 9 m/min, and toff = 8 µs.

The roughness of the peaks and valleys after micro-WEDM of Inconel 718 was
Spk = 3.178 µm and Svk = 1.719 µm, and Spk = 4.12 µm and Svk = 2.508 µm for machining at
minimal (E = 0.21 mJ) and maximal discharge energy (E = 1.46 mJ), respectively. Changing
the discharge energy significantly affected the properties of the surface topography. For
the sample manufactured with the lowest discharge energy (E = 0.21 mJ), the roughness
of the peaks and core was Spk = 3.2 µm and Svk = 1.7 µm, respectively (Figure 6b). The
parameter values obtained here were almost 30% lower than those of manufacturing with
the maximal value of discharge energy (E = 1.46 mJ).

Table 4. Design of the experimental matrix, with the results of the experimental studies.

Exp.
No.

WEDM Input Observed Values

Discharge
Energy
E (mJ)

Wire
Speed WS
(m/min)

Time
Interval
toff (µs)

Sa (µm) Spk (µm) Sk (µm) Svk (µm) MRR
(mm2/min)

1. 0.42 7 7 2.169 3.11 6.987 1.984 45.74
2. 0.42 7 10 2.172 2.967 6.792 1.923 34.4
3. 0.426 11 6 2.282 3.085 6.645 1.94 55.12
4. 0.42 11 10 2.188 3.183 6.806 1.796 32.56
5. 1.05 7 6 2.46 3.619 7.717 2.296 100.7
6. 1.05 7 10 2.41 3.271 7.793 2.181 58.18
7. 1.05 11 6 2.467 3.599 7.852 2.257 97.02
8. 1.05 11 10 2.428 3.804 7.616 2.271 56.72
9. 0.21 9 8 2.103 3.178 6.594 1.719 27.88

10. 1.46 9 8 2.673 4.116 8.435 2.508 91.62
11. 0.74 6 8 2.305 3.223 7.589 2.129 58.64
12. 0.74 12 8 2.203 3.28 6.967 2.012 55.42
13. 0.74 9 5 2.642 3.853 8.401 2.364 101.94
14. 0.74 9 11 2.299 3.511 7.277 2.058 31.2
15. 0.74 9 8 2.381 3.64 7.648 2.021 44.1
16. 0.74 9 8 2.332 3.473 7.498 1.938 43.81
17. 0.74 9 8 2.346 3.574 7.541 1.982 43.2
18. 0.74 9 8 2.318 3.574 7.567 1.968 44.31
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Experimental studies of the influence of the parameters of micro-WEDM on the surface
topography’s properties and the MRR were performed according to the design of the experi-
mental methodology of Hartley experiments with five levels and three parameters. Eighteen
samples were manufactured and measured (including four replications at the center point of
the plan). The average results of the experimental studies are presented in Table 4.

The surface roughness Sa was in the range of 2.10–2.67 µm. The roughness of the peak
(Spk) was in the range of 3.11–4.12 µm. The roughness of the core (Sk) was in the range of
6.64–8.43 µm, and the roughness of the valleys (Svk) was in the range of 1.71–2.51 µm. The
material removal rate (MRR) was in the range of 27.18–110.94 mm2/min.

3.2. Predictive Models

Development of the predictive models of the micro-WEDM process was carried out
using the response surface methodology (RSM) and artificial neural networks (ANN). The
main purpose of applying two different methodologies was to evaluate the influence of the
methodology on the accuracy of the prediction model.

In the study, the investigated input parameters of micro-WEDM were the discharge
energy E, the time interval (toff), and the wire speed (WS); the output parameters were the
surface roughness (Sa), the roughness of the core (Sk), the roughness of the peak (Spk), the
roughness of the valleys (Svk), and the MRR.

3.2.1. Response Surface Methodology

The response surface methodology allows the building of predictive models based on
regression and ANOVA analyses. The response surface was calculated according to the
following equation:

Y = f (E,toff,WS) ± ε, (3)

where Y is the investigated response (Sa, Spk, Svk, or MRR; f is the regression function;
E (discharge energy), toff (time interval), and WS (wire speed) are independent parameters;
and ε is the experimental error.

In the first step of building the prediction models, different regression functions were
used. On the basis of an analysis of the values of the determination coefficient R2 and the
Fisher test, it was found that the best match to the results of the experimental research was
obtained for the second-degree polynomial function. In the next step, analysis of variance
(ANOVA) was used to develop the final regression equation. At the 95% coefficient level,
the significance of each factor in the regression model was checked. If the calculated
probability value Prob > f for the single factor was higher than 0.05, this meant that the
factor was nonsignificant and was removed from the final regression function. The ANOVA
results for surface roughness (Sa), the roughness of the core (Sk), the roughness of the
peak (Spk), the roughness of the valleys (Svk), and the MRR are presented in Tables 5–9,
respectively and are included in the Supplementary Materials.

Table 5. ANOVA table for Sa (after elimination).

Source Sum of
Squares

Degrees of
Freedom

Mean
Square F-Value Prob > f Contribution

%

Model 0.3506 4 0.0876 39.96
E 0.2599 1 0.2599 355.59 0.0003 74.14

WS2 0.0174 1 0.0174 23.93 0.0163 4.99
toff 0.0493 1 0.0493 67.54 0.0037 14.08
toff

2 0.0237 1 0.0237 32.52 0.0106 6.78
Error 0.0021 13

Total SS 0.3527 17 R-sqr = 0.92 R-Adj = 0.90



Materials 2022, 15, 8317 10 of 20

Table 6. ANOVA table for Spk (after elimination).

Source Sum of
Squares

Degrees of
Freedom

Mean
Square F-Value Prob > f Contribution

%

Model 1.2631 3 0.4210 16.31
E 0.8963 1 0.8963 48.73 <0.0001 70.96

WS2 0.2717 1 0.2717 14.77 0.0017 21.51
toff 0.0950 1 0.0950 5.16 0.0392 7.53

Error 0.0142 14

Total SS 1.5206 17 R-sqr = 0.84 R-Adj = 0.81

Table 7. ANOVA table for the Sk (after elimination).

Source Sum of
Squares

Degrees of
Freedom

Mean
Square F-Value Prob > f Contribution

%

Model 4.1954 6 0.6992 58.51
E 3.2785 1 3.2785 823.14 <0.0001 78.15
E2 0.0988 1 0.0988 24.80 0.0155 2.36
WS 0.1761 1 0.1761 44.21 0.0069 4.20
WS2 0.2511 1 0.2511 63.04 0.0041 5.99
toff 0.3491 1 0.3491 87.65 0.0025 8.32
toff

2 0.0416 1 0.0416 10.44 0.0481 0.99
Error 0.0119 11

Total SS 4.2073 17 R-sqr = 0.87 R-Adj = 0.85

Table 8. ANOVA table for the Svk (after elimination).

Source Sum of
Squares

Degrees of
Freedom

Mean
Square F-Value Prob > f Contribution

%

Model 0.6621 5 0.1317 36.96
E 0.5196 1 0.5196 437.61 0.0002 78.92

WS 0.0120 1 0.0120 10.15 0.0498 1.83
toff 0.0545 1 0.0545 45.90 0.0065 8.28
toff

2 0.0601 1 0.0601 50.66 0.0057 9.14
E WS 0.0120 1 0.0120 10.16 0.0497 1.83
Error 0.0035 12

Total SS 0.6585 17 R-sqr = 0.95 R-Adj = 0.92

Table 9. ANOVA table for MRR (after elimination).

Source Sum of
Squares

Degrees of
Freedom

Mean
Square F-Value Prob > f Contribution

%

Model 9016.25 6 1502.70 10.52
E 3285.90 1 3285.90 253.14 <0.0001 36.44
E2 175.54 1 175.54 13.52 0.0036 1.95

WS2 318.09 1 318.09 24.50 0.0004 3.53
toff 4234.76 1 4234.76 326.24 <0.0001 46.97
toff

2 867.89 1 867.89 66.86 <0.0001 9.63
E WS 134.07 1 134.07 10.32 0.0082 1.49
Error 142.78 11

Total SS 9159.03 17 R-sqr = 0.98 R-Adj = 0.98

Table 5 shows the ANOVA results for surface roughness (Sa). The calculated contri-
bution indicated that the discharge energy had the greatest influence on the surface rough-
ness (74.14%), followed by the time interval (14.08%) and the square of the time interval (6.78%).
The ANOVA results presented in Table 6 indicate that the greatest influence on the roughness
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of the peak (Spk) was the discharge energy (70.96%). The variable with the second-greatest
effect was the wire speed (WS) (21.51%), followed by the time interval (7.53%). Table 7 presents
the ANOVA results for the roughness of the core (Sk). The results indicate that discharge
energy (78.15%), followed by the time interval (8.32%), had the most influence on Sk. The
contributions of the other variables to the roughness of the core (Sk) were significant but less
important. The ANOVA results for the roughness of the valleys (Table 8) indicate that the
parameter with the greatest influence on Svk (76.15%) was the discharge energy, followed by
the square of the time interval (9.14%) and the time interval (8.28%). The ANOVA results for
the material removal rate (Table 9) indicated that the time interval had the greatest influence
on MRR (46.97%), followed by the discharge energy (36.44%).

The Fisher coefficients calculated for each regression model presented in Tables 5–9
was significantly greater than 1, which proves that the model was statistically significant
for the selected 95% confidence level. The value of determination coefficient R2 and the
adjusted coefficient of determination (R-Adj) for the Sa, Svk, and the MRR models were
over 92% and 90%, respectively, and those for Spk and Sk were over 84% and 81%, respectively.
The response function developed here had a very good fit with the experimental results.

The final version of the developed response function for the surface roughness (Sa),
the roughness of the core (Sk), the roughness of the peak (Spk), the roughness of the valleys
(Svk), and the MRR are described by the following polynomial functions:

Sa = 3.307 + 0.4068 E − 0.0003 WS2 − 0.2832 toff + 0.0155 toff
2 (µm) (4)

Spk = 2.83 + 0.774 E − 0.002 WS2 − 0.0020 WS toff (µm) (5)

Sk = 4.90 + 2.4876 E − 0.6531 E2 +0.7470 WS − 0.0450 WS2 − 0.33859 toff + 0.0183 toff
2 (µm) (6)

Svk = 3.83 − 0.0547 E − 0.0787 WS − 0.3698 toff + 0.0208 toff
2 0.06954 E WS (µm) (7)

MRR = 203.59 + 88.214 E + 17.5524 E2 − 0.0232 WS2 − 40.3947 toff + 2.2594 toff
2 − 8.0758 E toff (mm2/min) (8)

In the last step of the analysis of developed models, residual analyses were per-
formed. For example, the results of the residual analyses are presented in Figure 7 for the
Sa roughness. The normal plot of the residuals (Figure 7a) shows that the residuals are
distributed along a straight line, which proves that the distribution is normal. The analyses
in Figure 7b,c indicate that the residuals have a stochastic nature and that the errors are
independent of each other and the case number. Analyses of the residuals performed for
each model confirmed the statistical adequacy of the models.
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3.2.2. Artificial Neural Network

In the second part of building the prediction models for the investigated process,
the ANN was used. Currently, there are many different types of ANN [50–53]. One type
of ANN that allows for the complex nonlinear nature of the process is the multilayer
perceptron network (MLP). After an analysis of the process in order to determine the
relationship between the input data and a single output parameter, we decided to use the
network architecture with three layers: the input layer with three neurons, the hidden layer
with different numbers of neurons, and the output layer with one neuron (Figure 8).
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The type of activation function and the number of neurons in the hidden layer were
chosen experimentally. In order to avoid overfitting the ANN, several points were taken
into account. The allocation of the results into the training, testing, and verification sets was
achieved stochastically. The testing and verification data were equal to 20% of each of the
databases and were not used for training. To prevent bias and properly build the prediction
model, the holdout validation approach was provided [54]. The hold-out data, 20% the
database, was only used in the final assessment of the model. The number of iterations
during the learning process was set to 100 by the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [55].

Selection of the predictive model was performed after an analysis of the architecture
of the model and the values of calculated error for the training, testing, and validation data.
Models with the smallest number of neurons in the hidden layer were chosen with nearly
the same value of the fitting error to test the data. Next, an analysis of the residuals was
performed to choose the final architecture of the ANN. If the residuals for the test data
were much higher than those for the training data, this meant that the prediction ability of
the model was poor (good results were found for only the training data), which indicated
an overfitting problem. An example of the residual analysis for the Sa model with different
numbers of neurons in the hidden layer is presented in Figure 9.

The final architecture for the ANN predictive model for surface roughness (Sa), the
roughness of the core (Sk), the roughness of the peak (Spk), the roughness of the valleys (Svk),
and the MRR are presented in Table 10.

The architecture of ANN models developed for Sa, Spk, Sk, Svk, and the MRR did
not have the ability to directly evaluate which input factor had the main influence on the
investigated parameters. It was, therefore, important to carry out a sensitivity analysis for
the input variables, which provided information about the contribution of the independent
variables (discharge energy (E), wire-speed (WS), and time interval (toff)) to the prediction
model. The sensitivity analysis was the result of the quotient of the error calculated for the
investigated ANN model network without one variable and the error calculated for the
model with all variables. The sensitivity analysis results presented in Table 11 indicate that
the factor with the greatest influence on the parameters describing the surface topography
(Sa, Spk, Sk, and Svk) was the discharge energy, followed by the wire speed and the time
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interval. However, in the case of the material removal rate, the factor with the greatest
influence was the time interval, then the discharge energy, followed by the wire speed.
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Table 10. The architecture of the ANN for the predictive models.

Model
Number of

Neurons in the
Hidden Layer

Activation
Function in the
Hidden Layer

Activation
Function in the
Output Layer

Optimization
Algorithm

Sa 3 Exponential Logistic BFGS 0
Spk 2 Tanh Tanh BFGS 45
Sk 4 Identity Tanh BFGS 3
Svk 2 Exponential Exponential BFGS 10

MRR 3 Logistic Tanh BFGS 50

Table 11. Sensitivity analysis of the input variables.

Model
Values of Sensitivity

E WS toff

Sa 3.05 1.28 1.16
Spk 6.35 5.43 1.91
Sk 7.19 1.57 1.75
Svk 5.14 1.08 1.40

MRR 335.87 22.68 360.77

3.3. Evalutaion of the Predcitve Models

One of the main goals of this research was to evaluate the accuracy of the method,
which allowed us to build prediction models which described the influence of the discharge
energy, wire speed, and time interval on the parameters describing the topography of the
surface and the material removal rate. In this study, two different methods were used: the
response surface methodology and an artificial neural network. Each of the investigated
methods can be evaluated on the basis of the statistical correlation coefficient, e.g., Pearson’s
coefficient R (Table 12), which gives information about the fit of the models to the results of
the experimental research.
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Table 12. Sensitivity analysis for the input variables.

Model

Correlation Coefficient R

RSM
ANN

Train Test Validation

Sa 0.96 0.97 0.98 0.99
Spk 0.92 0.96 0.99 0.99
Sk 0.93 0.95 0.97 0.98
Svk 0.97 0.97 0.98 0.99

MRR 0.99 0.99 0.99 0.99

The values of the correlation coefficient R obtained for both the ANN and RSM models
were above 0.9, which indicated that developed models are very good at representing the
variability of the investigated output factors.

The results indicated that in almost every case, the value of Pearson’s coefficient R was
higher for the ANN than for the RSM. Therefore, the developed ANN models should be
characterized by a lower prediction error. However, Pearson’s coefficient R does not allow
for a more precise comparison of the accuracy of the models. For this reason, in addition to
these analyses, the relative error of the prediction models was calculated according to the
following equation:

Error =
Absolut residual

Experimental value
× 100 (%) (9)

The results of calculating the relative error for each of the models developed by RSM
and ANN methodology are presented in Figures 10–12. An analysis of the data showed
that for each model created through the use of artificial neural networks, a lower value of
the relative error was obtained.
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Figure 10. Plots of the models’ prediction error: (a) Sa; (b) Spk.

In most cases, for the models developed with ANN, the relative error of the fit did not
exceed 3%, which can be considered a very good result. The largest single relative error
was obtained for the parameters Sk and Svk (Figures 10b and 11b). However, the error did
not exceed 4%.

In the case of the models developed with the use of RSM, the lowest relative error
of fit was obtained for the parameters Sa and Sk and did not exceed 5% (Figures 10a and 11b).
For the parameters Svk and Spk, the maximum relative error did not exceed 8%
(Figures 10b and 11a). Nevertheless, the highest relative value of the error for the fit
of the results calculated by the model to the experimental results was observed for the MRR
and amounted to 14% (Figure 12).
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Figure 11. Plots of the models’ prediction error: (a) Sk; (b) Svk.
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Figure 12. Plots of the models’ prediction error for MRR.

The developed models with RSM and ANN methods allowed us to predict the influ-
ence of the input variables of microwire electrical discharge machine of Inconel 718 on the
parameters of surface topography (Sa, Spk, Sk, and Svk) and the MRR. Furthermore, the
response plots (Figures 13–16) show the relationships between the parameters of WEDM
and the output factors.
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The surface roughness (Sa) is a parameter that determines the average height of
the surface roughness and indirectly describes the average height of the craters formed
on the surface of the material by an electric discharge. The dependencies presented in
Figures 14 and 15 indicate that the energy of electric discharge had the greatest impact
on the value of the Sa parameter. The increase in the discharge energy for the WEDM
apparatus used in the tests depended on the increase in both the current’s intensity and
the impulse time. As a result, in accordance with the Gaussian heat flux in the plasma
channel [1], this caused an increase in the volume of material removed in a single pulse.
The dependencies presented in Figures 13b and 14b indicate that the wire speed did not
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significantly affect the surface roughness (Sa). From the point of view of the sustainable
development of micro-WEDM of Inconel 718, it is important to reduce the wear of the
working electrode by limiting the wire speed. The time interval (Figures 13c and 14c) is
responsible for stabilizing the conditions in the gap. For short time intervals, arc discharge
can occur, which leads to an increase in surface roughness (Sa). The dependencies of the
effect of the discharge energy, the wire speed, and the time interval also apply to the other
parameters describing the height of the roughness. The amount of material removed in
a single discharge of energy determines the height of the roughness of the core (Sk), the
roughness of the peak (Spk), and the depth of the roughness of the valleys (Svk). The plots
of the estimated response functions of Spk, Sk, and Svk for RSM and ANN are included in
the Supplementary Materials.

An analysis of the RSM and ANN prediction models of the material removal rate
and its graphical interpretation (Figures 15 and 16) indicated that the discharge energy
and the time interval made a large contribution to the MRR during the micro-WEDM of
Inconel 718. MRR increased with an increase in the discharge energy and a decrease in
the time interval (Figures 15b and 16b). With an increase in discharge energy, the amount
of material removed in a single discharge rose, leading to an increase in the MRR. These
results coincide with the research of Esteves et al. [56] describing the volume of material
removed by a single discharge. The time interval had a direct influence on the frequency
of the discharges. An increase in the time interval led to a decrease in the frequency of
discharges and ultimately decreased the MRR.

This research conducted into micro-WEDM of Inconel 718 has indicated that the wire
speed had the least influence on the MRR (Figure 15a,c and Figure 16a,c). Determining
the optimal wire speed is important to avoid the effects of wear on the working electrode,
which can lead to vibration of the wire and wire breakage.

The results indicate that for the investigated range of wire speeds, the use of speeds of
5 m/min allowed high cutting efficiency to be achieved. A decrease in the wire speed leads
to decreased electrode consumption, which has a significant impact on the environment
and sustainability.

4. Conclusions

In the present work, our main attention was on the analytical and experimental
investigation of the influence of the discharge energy, wire speed, and time interval on the
parameters describing the properties of the surface topography (Sa, Spk, Sv, Svk, and MRR)
during micro-WEDM of Inconel 718. Furthermore, prediction models of the micro-WEDM
process were developed via the response surface methodology and an artificial neutral
network. In the final stage of research, an evaluation of the accuracy of the developed
prediction was carried out. The following conclusions were drawn.

1. Discharge energy made the main contribution to the surface roughness (Sa, Spk, Sv,
and Svk) and the MRR during micro-WEDM of Inconel 718.

2. The time interval made the main contribution to the MRR, as the decrease in the time
interval increased the frequency of the discharge. Furthermore, for the adopted range,
the time interval had the least influence on the parameters describing the surface
topography’s properties.

3. Wire-speed had the least influence on the parameters describing the surface topog-
raphy’s properties (Sa, Spk, Sv, and Svk) and MRR. Furthermore, for the lowest wire
speed, it was possible to obtain a high MRR and a low value of surface roughness.
A decrease in the wire speed led to a decrease in the consumption of the electrode,
which would have a significant impact on the environment and sustainability.

4. The predictive models based on RSM and ANN for the micro-WEDM of Inconel 718
can be applied to construct technological tables for the investigated process.

5. The models developed with ANN had a lower value for the relative error compared
with the RSM models. The maximum relative error for the ANN models did not
exceed 4%.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15238317/s1, Figure S1: Estimated response plots for RSM
model of roughness Sa; Figure S2: Estimated response plots for ANN model of roughness Sa;
Figure S3: Estimated response plots for RSM model of roughness Spk; Figure S4: Estimated re-
sponse plots for ANN model of roughness Spk; Figure S5: Estimated response plots for RSM
model of roughness Sk; Figure S6: Estimated response plots for ANN model of roughness Sk;
Figure S7: Estimated response plots for RSM model of roughness Svk; Figure S8: Estimated response
plots for ANN model of roughness Svk; Figure S9: Estimated response plots for RSM model of MRR;
Figure S10: Estimated response plots for ANN model of MRR.
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