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Abstract: Most of the studies focused on V2O5 have been devoted to obtaining specific morphology
and microstructure for its intended applications. Two dimensional (2D) V2O5 has the most valuable
structure because of its unique planar configuration that can offer more active sites. In this study, a
bottom-up and low-cost method that is hydrothermal combined with spin-coating and subsequent
annealing was developed to prepare 2D V2O5 nanosheets film on quartz substrate. First, VOOH
nanosheets were prepared by the hydrothermal method using V2O5 powders and EG as raw materials.
Further, V2O5 nanosheets with an average lateral size over 500 nm and thickness less than 10 nm
can be prepared from the parent VOOH nanosheets by annealing at 350 ◦C for 15 min in air. The
prepared V2O5 nanosheets film was assembled of multiple nanosheets. The structural, morphological,
microstructural and optical properties of the films were respective investigated by XRD, SEM, TEM
and UV-Vis. The photodetector based on V2O5 nanosheets film shows good photoresponse with a
response time of 2.4 s and a recovery time of 4.7 s.

Keywords: V2O5; two dimensional (2D) nanosheets; hydrothermal reaction; film; photodetectors

1. Introduction

Vanadium oxides have attracted extensive attention for decades because of their
unique physical and chemical properties [1]. Among them, layered vanadium pentoxide
(V2O5) is thermodynamically the most stable oxide, which possesses the highest oxidation
valence state among all vanadium oxides [2]. The rich crystallinity and morphology have
made V2O5 a very interesting material for a broad range of applications, which include
field emission [3,4], supercapacitor [5,6], lithium battery [7], transistor [8], and photode-
tector [9–15]. It is worth mentioning that V2O5 is a promising n-type semiconductor for
photodetection due to its direct band gap of 2.2 to 2.7 eV [16,17]. Various V2O5 nanostruc-
tures, such as nanowire [4,18,19], nanosheet [20,21], nanorods [22–24], nanobelt [25], and
nanoparticles [26] were studied as a photodetector. In particular, 2D nanostructures are
ideal frameworks that provide a higher surface-to-volume ratio and a larger number of
active sites, ultimately enhancing photoconductivity, showing promise for applications
in optoelectronics [27–31], but, until very recently, there have been few reports on 2D
nanostructured V2O5 [32].

Till now, some approaches have been explored for the synthesis of 2D V2O5 nanosheets,
such as the hydrothermal method [33–35], additive-free ultrasonic method [36], exfoliation
method [37,38], and pyrolysis [39]. Typically, Li et al. [40] prepared a 2D leaf-like V2O5
nanosheet with a thickness of 60–80 nm by a facile sol-gel method combined with freeze-
drying technique followed with annealing in air. The morphology and size of the V2O5
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nanosheets were controlled by adjusting the type of the solvent during a hydrothermal
reaction, and the average thickness of the V2O5 nanosheet is about 74 nm [41]. Oxygen-
deficient V2O5 nanosheets with a thickness of 30~40 nm were prepared by the drop-
casting method using dimethyl sulfoxide solution containing vanadyl acetylacetonate, then
thermally annealed at a certain temperature [42]. Song et al. prepared mesoporous V2O5
nanosheets with a thickness ranging from 20 nm to 50–70 nm, and the mesoporous structure
produces a high specific surface area and possesses an abundance of oxygen vacancies [33].
However, the number of reports on preparing 2D V2O5, especially those with a thickness
below 10 nm that has exotic electronic properties, is still very small. Even though a few
reports claimed to have obtained 2D V2O5 with a thickness less than 10 nm [43–47], the
mechanical exfoliation methods and the addition of various organic solvents are inefficient
for massive production. Consequently, to prepare 2D V2O5 with the desired property, there
is still a space to develop a facile and scalable synthetic process that provides an excellent
control of the morphology, defects, and thickness of V2O5.

In this study, we report a general and facile hydrothermal combined with rapid an-
nealing method to successfully prepare 2D V2O5 nanosheets films. Firstly, 2D VOOH
nanosheets that have a lateral size exceeding 500 nm and a thickness less than 10 nm can be
simply prepared by hydrothermal treatment of V2O5 and ethylene glycol (EG). Secondly,
stable and homogeneous VOOH dispersion was made by ultrasonic processing in ethanol
without using any surfactant or modifiers, and then, the dispersion was spin-coated onto
quartz glass substrates to form a VOOH film. Finally, the 2D V2O5 nanosheets films were
obtained by rapid annealing of VOOH at 350 ◦C in air. By contrast, our preparation tech-
nique is low cost and easy to operate as compared to the conventional techniques and can
be scaled up to produce large amounts of V2O5 samples. Meanwhile, metal semiconductor–
metal (MSM)-based photodetectors are widely used in emerging communication systems
due to their unique structure [48–50]. Therefore, we fabricated the MSM photodetector
based on 2D V2O5 nanosheets film and studied its optoelectronic properties systematically.
The response time and a recovery time of the synthesized 2D V2O5 nanosheets photode-
tector are 2.4 s and 4.7 s, respectively, which are faster than other reports of ~60–70 s and
~10 s (Table S1). The particular photoelectronic properties of V2O5 nanosheets make them
candidate materials for photodetectors, which have bright application prospects.

2. Materials and Methods
2.1. Preparation of 2D V2O5 Film

V2O5 powders (Tianjin Zhiyuan Chemical Reagent Co., Ltd., Tianjin, China), deionized
water (18.2 MΩ.cm, MERCK MILLIPORE pure water system), anhydrous ethanol (AR,
Sinopagic reagent), ethylene glycol (EG, AR, ≥99.0%, national reagent) as raw materials,
all starting materials were of analytical pure grade and can be used directly without any
purification. First, 0.5 g V2O5 powders were added into fully mixed and stirred with 15 mL
glycol and 20 mL deionized water, and then added to the 45 mL Teflon-lined autoclave.
The temperature and time of hydrothermal reaction were 200 ◦C and 24 h, respectively.
After cooling in the reactor, the reacted powder was repeatedly centrifuged with ethanol to
obtain VOOH nanosheets powders. Finally, the VOOH nanosheets powders were directly
added into ethanol with an ultrasonic treatment for 30 min to obtain good dispersion, even
though there was no surfactant added.

The stable and homogeneous VOOH dispersion was then applied onto a 2 × 2 cm
quartz substrate using a spin-coating method at a rotational acceleration of 800 rpm/s2 and
a rotational speed of 1500 rpm/s. The thickness of the VOOH film can be controlled by
changing the spin-coating times, which can be transformed to 2D V2O5 nanosheets films
by a rapid annealing at 350 ◦C for 15 min.

2.2. Device Fabrication and Characterization

The V2O5 nanosheets film was fixed on the homogenizer, and AZ5214 photoresist
was applied to the sample film uniformly with a disposable pipette, with homogenization
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performed at a low speed of 600 rpm for 10 s and at a high speed of 7000 rpm for 60 s. The
obtained photoresist thickness was about 1 µm. Then, the sample was baked on the heating
table at 110 ◦C for 4 min. The electrodes were fabricated by standard photolithography
techniques via UV lithography (UV exposure for 10 s, optical power of 15 mW), followed
by Ti/Au thermal evaporation (15/50 nm) and a later lift-off process.

Morphology of the product was characterized by scanning electron microscope (Helios
nanolab 600i SEM with NPGS system). The phase and composition were identified using
an Empyrean S3 X-ray diffractometer (XRD, PANalytical X′Pert). The microstructure was
characterized by transmission electron microscope (TEM, JEOL JEM-2010), and the selected
area electron diffraction (SAED) was obtained by JEMARM 200F. X-ray photoelectron
spectroscopy (XPS) was used to analyze the composition and oxidation states of vanadium
oxide (Thermo ESCALAB 250Xi). A Raman system (FST2-Ahdx-DZ) equipped with a
532 nm laser source was used to record the Raman spectra. A UV–Vis spectrometer (UV-
3600 spectrophotometer Shimadzu ISR-260) was used to obtain the absorption spectra.
The V2O5 nanosheets film photodetector was observed with an optical microscope (OM)
(WMJ-9688). The photoelectric performances of the fabricated device were investigated
with a Keithley 4200A-SCS.

3. Results and Discussion

The schematic diagram in Figure 1a displays the preparation process of 2D V2O5
nanosheets films. Briefly, the VOOH nanosheet was first prepared by hydrothermal,
followed by ultrasonic processing in ethanol to convert it into VOOH dispersion, which
was then spin-coated on a quartz substrate to prepare VOOH nanosheets film, and finally,
the V2O5 nanosheets film was obtained by subsequent rapid annealing at 350 ◦C.
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Figure 1. (a) Schematic illustration of the synthesis route of V2O5 nanosheets film in this work.
(b) XRD patterns of VOOH and V2O5. (c) SEM image of the VOOH nanosheets film. (d) SEM image
of the V2O5 nanosheets film.

Both the VOOH and the V2O5 crystalline phase were confirmed by XRD character-
ization, as seen in Figure 1b, in which the diffraction peak of the hydrothermal product
can be indexed as VOOH (JCPDS card no. 74-1877), where the (020) crystalline plane
has a clear preferred orientation [51–53]. Simultaneously, a series of XRD peaks of the
post-annealed sample allowed us to identify the orthorhombic phase of V2O5 (JCPDS card
no. 41-1426). Three distinct diffraction peaks of (001), (101) and (400) clearly demonstrate
the polycrystalline and high purity features of 2D V2O5 film [33,54]. Figure 1c shows the
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SEM image of the VOOH film, from which one can see that the discrete nanosheets with
lateral size of over 500 nm assembled together to form a nanosheets film. After annealing,
the obtained V2O5 film preserved the nanosheet morphology and film configuration as well
as that of VOOH (Figure 1d). The magnified SEM image (Figure S1) gives further insight
that the thickness of the stacked nanosheets is less than 10 nm. In addition, the surface
of the post-annealed nanosheets showed slight cracks due to volume changes during the
oxidation process. Ultimately, the VOOH nanosheets are oxidized to V2O5 nanosheets after
annealing corresponds to the following equation:

2VOOH + O2
350 ◦C−−−→ V2O5 + H2O (1)

From a crystallographic perspective, as shown in Figure 2a–c, the orthorhombic
crystalline V2O5 has a laminar framework structure (space group: Pmmn, a = 1.1516 nm,
b = 0.3566 nm, c = 0.4372 nm), with each V2O5 layer consisting of a VO5 square pyramid
that shares sides and corners, and the different layers of the VO5 pyramids are connected by
weak van der Waals forces. In the same layer of the VO5 pyramid, oxygen and vanadium
atoms are covalently bonded to form a complete crystal structure. To further reveal
the microstructure of as-prepared 2D V2O5 nanosheets, they were characterized using
high-resolution transmission electron microscopy (HRTEM). Prior to HR-TEM analysis,
V2O5 film was exfoliated from the substrate as a stand-alone nanosheet and subsequently
dispersed in ethanol, followed by ultrasonic treatment of the solution and dropping it on a
TEM grid. After performing the drying process, the grid was then taken for TEM analysis.
As the HRTEM shows in Figure 2d, the lattice striations can be clearly observed, which
suggests that the V2O5 nanosheets have good crystallinity. In addition, the lattice spacings
of 0.289 nm and 0.349 nm are consistent with the interplanar distances of (301) and (201)
planes that belong to the orthorhombic V2O5, respectively. At the same time, according
to the SAED pattern shown in Figure 2e, the V2O5 polycrystalline phase was confirmed.
Figure 2f exhibited the energy dispersive X-ray (EDX) spectrum, which suggested that
the as-prepared V2O5 nanosheets included 37.27% and 62.73% of V and O, respectively.
Figure 2g–i show the TEM image and EDX elemental mapping of the selected V2O5
nanosheet, and the results show that the prepared samples have uniform spatial distribution
of V and O.

The elemental composition and chemical states of the prepared samples were iden-
tified using X-ray photoelectron spectroscopy (XPS). Figure 3a presents the survey scan
XPS spectrum of the as-prepared sample, which clearly shows the introduction of O and
V elements (charge corrected to C 1s = 284.8 eV). Asymmetric peaks were seen in the
low-binding energy portions of the V2p3/2 peak and V2p1/2 peak, indicating the exis-
tence of multiple oxidation states of V2O5. As shown in Figure 3b, the spectra of the
V2p3/2 oxidation state can be separated to V4+ (516.06 eV) and V5+ (517.45 eV) through
the Lorentzian–Gaussian fitting. Meanwhile, the spectra of the V 2p1/2 oxidation state
were separated to V4+ (523.69 eV) and V5+ (525.07 eV) [55]. The V5+ state at the high-
binding energy corresponds to V2O5, while the V4+ state responds to VO2, which indicates
the gap state [56]. Figure 3c presents the O1s core level XPS spectrum, and the peaks at
532.17 eV and 530.28 eV belong to adsorbed oxygen and lattice oxygen, respectively [57].
Our XPS spectrum matches well with those of the V2O5 nanosheets reported in the lit-
erature [33,56,57]. Meanwhile, the Raman technique is a powerful method to identify
the chemical composition of the material. Figure 3d presents the Raman spectrum of
V2O5 nanosheets in the wave number range of 100–1100 cm−1, which displays the eight
positional signals corresponding to the phonon patterns reported previously: 145 cm−1

(B1g/B3g), 197 cm−1 (Ag/B2g), 284 cm−1 (B1g/B3g), 304 cm−1 (Ag), 405 cm−1 (Ag), 481 cm−1

(Ag), 700 cm−1 (B1g/B3g), and 993 cm−1 (Ag) [17,18,58]. The Raman spectrum matches well
with the V2O5 reported in the literature [18]. The orthorhombic crystalline structure of
V2O5 nanosheets is thus further confirmed by the Raman spectrum. It is worth mentioning
that two main Raman peaks at low-frequency locations of 145 and 197 cm−1 correspond to
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[VO5]–[VO5] vibrations, which originated from the lattice-bending vibration, indicating
the long-range order layered structure of V2O5 nanosheets. Furthermore, the peaks at 405
and 284 cm−1 are bending vibration of the V=O (terminal oxygen) bonds, and the peaks at
304 and 481 cm−1 are bending vibrations of V3-O (triply coordinated oxygen) bonds and
V-O-V (bridging doubly coordinated oxygen), respectively. Moreover, the peak in 700 cm−1

belongs to the asymmetric stretching of V2-O (doubly coordinated oxygen) bonds, and the
intensity feature at 993 cm−1 belongs to the stretching vibrations of V=O (terminal oxygen)
vanadyl bonds in V2O5, which is distinguished from other vanadium oxide in the Raman
spectrum [32,59,60].
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For further research on the optical features of the V2O5 nanosheets film as photodetec-
tor, the absorbance spectrum is recorded as presented in Figure 4a. The spectra show the
major absorption bands of V2O5 nanosheets film at around ~350–450 nm, which indicates
that the synthesized V2O5 nanosheets film can be utilized as a photodetector covering the
range of visible light. As presented in Figure 4b, the optical band gap of the synthesized
V2O5 was calculated to reach 2.73 eV by using the Tauc plot. The absorbance spectrum of
V2O5 nanosheets in Figure 4 closely matches with that reported in the literature [20,61].
At the same time, our optical band gap of the synthesized V2O5 is close to that of V2O5
nanosheets reported in the literature, which is 2.4 eV [21].
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Figure 5a illustrates the device fabrication workflow. The electrode patterns were
formed on V2O5 nanosheets film by ultraviolet lithography (UV exposure for 10 s, optical
power of 15 mW) firstly, and then, Ti/Au (15/50 nm) were deposited on the film by thermal
evaporation and later lift-off procedures. The distance between the Ti/Au electrodes is
about 15 µm. The OM images before and after deposition of electrodes are shown in the
insets of Figure 5a.
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Figure 5. (a) Schematic diagram of electrode deposition on V2O5 film. Inset: The optical image.
(b) Schematic of the V2O5 nanosheets film-based photodetector. (c) I−V curves of the device in the
dark and under illumination with different intensities. (d) Light intensity−dependent photoresponse
at Vbias = 1 V. (e) Photocurrent as a function of laser power intensity. (f) Time−resolved photoresponse
of the device recorded for a power density of 503.2 mW cm−2. (g) Response rate of photodetector
acquired from one magnified circle of response with rising time 2.4 s and decay time 4.7 s.

The photodetecting performances of the V2O5 nanosheets film were investigated.
Figure 5b illustrates the schematic diagram of a V2O5 nanosheets film photoelectric device.
We investigated the photodetecting performances under the visible light laser irradiation
at a wavelength of λ = 405 nm. Figure 5c presents the comparisons of the I-V relationship
under dark conditions and in laser irradiation of a varying power intensities from 31.8 to
503.2 mW cm−2. The results show that the obtained I-V curves observed show nonlinearity,
which thus indicates the generation of a Schottky barrier between the V2O5 nanosheets film
and the Ti/Au electrode, while the photocurrent increases sharply under illumination, es-
pecially under high voltage bias. The phenomenon that the slope for the I-V curve increases
with rising power density demonstrates that the V2O5 nanosheets film photodetector is
photosensitive. Then, the I-T curves were measured under different power density laser
irradiation at a bias voltage of 1V. As illustrated in Figure 5d, with the rise of the power
density (31.8 to 503.2 mW cm−2), the photocurrent increases gradually. Figure 5e shows
the logarithmic relationship between light intensity and photocurrent at a wavelength of
405 nm, wherein the experimental data of the photocurrent (black discrete solid square
dots) and fitted curves (red solid line) were taken as a function of light density (P). The
curve can be fitted by a formula of Iph~Pθ , where Iph, P and θ represent the photocur-
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rent (Iph = Ilight − Idark), the incident light power density, and the index of the power law,
respectively. The quantitative analysis of the experimental data clearly shows that the equa-
tion was fitted to be Iph~P0.955. As shown in the fitted curve, the photocurrent gradually
increases sub-linearly with increasing light density at a voltage of 5 V. In accordance with
the results and reports of previous studies, the deviation of the slope from the ideal value
of θ = 1 is caused by complex factors and processes, such as defects in spin-coated prepared
nanosheets film and loss of photoexcitation carriers [11,62,63]. Therefore, we believe that
θ = 0.955 is mainly caused by defects in V2O5 nanosheets film.

The time-dependence photoresponse behavior is examined by turning on/off the
incident light at 20 s intervals at an optical power density of 503.2 mW cm−2 (Vbias = 5 V).
It was performed for several cycles, and the result is presented in Figure 5f; the current in
the device exhibits fine repeatability and steady response in the case of periodic on and off
laser irradiation, corresponding to the periodic variation of laser light. Meanwhile, it can be
observed that the dark current increases slightly with the increase of the illumination time
at room temperature. The primary factor can be ascribed to the local thermal effect on the
device caused by laser illumination, resulting in an increasing dark current with time [11].
Figure 5g depicts a zoomed-in view of a circle in Figure 5f; the rise time and decay time are
2.4 and 4.7 s, respectively.

For further evaluation of the performance of V2O5 nanosheets film applied as pho-
todetector, as the function of optical power density, the R (responsivity), D* (detection
rate) and EQE are calculated. The R, D*, and EQE can be denoted as Rλ = Iph/PS,
D* = RλS1/2/(2eIdark)1/2, and EQE = Rλhc/eλ, respectively, where S and P denote the pho-
todetectors’ effective area and optical power density, h, c, and e denote Planck’s con-
stant, velocity of light, and electron charge, respectively [62,64]. At a power density of
503.2 mW cm−2 at a bias voltage of 5 V, the calculated responsivity and detectivity of the
V2O5 nanosheets film photodetector were 2.86 mA W−1 and 2.058 × 106 Jones, severally.
Additionally, the EQE of the V2O5 nanosheets film photodetector is calculated to be 0.8773%.
Table S1 has summarized the key parameters of nanostructured V2O5 photodetectors. The
V2O5 nanosheets photodetector in this work has short response time that was found to
outperform the same type of V2O5 nanosheets photodetector [10,18,20,21,24,65].

4. Conclusions

In conclusion, we report a facile and economical strategy to successfully prepare 2D
V2O5 nanosheets film by using VOOH nanosheets produced by hydrothermal combined
with spin-coating and subsequent annealing treatment. The prepared V2O5 nanosheets
film was assembled from a plurality of nanosheets with lateral dimensions greater than
500 nm and thickness of about 10 nm. The prepared V2O5 nanosheets were characterized
using SEM, XRD, TEM, XPS, Raman, and UV-Vis spectroscopy. The photodetector based
on 2D V2O5 nanosheets film shows good optoelectronic performance with a response time
of 2.4 s and a recovery time of 4.7 s. Our results show that V2O5 nanosheets film is simple
to prepare, low cost, and can be prepared in large areas at scale, making it a highly suitable
candidate material for developing photodetectors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma15238313/s1, Figure S1: High-magnification SEM image of V2O5
nanosheets; Table S1: Comparison of key parameters of V2O5 nanostructured photodetectors.
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