
Citation: Kaszubska, M.; Kotynia, R.

Selected Shear Models Based on the

Analysis of the Critical Shear Crack

for Slender Concrete Beams without

Shear Reinforcement. Materials 2022,

15, 8259. https://doi.org/10.3390/

ma15228259

Academic Editor: F. Pacheco Torgal

Received: 16 September 2022

Accepted: 10 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Selected Shear Models Based on the Analysis of the Critical
Shear Crack for Slender Concrete Beams without
Shear Reinforcement
Monika Kaszubska 1,* and Renata Kotynia 2

1 Department of Building Materials Physics and Sustainable Design, Faculty of Civil Engineering,
Architecture and Environmental Engineering, Lodz University of Technology, Al. Politechniki 6,
93-590 Łódź, Poland
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Abstract: This paper is devoted to the shear of slender concrete beams flexurally reinforced with two
types of reinforcement: steel and fiber-reinforced polymer (FRP) without transversal reinforcement.
The paper presents four theoretical models for calculating the shear capacity of the collected test
database and the authors’ own research program, which contained 29 single-span, simply supported
T-section beams reinforced with steel and glass fiber-reinforcement polymer (GFRP) bars. The
paper presents a comprehensive analysis of the test results and modeling of design shear capacity
in accordance with the selected theoretical models. The generalized assessment of computational
analysis confirmed compatibility of the predicted and experimental results.
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1. Introduction

New trends in fiber-reinforced polymer (FRP) reinforcement development broaden
the scope of research on shear in the FRP-reinforced members. Compared to conventional
steel reinforcement, FRPs differ essentially in the fully linear-elastic behavior, significantly
higher tensile strength and lower modulus of elasticity (depending on the type of fibers).

The use of FRP reinforcement in real construction caused the need for the modification
and development of design provisions for shear strength in FRP-reinforced members [1–5].
The design procedures for concrete structures reinforced with FRP bars usually are based
on the guidelines for steel-reinforced concrete (RC) structures. The longitudinal FRP
reinforcement is taken into account by introducing a stiffness reduction in the composite
reinforcement in comparison with conventional steel reinforcement [1]. The basis of this
modification is the assumption that the bond of FRP reinforcement to concrete is the same as
that of steel. The analysis of selected design procedures for FRP members [6] shows a great
variety of accuracy. In extreme cases, the calculated shear strength is almost 60% greater or
three times lower than the shear strength from experimental research. The differences in
test and calculated results mean there is still no general agreement on a rational theory for
calculating the shear capacity members without transverse reinforcement. Following this
revision, researchers look for new solutions or modification of existing ones.

The mechanism of shear failure in the support zone of RC elements is determined by
many factors: sliding and rotation of both parts of the element crossed by the diagonal
shear crack accompanied by the aggregate interlock action in concrete, dowel action of the
longitudinal reinforcement, transfer of the shear force by the uncracked concrete in the
compression zone and direct strut action for point load close to the support. The percentage
of each component in the shear capacity of steel RC beams without shear reinforcement
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is determined as: 33–50% (effect of aggregate interlock), 20–40% (compressive concrete
zone), and 15–25% (dowel action effect) [7,8]. However, some researchers suggest that in
the elements without transverse reinforcement, the last-mentioned influence is insignificant
due to the limitation of vertical displacements only through the concrete cover [9,10].
The current knowledge in the shear theories aims to take into account the complexity
of the shear failure mechanism in the support zone and to include the influence above
mentioned factors.

The shear failure modes collected from the literature and based on the own research
are quite similar [6]. The flexural cracks with almost vertical arrangement occur during the
initial stage of loading, then they propagate towards the support and incline in the direction
of the loading point. The critical shear crack is most often created as a combination of
minimum two cracks which are connected. The analysis of the development of critical
shear crack and its influence on shear capacity is the main criterion to choose the four shear
models available in the literature: Muttoni and Ruiz 2008 [11], Zhang et al. [12], Yang [13],
and Cladera et al. [14]. These selected models take into account the mechanism governed
shear capacity in the beams without stirrups, but different mechanisms are considered as
decisive. In two models [13,14], the individual influence of parameters can be extracted.

The main aim of the analysis is to assess the accuracy of models and to identify the
reason for differences between calculated and experimental shear strength results. It could
be interesting also to indicate which shear mechanism in the calculation model gives results
closer those from experimental tests.

2. Overview of Selected Theoretical Models
2.1. Muttoni and Ruiz 2008 [11]

The Critical Shear Crack Theory (CSCT) proposed by Muttoni and Ruiz [11] assumes
that the shear capacity of reinforced concrete beams without stirrups depends on the crack
width and roughness of the critical crack edges. The impact of the shape and location of
the critical crack on each mechanism of transferring the shear force is determined.

The components of the shear mechanism in Muttoni and Ruiz’s model [11] are the
transfer of shear force through a piece of concrete separated by two cracks, the aggregate
interlock effect, and the dowel action in the longitudinal reinforcement. The dowel action
occurs mainly in beams, where the critical crack develops close to the support and in
the RC beams with transverse reinforcement. In other cases, the effect of dowel action
is negligible [11]. The residual tensile concrete stress is contributed to the shear force
transfer in the section of the critical shear crack where the width is very small. Apart from
the above-mentioned “beam mechanisms” in the CSCT model, there is the shear force
transmission onto the support, with the inclined concrete chord. The arch effect is dominant
in short beams, where the ratio of the distance between the load application point and the
support to the effective depth is a/d < 2.5 [15]. Based on the above mentioned mechanism,
Muttoni and Ruiz used the results of slender steel RC beams and proposed the empirical
model presented in the following analysis (Equations (1)–(3)).

Vcal =
bwd

√
fc

3
1

1 + 120 εd
16+dg

(1)

x = dρl
E
Ec

(√
1 +

2Ec

ρlE
− 1

)
(2)

ε =
M

dbwρlE
(
d− x

3
) 0.6d− x

d− x
(3)

where: bw is the beam’s width, d is the effective depth, fc is the compressive concrete
strength, ε is the concrete strain, dg is the maximum aggregate size, x is the neutral axis
depth, ρl = Al/(bwd) is the longitudinal reinforcement ratio, E is the modulus of elasticity
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of longitudinal reinforcement, Ec is the elasticity modulus of concrete, M is the bending
moment in the critical section; the critical section is located d/2 from the load point.

2.2. Zhang et al., 2014 [12]

The advantage of the second model by Zhang et al. [12] is its possibility of use for
elements without transversal reinforcement, with steel and FRP longitudinal reinforcement
as reported by the authors. The main assumption is the initiation of shear with a diagonal
crack, which for simplicity was assumed to form linearly. Failure occurs when the slope of
this crack reaches the limit angle βCDC, at which both edges of the diagonal crack start to slip.
βCDC is angle determined, based on the internal forces V and M acting in the cross-section:

βCDC = −15
M
Vd

+ 89.7◦ if
M
Vd
≤ 3.14 (4)

βCDC = 42.6◦ if
M
Vd

> 3.14 (5)

The capacity provided by the slip of the compression zone can be determined based on
shear stress, which is dependent on the compressive force in concrete and presliding shear
friction failure properties A and B, depending on the type of concrete. The parameters A
and B are adopted according to [16]:

A = 0.347 fc
0.665 (6)

B =
0.400 fc − 0.37− A

0.25 fc
(7)

Finally, the shear capacity is calculated according to formula:

Vcal = Vcap =
bxA

1− [(B sin βCDC − cos βCDC) sin βCDC] ·
(

M/V−d/ tan βCDC
z

) (8)

The neutral axis depth is determined as:

x =
E
Ec

ρld

(√
1 +

2
E
Ec

ρl
− 1

)
(9)

The modulus of elasticity of concrete is adopted according to [17]:

Ec = 3320 fc
0.5 + 6900 (10)

Based on linear distribution of normal stresses in the compression zone, the arm of
internal forces is calculated according to the following formula:

z = d− x
3

(11)

2.3. Yang 2014 [13]

Yang’s model [13] is also based on the analysis of the diagonal crack development.
The main crack after reaching a height zcr (Equation (12)) stabilizes over the height zcr and
a further load increase causes only an increase in its width and crack development in the
horizontal direction.

zcr =

1 + ρl
E
Ec
−

√
2ρl

E
Ec

+ (ρl
E
Ec

)
2
d (12)
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An additional vertical displacement is needed to activate an aggregate interlock
mechanism to transfer the shear forces, which arises from the development of a secondary
horizontal branch of the crack at the reinforcement level. Based on the experimental results
of concrete members without transversal reinforcement [13], the critical value of the vertical
displacement of the diagonal ∆cr is calculated according to:

∆cr =
25d

30610φ
+ 0.0022 ≤ 0.025mm (13)

where φ is the diameter of longitudinal reinforcement.
Based on research [18], the distance between the main cracks is determined as:

lcr =
zcr

1.28
(14)

The aggregate interlock mechanism Vai in the transverse force transfer is determined
based on Walraven’s model [19]:

Vai = fc
0.56zcrbw

0.03
w− 0.01

(−978∆cr
2 + 85∆cr − 0.27) (15)

The crack width is determined on the level of longitudinal reinforcement as:

w =
M(

2
3 d + 1

3 zcr

)
AlE

lcr (16)

where Al is the cross section of longitudinal reinforcement.
The dowel action force is determined according to model [20]:

Vd = 1.64(bw − nφ)φ 3
√

fc (17)

where n is the number of longitudinal reinforcement bars.
The contribution of the uncracked concrete zone in the shear capacity is determined

by the assumption of Mörsch’s theory [21]. As the parabolic distribution of the shear stress
with the maximum value at the level of the neutral axis is assumed, the transverse force
transferred through the compressive concrete zone is determined as follows:

Vc =
2
3

d− zcr(
2
3 d + 1

3 zcr

)V (18)

where V is the shear force in the critical section.
According to the [13] model, the shear capacity is a sum of the shear forces transferred

by the uncracked compressive chord, across the web cracks and the dowel action in the
longitudinal reinforcement:

Vcal = Vc + Vai + Vd (19)

Evaluation of the maximum shear force needs iteration, since the load applied on the
beam is unknown in advance. In this paper, V in Equation (18) is equal to Vmax.

2.4. Cladera et al., 2016 [14]

The first model version by Cladera et al. [14] for rectangular beams was presented
in [10]. The shear strength is calculated as a sum of the shear force transferred by the
uncracked compression chord (Vc), shear transferred across web cracks (Vw) and dowel
action in the longitudinal reinforcement (Vd).

The model can be used regardless of the load type (distributed, point load) [22]. The
model is also developed for the slender reinforced concrete T- and I-shaped beams [23].
What is used in the presented analysis is the last version of the model [14], Equations (20)–(28).
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In [14], the authors also propose a simplified version of model. In this version, due to a small
impact of residual tensile stress and dowel effect, these components are incorporated into vc.
However, to show the contribution of different mechanisms in shear strength, this analysis
uses Equation (20) with the sum of the shear resisted in the uncracked compression chord
(vc) and shear transferred across web cracks (vw):

Vcal = (vc + vw) fctmbv,e f f d (20)

νc = ζ
(

0.88
x
d
+ 0.02

) bv,e f f

b
(21)

νw = 167
fctm

Ec
· bw

b

(
1 +

2G f Ec

f 2
ctmd

)
(22)

G f = 0.028 f 0.18
c d0.32

g (23)

fctm = 0.30 fc
2/3 (24)

x =

(
E
Ec

ρl

(
−1 +

√
1 +

2
E
Ec

ρl

))
d (25)

x > h f → bv,e f f ≈ bw + (bv − bw)

(h f

x

)3/2

(26)

x ≤ h f → bv,e f f = bv = bw + 2h f < b (27)

This model considers a size effect by factor ζ:

ζ =
2√

1 + d
200

(
d
a

)0.2
> 0.45 (28)

where hf is the flange height in T-section beam, a is the distance from the support to the
load point.

3. Test Database

In the analysis of the above-described models, a database collected from literature
and the authors’ own experimental program is used. The beams with a/d > 2.8 reinforced
with AFRP (aramid fibre reinforced polymer), GFRP (glass FRP), CFRP (carbon FRP), and
steel failed in shear were chosen for the analysis (Figure 1, Table 1). The steel-reinforced
elements were limited and included in the database only if they were analyzed in research
related to the FRP-reinforced members.

All necessary parameters used in the analyzed models are not available in some
experimental programs from the literature, so the number of elements for calculation of
the shear capacity according to the respective models are different (the number of used
members is determined in Tables 1 and 2). A very limited number of elements is used in
Muttoni and Ruiz’s [11] and Cladera et al.’s [14] models, due to the lack of information
about the maximum aggregate size (dg). In Yang’s model [13], the lack of the reinforcement
diameter in some research causes problems with the analysis.

The authors’ own research program consists of 29 single-span, simply supported
beams without transverse reinforcement. The three-point loaded beams with the load
located at a distance a = 1100 mm from the support has the shear span to depth ratio a/d in
the range of 2.9–3.0, referring to slender beams. Opposite to members collected from the
literature, the cross section of beams is T-shaped (b = 400 mm, bw = 150 mm, hf = 60 mm,
htot = 400 mm). The choice of T-section beams to our own tests is connected with two
aspects: influence of cross section on shear capacity [23] and plan to continue the shear test
for elements with shear reinforcement, which has been partially realized in [24,25]. The
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essential details of the specimens are presented in Table 1. More details of the experimental
tests and analysis of the own test results were published in [26–28].
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Figure 1. Characteristics of test database.

Table 1. Statistic assessment of models for all members (Table 1).

Muttoni and Ruiz [11] Zhang et al. [12] Yang [13] Cladera et al. [14]

Number of
specimens 79 158 134 79

ηmin 0.62 0.48 0.40 0.63
ηmax 2.47 2.50 2.19 1.57
ηm 1.16 1.01 1.31 1.09

median 1.11 1.01 1.32 1.09
ση 0.35 0.27 0.31 0.18

COV 0.30 0.27 0.24 0.17
η = Vmax/Vcal; ηmin—minimum η value; ηmax—maximum value η; ηm—medium η value; ση—standard deviation
of η; COV—coefficient of variation of η (COV = ση /ηm).
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Table 2. Statistic assessment of design models with divisions.

Muttoni and Ruiz [11] Zhang et al. [12] Yang [13] Cladera et al. [14]

CFRP-reinforced rectangular beams
Number of
specimens 26 56 47 26

ηmin 0.78 0.54 0.40 0.71
ηmax 1.85 1.57 2.04 1.42
ηm 1.20 1.04 1.38 1.06
ση 0.26 0.20 0.32 0.17

COV 0.22 0.20 0.23 0.16

GFRP-reinforced rectangular beams
Number of
specimens 22 60 51 22

ηmin 0.65 0.71 0.86 0.63
ηmax 2.47 2.50 2.19 1.57
ηm 1.37 1.16 1.39 1.05
ση 0.43 0.28 0.27 0.21

COV 0.31 0.24 0.19 0.20

GFRP-reinforced T-beams
Number of
specimens 16 16 16 16

ηmin 0.85 0.60 1.04 0.99
ηmax 1.48 0.93 1.69 1.45
ηm 1.12 0.78 1.30 1.15
ση 0.18 0.10 0.18 0.11

COV 0.16 0.13 0.14 0.10

GFRP-reinforced beams (T-section and rectangular)
Number of
specimens 38 76 67 38

ηmin 0.65 0.60 0.86 0.63
ηmax 2.47 2.50 2.19 1.57
ηm 1.26 1.08 1.37 1.10
ση 0.37 0.29 0.25 0.19

COV 0.29 0.27 0.18 0.17

steel-reinforced rectangular beams
Number of
specimens 2 11 7 2

ηmin - 0.68 0.95 -
ηmax - 1.16 1.46 -
ηm - 0.93 1.20 -
ση - 0.15 0.22 -

COV - 0.16 0.19 -

steel-reinforced T-beams
Number of
specimens 13 13 13 13

ηmin 0.67 0.48 0.70 0.96
ηmax 1.08 0.73 1.11 1.48
ηm 0.82 0.61 0.84 1.19
ση 0.12 0.07 0.13 0.16

COV 0.15 0.12 0.15 0.14

steel-reinforced beams (T-section and rectangular)
Number of
specimens 15 24 20 15

ηmin 0.62 0.48 0.70 0.74
ηmax 1.08 1.16 1.46 1.48
ηm 0.81 0.75 0.97 1.14
ση 0.13 0.20 0.24 0.19

COV 0.16 0.26 0.24 0.17
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For the evaluation of the accuracy of the test and predicted results by models, the
following coefficient was used: η = Vmax/Vcal, where Vmax is the maximum experimental
shear force and Vcal is the shear force calculated according to the above presented models.
The results corresponding to values of η < 1 are overestimation of the shear strength values
compared to the test results. Results corresponding to η > 1 indicate lower values of the
shear load capacity, which confirms the conservative approach of the verified model. A
dead load was not taken into account in the calculated analysis. The mean test values of
the reinforcement and concrete were used in the analysis (Table 1). In the model in [11],
the value of bending moment M is assumed for a section located d/2 from the load point.
However, in the models in [12,13], the critical section is assumed in the position of point
load, according to the publications. The concrete elasticity modulus Ec is assumed according
to [29], except in Zhang et al.’s model, where the authors suggest [17].

4. Results and Analysis

In the generalized assessment of accuracy of calculation models without division
into a type of longitudinal reinforcement, Yang’s model [13] with ηm = 1.31 is the most
conservative one (Table 1). However, the Yang model also indicates the minimum value
of η (ηmin = 0.40). The most expected value of ηm close to 1 is obtained for the Zhang et al.
model [12], but with 49% overestimated results (Figure 2). According to this model [12],
the largest number of elements are analyzed (158 members). The lowest dispersion of
calculated results is for Cladera et al.’s model [14] (COV = 17%, 79 elements) with value of
ηm = 1.09. The ηm coefficient by Muttoni and Ruiz [11] is similar to [14], but COV increased
to 30% for the same number of elements.

For the FRP reinforcement, models by Cladera et al. [14], Muttoni and Ruiz [11], and
Zhang et al. [12] are slightly more conservative for GFRP-reinforced members (ηm = 1.08–1.26)
than for the beams with CFRP reinforcement (ηm = 1.04–1.20). The ηm coefficient by Yang [13]
is almost the same for CFRP and GFRP bars, respectively ηm = 1.37 and ηm = 1.38, but
results for GFRP-reinforced elements are close to the mean value (COV decreased from 0.23
to 0.19, Table 2).

The AFRP reinforced beams shown in Figure 2 are not included in the statistic assess-
ment shown in Table 2, because only two members are available. The same situation is for
steel RC rectangular beams for models [11,14].

The shear capacity of steel-reinforced rectangular beams is predicted quite well with
smaller dispersion of results than for FRP-reinforced members, but the number of steel RC
beams is very limited in this analysis. However, the shear capacity of T-beams from the
author’s own experimental research is overestimated in almost all cases, the exception is
model [14] (Figure 2).

The biggest overestimation of the Vcal of T-beams is by Zhang et al.’s model [12].
The one possible reason for this is the assumption that the top of the critical shear crack
is in the point of load. In T-beams, the critical crack after reaching the shelf developed
horizontally in the direction of point of load. Thus, in most beams, the top of the inclined
part of the crack was located in some distance from the applied force [28]. Zhang et al.
considered taking into account the change in the position of the crack, but ultimately found
this influence insignificant [30]. The detailed analysis of the location shear crack in T-beams
in [6] shows a slightly decrease in overestimation of Vcal calculated according to [12,30]
with consideration of the top of critical crack shifts (ηm increases from 0.61 to 0.66). The
angle of inclination of the critical crack calculated for the own test beams according to
the formula (4 and 5) is similar in all members and ranges from 43◦ to 46◦. These values
differ from the angle of inclination critical crack determined on the basis of the research [6].
The reason for overestimation of shear capacity calculated based on model Zhang et al.
could lie also in the empirical parameters A and B, which can be calibrated on a higher
number of concrete classes and can take into account the effect of aggregate and the bond
of reinforcement to various types of concrete.
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Figure 2. The comparison of experimental and calculated shear capacity according to the pre-
sented models (percentage points indicate overestimated results Vcal > Vmax): (a) Muttoni and
Ruiz [11], (b) Zhang et al. [12], (c) Yang [13], (d) Cladera et al. [14].

The comparison of the contribution of Vc, Vai and Vd calculated according to Yang’s
model [13] for steel reinforced T-section and rectangular beams indicates that the overesti-
mation Vcal in T-beams can be connected with overestimation the influence of the aggregate
interlock effect. In rectangular beams, the contribution of Vai is from 45% to 58%, while in
T-section beams, it is from 61% to 73% (Figure 3).
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Muttoni and Ruiz’s model [11] is more conservative for GFRP-reinforced T-beams
confirmed by ηm = 1.12, while for steel RC beams, it is ηm = 0.82 (Table 2). In this model,
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one of the parameters determining the shear capacity is the concrete strain ε (Equation (3)),
which depends, among others, on the modulus of elasticity of longitudinal reinforcement.
The GFRP bars used in T-beams have four times lower elasticity modulus than steel
reinforcement, hence the strains calculated in the GFRP-reinforced beams indicated much
higher values than in the steel-reinforced members, which caused the lower design shear
capacity of these beams. The confirmation of above is that also for rectangular beams
with FRP reinforcement, the Vcal according to [11] is in most cases lower than Vmax, with
ηm = 1.20 for CFRP reinforcement and ηm = 1.37 for GFRP bars. The attempt to calibrate
the Muttoni and Ruiz’s model for FRP bars made in [6] does not finally allow to obtain the
formula, which would describe the shear capacity of the tested elements with a satisfactory
accuracy. The problem is the limited number of members, which make it possible to
calibrate the model only in a certain range of variable parameters.

Theoretical models show the independence from the reinforcement ratio and concrete
compressive strength. One clear tendency is not observed in Figures 4 and 5, so the shear
capacity is calculated with similar accuracy. However, it is worth mentioning that most
beams have the normal concrete strength, while the number of beams with the high concrete
strength is limited.

Cladera et al.’s [14] and Yang’s [13] models define the contribution of individual com-
ponents of the shear mechanism. This influence of individual shear force mechanisms is
analyzed for T-section beams from the authors’ own research program and for 45 beams
from the database, for which it is possible to calculate shear capacity according to both
models [13] and [14]. In Cladera et al.’s [14] model, it is assumed that the shear resistance
is provided by the non-cracked concrete zone (Vc,C), Equations (20) and (21), and by the
aggregate interlock and residual tensile strength, which are taken together as a component
of Vw,C, Equations (20) and (22). Yang’s model considers three components in the shear ca-
pacity: Vc,Y—force transmitted by concrete, Vai,Y—force transmitted by aggregate interlock,
and Vw,Y—force transmitted by dowel action of longitudinal reinforcement.
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The main difference between the models in [13] and [14] is the dowel action force, which
is included only in Yang’s model [13] and lacks in Cladera et al.’s model [14]. Cladera et al.’s
model takes this effect into account, but only in members with stirrups.

The contribution of the non-cracked concrete zone Vc in calculated shear capacity
for Cladera et al. model [14] is from 64% to 87% in rectangular beams and from 56% to
72% in T-section beams, whereas in Yang’s model, this contribution is from 6% to 33% in
rectangular beams and from 13% to 27% in T-section beams (Figures 6–11). The cause of
the differences in the contribution of the non-cracked concrete zone Vc component in the
shear capacity calculated according to the models in [14] and [13] is the difference in basic
assumption for Vc. Cladera et al.’s model considers a biaxial stress state that occurs in the
non-cracked concrete zone, and failure occurs when the principal stresses calculated based
on the Mohr’s model reaches the limit value according to Kupfer’s law [31]. The shear
stresses, calculated from the above relationships at the height of the compression zone,
determine the contribution of concrete Vc,C. On the other hand, the model in [13] considers
the compressive force contribution based only on the tangential stresses in the cross-section.

The contribution of the aggregate interlock action in calculated shear capacity in the
model in [13] is from 9% to 58% in rectangular beams and from 48% to 73% in T-section
beams. In the model in [14], the contribution of cracked concrete zone is of secondary
importance, it is from 13% to 36% in rectangular beams and from 7% to 17% in T-section
beams. This is one of the reasons that the model in [13] underestimates the shear capacity
of elements reinforced with GFRP bars, because due to the lower modulus of elasticity,
the crack width calculated according to this model limits the possibility of the shear force
transfer through the aggregate interlock in the shear crack.
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reinforcement ratio ρl ~ 1.4% for Cladera et al.’s and Yang’s models.

According to Yang’s model, the contribution of the dowel effect is at the same level as the
non-cracked concrete zone or even higher (Figure 6). In Cladera et al.’s model, the excluding of
the dowel effect and assumption of the non-cracked concrete zone as the main shear transfer
mechanism gives better accuracy. However, in Yang’s model, the way of calculation of aggregate
interlock based on Walraven’s method seems very interesting. In both models, the individual
contributions are independent, so a possible direction to improve Yang’s model accuracy would
be to disregard the dowel action contribution and consider the contribution of the non-cracked
concrete zone according to Cladera et al.’s model. The results of these changes are visible in
Figures 12 and 13. This uncomplicated modification decreases conservatism of Yang’s model.
However, especially in steel members, the calculated shear capacity is overestimated in reference
to experimental results. This possible direction of modification must be verified in a higher
number of elements.
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5. Conclusions

Based on the experimental and analytical results, the following conclusions can
be drawn:

(1) Zhang et al.’s model [12] was dedicated to the beams without stirrups with variable
types of longitudinal reinforcement. The shear capacity according to this model was
calculated for the higher number of members than in the case of the remained models.
However, it is shown an overestimation of this model in comparison with the experimental
results in 49% analyzed beams. The detailed analysis crack propagation for T-section
elements from our own research showed inconsistency for angle and location of critical
crack in model and in tests. Unfortunately, there are too few data available in the literature
from the database to calibrate these parameters.

(2) Yang’s model [13] was originally established for steel-reinforced beams, so for
the FRP-reinforced beams, the shear capacity was underestimated in comparison with
the experimental values for a significant number of analyzed members. Interesting in
this model is the possibility of calculation of the contribution of individual mechanism
governed shear capacity (force transmitted by concrete, by aggregate interlock and by
dowel action of longitudinal reinforcement).

(3) Cladera et al.’s model [14] also makes it possible to calculate the shear resistance
provided by the non-cracked concrete zone and as one component by the aggregate inter-
lock and residual tensile strength with excluding dowel action.

(4) The comparison the range of contribution individual shear mechanism in [13,14]
and coefficient η showed that better compatibility of calculated and experimental shear
strength is for model, which the main influence on shear strength assigns to the non-cracked
concrete zone.

(5) In Muttoni and Ruiz’s model [11], similar to in Yang’s model [13], a bigger influence
of aggregate interlock than uncracked concrete zone in shear resistance was assumed. In
effect of this, both models are conservative for FRP-reinforced beams, because the lower
modulus of elasticity of FRP bars decreases the aggregate interlock effect.

The best recommendation of the presented models for prediction of the shear capacity
of FRP-reinforced concrete beams is quite difficult. The number of experimental results for
GFRP-reinforced beams is still limited in comparison with the steel RC beams. Moreover,
T-beams with GFRP reinforcement were tested only in the authors’ own research program.
Based on this experimental test data, the best prediction of the shear strength was obtained
according to the model by Cladera et al. [14]. This model proved the lowest dispersion of
results and simultaneously the coefficient ηm was equal 1.09. The undoubted advantage of
this model is the straightforward formula and possibility of consideration of a T-section
shape in the shear analysis.

Author Contributions: Conceptualization, methodology, writing—original draft preparation, R.K.
and M.K.; data curation, M.K.; writing—review and editing, R.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data, models, and code generated or used during the study appear
in the submitted article.

Acknowledgments: The authors gratefully acknowledge the ComRebars Company who supplied
the GFRP reinforcement for the experimental test.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.



Materials 2022, 15, 8259 16 of 22

Abbreviations
The following symbols are used in this paper:
a the distance from the support to the loading force [mm]
bw the width of web in T-beams and the width in rectangular beams [mm]
d the effective depth [mm]
dg the maximum aggregate size [mm]
fc the concrete compressive strength [MPa]
fctm the mean concrete tensile strength [MPa]
hf the height of flange in T-beams [mm]
n the number of bars in longitudinal reinforcement [-]
x the neutral axis depth [mm]
Al the cross section longitudinal reinforcement [mm2]
E the modulus of elasticity of longitudinal reinforcement [MPa]
Ec the modulus of elasticity of concrete [MPa]
M the bending moment in the critical section [kNm]
V the shear force in critical section [kN]
ε the strain in concrete [-]
ρl =

Al
bwd the longitudinal reinforcement ratio [%]

φ the diameter of longitudinal reinforcement [mm]
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Appendix A

Table 1. Test database of experimental and calculated shear strength.

Specimen/
Symbol a/d bw

(mm)
d

(mm)
fc

(MPa) dg (mm) Type φ (mm) E (GPa) Al (mm2) ρl (%) Vmax
(kN) [MR] [Z] [Y] [C]

Tureyen and Frosch [32] V-A-1 3.4 457 360 40.3 - AFRP - 47.1 1579 1.0 115.6 - 105.5 - -
V-A-2 3.4 457 360 42.6 - AFRP - 130.0 3159 1.9 178.3 - 224.6 - -

Zhao et al. [33]
I-No.1 3.00 150 250 34.3 - CFRP - 105.0 568 1.5 45.0 - 37.4 - -
II-No.6 3.00 150 250 34.3 - CFRP - 105.0 1136 3.0 46.0 - 49.1 - -

IV-No.15 3.00 150 250 34.3 - CFRP - 105.0 852 2.3 40.5 - 44.0 - -

El- Sayed et al. [34]
CN-1.7 3.10 250 326 43.6 - CFRP 12.7 134 1393 1.7 124.5 - 106.3 82.4 -
CH-1.7 3.10 250 326 63.0 - CFRP 15.9 135 1390 1.7 130.0 - 124.8 88.8 -
CH-2.2 3.10 250 326 63.0 - CFRP 15.9 135 1787 2.2 174.0 - 138.0 98.6 -

Jin et al. [35]

C-L-18-R1-1,2 3.10 200 215.5 33.6 - CFRP 9 146.2 127 0.3 25.8 - 25.9 25.4 -
C-L-18-R2-1,2 3.10 150 215.5 33.6 - CFRP 9 146.2 127 0.4 18.9 - 22.1 22.9 -
C-L-18-R3-1,2 3.10 150 213.5 33.6 - CFRP 13 147.9 265 0.8 15.3 - 28.6 38.6 -
C-L-27-R1-1,2 3.10 200 215.5 40.3 - CFRP 9 146.2 127 0.3 23.2 - 27.9 28.9 -
C-L-27-R2-1,2 3.10 150 215.5 40.3 - CFRP 9 146.2 127 0.4 21.1 - 23.8 23.4 -
C-L-27-R3-1,2 3.10 150 213.5 40.3 - CFRP 13 147.9 265 0.8 26.2 - 30.8 30.7 -

Razaqpur et al. [36]
B1 3.50 300 200 52.3 20 CFRP 9.5 114 213 0.4 64.0 36.4 40.7 33.0 52.9
B2 3.50 300 300 52.3 20 CFRP 9.5 114 284 0.3 61.0 51.6 57.8 39.9 65.8
B4 3.50 300 500 52.3 20 CFRP 9.5 114 425 0.3 68.0 72.6 91.8 45.7 87.4
B3 3.50 300 400 52.3 20 CFRP 9.5 114 354 0.3 55.0 70.8 74.8 46.1 77.2

Razaqpur et al. [37] BA3 3.56 200 225 40.5 - CFRP 8 145 201 0.4 47.0 - 34.0 26.0 -
BA4 4.50 200 225 40.5 - CFRP 8 145 201 0.4 38.5 - 34.0 25.3 -

Ashour and Kara [38] B-300-2 3.60 200 276.117 29.8 - CFRP 7.5 141.44 88 0.2 32.9 - 22.8 16.1 -
B-300-4 3.60 200 276.117 29.8 - CFRP 7.5 141.44 177 0.3 32.9 - 31.4 22.9 -

Olivito and Zuccarello [39]

Series I-1 5.71 150 175 19.2 20 CFRP 10 115 236 0.9 19.5 18.0 18.1 14.6 18.4
Series I-2 5.71 150 175 19.2 20 CFRP 10 115 236 0.9 20.0 17.8 18.1 14.6 18.4
Series I-3 5.71 150 175 19.2 20 CFRP 10 115 236 0.9 20.0 17.8 18.1 14.6 18.4
Series I-4 5.71 150 175 19.2 20 CFRP 10 115 236 0.9 16.6 19.6 18.1 15.2 18.4
Series I-5 5.71 150 175 19.2 20 CFRP 10 115 236 0.9 17.6 19.0 18.1 15.0 18.4
Series II-1 5.71 150 175 19.2 20 CFRP 10 115 393 1.5 26.0 20.9 22.3 17.5 21.3
Series II-2 5.71 150 175 19.2 20 CFRP 10 115 393 1.5 24.0 21.6 22.3 17.7 21.3
Series II-3 5.71 150 175 19.2 20 CFRP 10 115 393 1.5 23.1 22.0 22.3 17.8 21.3
Series II-4 5.71 150 175 19.2 20 CFRP 10 115 393 1.5 23.0 22.0 22.3 17.8 21.3
Series II-5 5.71 150 175 19.2 20 CFRP 10 115 393 1.5 24.2 21.6 22.3 17.6 21.3
Series III-1 5.71 150 175 25.6 20 CFRP 10 115 236 0.9 29.9 16.2 20.2 15.3 21.3
Series III-2 5.71 150 175 25.6 20 CFRP 10 115 236 0.9 27.3 17.1 20.2 15.3 21.0
Series III-3 5.71 150 175 25.6 20 CFRP 10 115 236 0.9 25.6 17.8 20.2 15.4 21.0
Series III-4 5.71 150 175 25.6 20 CFRP 10 115 236 0.9 24.2 18.4 20.2 15.5 21.0
Series III-5 5.71 150 175 25.6 20 CFRP 10 115 236 0.9 22.2 19.3 20.2 15.7 21.0
Series IV-1 5.71 150 175 25.6 20 CFRP 10 115 393 1.5 29.7 22.5 25.0 18.7 21.0
Series IV-2 5.71 150 175 25.6 20 CFRP 10 115 393 1.5 28.7 22.8 25.0 18.7 24.5
Series IV-3 5.71 150 175 25.6 20 CFRP 10 115 393 1.5 24.5 24.6 25.0 19.2 24.5
Series IV-4 5.71 150 175 25.6 20 CFRP 10 115 393 1.5 28.4 22.9 25.0 18.7 24.5
Series IV-5 5.71 150 175 25.6 20 CFRP 10 115 393 1.5 24.7 24.5 25.0 19.2 24.5

Ashour and Kara [38] B-200-2 5.90 200 169.918 24.7 - CFRP 7.5 141.44 88 0.3 17.6 - 16.3 14.2
B-200-4 5.90 200 169.918 24.7 - CFRP 7.5 141.44 177 0.5 20.8 - 22.2 18.7

Razaqpur et al. [36] B6 6.00 300 400 52.3 20 CFRP 9.5 114 354 0.3 62.0 39.2 74.8 33.8 71.2
B5 6.50 300 400 52.3 20 CFRP 9.5 114 354 0.3 51.0 43.0 74.8 34.5 70.4
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Table 1. Cont.

Specimen/
Symbol a/d bw

(mm)
d

(mm)
fc

(MPa) dg (mm) Type φ (mm) E (GPa) Al (mm2) ρl (%) Vmax
(kN) [MR] [Z] [Y] [C]

Gross et al. [40]

8-2-1 6.36 127 143 55.0 - CFRP 6.3 139.0 60 0.3 14.3 - 12.2 10.1 -
8-2-2 6.36 127 143 55.0 - CFRP 6.3 139.0 60 0.3 12.9 - 12.2 10.5 -
8-2-3 6.36 127 143 55.0 - CFRP 6.3 139.0 60 0.3 14.7 - 12.2 10.1 -
11-2-1 6.36 89 143 76.0 - CFRP - 139.0 60 0.4 8.8 - 11.5 - -
11-2-2 6.36 89 143 76.0 - CFRP - 139.0 60 0.4 11.7 - 11.5 - -
11-2-3 6.36 89 143 76.0 - CFRP - 139.0 60 0.4 8.9 - 11.5 - -
8-3-1 6.45 159 141 55.0 - CFRP 9.5 139.0 130 0.5 19.8 - 19.5 15.9 -
8-3-2 6.45 159 141 55.0 - CFRP 9.5 139.0 130 0.5 23.1 - 19.5 15.5 -
8-3-3 6.45 159 141 55.0 - CFRP 9.5 139.0 130 0.5 17.0 - 19.5 16.5 -
11-3-1 6.45 121 141 76.0 - CFRP - 139.0 130 0.6 14.3 - 19.0 - -
11-3-2 6.45 121 141 76.0 - CFRP - 139.0 130 0.6 15.3 - 19.0 - -
11-3-3 6.45 121 141 76.0 - CFRP - 139.0 130 0.6 16.6 - 19.0 - -

Niewels [41] Q-A-3L 2.93 300 444 43.3 8 GFRP 32 43.968 4021 3.3 149.0 92.5 137.6 89.3 119.9

El-Sayed et al. [34]
GN-1.7 3.10 250 326 43.6 - GFRP 15.9 42 1390 1.7 77.5 - 65.0 45.4 =
GH-1.7 3.10 250 326 63.0 - GFRP 15.9 42 1390 1.7 87.0 - 75.8 50.0 =
GH-2.2 3.10 250 326 63.0 - GFRP 15.9 42 1787 2.2 115.5 - 84.8 52.8 =

Steiner et al. [42] A1 3.1 457 889 29.6 - GFRP - 41.0 2413 0.6 159.0 - 172.1 - -

Jin et al. [35]

G-L-18-R1-1,2 3.10 200 215.5 33.6 - GFRP 9 41.0 127 0.3 20.7 - 14.3 14.8 -
G-L-18-R2-1,2 3.10 150 215.5 33.6 - GFRP 9 41.0 127 0.4 18.6 - 12.3 11.7 -
G-L-18-R3-1,2 3.10 150 213.5 33.6 - GFRP 13 40.0 265 0.8 15.3 - 16.0 17.3 -
G-L-27-R1-1,2 3.10 200 215.5 40.3 - GFRP 9 41.0 127 0.3 20.4 - 15.4 15.9 -
G-L-27-R2-1,2 3.10 150 215.5 40.3 - GFRP 9.00 41.0 127 0.4 20.0 - 13.3 12.2 -
G-L-27-R3-1,2 3.10 150 213.5 40.3 - GFRP 13.00 40.0 265 0.8 21.5 - 17.2 16.7 -

Matta et al. [43]
S3-0.24-1B 3.10 114 292 40.6 19 GFRP - 48.2 393 1.2 22.0 26.5 23.5 - 25.2
S3-0.24-2B 3.10 114 292 40.6 19 GFRP - 48.2 393 1.2 20.6 27.6 23.5 - 25.2
S6-0.24-1B 3.10 229 146 40.6 19 GFRP - 48.2 395 1.2 33.0 31.6 23.6 - 32.6
S6-0.24-2B 3.10 229 146 40.6 19 GFRP - 48.2 395 1.2 32.5 31.9 23.6 - 32.6

Matta and Nanni [44]

S1-1 3.11 457 883 29.5 20 GFRP 32 40.7 2413 0.6 154.1 93.0 170.1 99.5 128.2
S3-1 3.11 114 294 59.7 20 GFRP 16 40.8 201 0.6 15.2 23.2 18.9 17.7 24.1
S3-2 3.11 114 294 32.1 20 GFRP 16 40.8 201 0.6 19.3 14.3 14.7 13.4 17.5
S3-3 3.11 114 294 32.1 20 GFRP 16 40.8 201 0.6 18.1 15.0 14.7 13.5 17.5
S6-1 3.11 229 147 59.7 20 GFRP 16 40.8 201 0.6 28.6 24.4 18.9 27.5 31.6
S6-2 3.11 229 147 32.1 20 GFRP 16 40.8 201 0.6 36.8 14.9 14.7 22.7 23.4
S6-3 3.11 229 147 32.1 20 GFRP 16 40.8 201 0.6 26.3 19.1 14.7 22.6 23.4

S1B-1 3.12 457 880 29.5 20 GFRP 32 40.7 4825 1.2 220.7 126.2 234.0 107.1 158.7
S1B-2 3.12 457 880 30.7 20 GFRP 32 41.4 4825 1.2 216.2 132.8 239.6 109.6 163.1

Ashour [45] Beam 3 3.14 150 212 28.9 - GFRP 12 32 226 0.7 17.5 - 13.0 13.2 11.3
Beam 9 3.14 150 212 50.2 - GFRP 12 32 339 1.1 27.5 - 19.6 16.1 18.1

Bentz et al. [46]

L05-0 3.26 450 937 46.0 10 GFRP 25.4 37 2152 0.5 135.0 75.5 190.5 93.2 152.7
M05-0 3.48 450 438 35.0 10 GFRP 25.4 37 1076 0.5 86.0 45.9 82.3 74.5 82.6
L20-0 3.56 450 857 36.0 10 GFRP 25.4 37 8608 2.2 232.0 134.6 309.2 135.2 196.8
M20-0 3.77 450 405 35.0 10 GFRP 25.4 37 4304 2.4 138.0 94.0 148.0 96.8 123.2
S05-0 3.93 450 194 35.0 10 GFRP 12.7 37 580 0.7 54.5 31.6 40.0 40.9 51.9
S20-0 4.05 450 188 35.0 10 GFRP 25.4 37 2152 2.5 74.0 66.2 71.0 70.3 75.8

Guadagnini et al. [47] GB43 3.36 150 223 40.3 20 GFRP 13.5 45 429 1.3 27.2 26.7 24.0 19.1 27.7

Tureyen and Frosch [32]
V-G1-1 3.4 457 360 39.7 - GFRP - 40.5 1579 1.0 108.9 - 97.9 - -
V-G2-1 3.4 457 360 39.8 - GFRP - 37.6 1579 1.0 95.4 - 94.7 - -
V-G1-2 3.4 457 360 42.2 - GFRP - 32.0 3159 1.9 138.0 - 123.5 - -
V-G2-2 3.4 457 360 42.5 - GFRP - 37.0 3159 1.9 153.7 - 132.1 - -
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Table 1. Cont.

Specimen/
Symbol a/d bw

(mm)
d

(mm)
fc

(MPa) dg (mm) Type φ (mm) E (GPa) Al (mm2) ρl (%) Vmax
(kN) [MR] [Z] [Y] [C]

Imjai [48] TB6B 3.49 150 220 95.0 10 GFRP 13.5 45 429 1.3 29.1 30.2 34.0 25.1 41.6

Duranovic et al. [49] GB2 3.65 150 210 38.1 - GFRP 13.5 45 429 1.4 26.0 - 22.6 18.0 -
GB6 3.65 150 210 32.9 - GFRP 13.5 45 429 1.4 22.0 - 21.3 17.8 -

Ashour [45] Beam 1 3.97 150 168 28.9 - GFRP 6 38 113 0.4 12.5 - 9.0 8.6 -
Beam 7 3.97 150 168 50.2 - GFRP 12 32 339 1.3 17.5 - 17.3 15.5 -

Yost et al. [50]

1FRP-a 4.06 229 225 34.7 - GFRP 19 40.336 567 1.1 39.1 - 30.9 28.9 -
1FRP-b 4.06 229 225 34.7 - GFRP 19 40.336 567 1.1 38.5 - 30.9 28.9 -
1FRP-c 4.06 229 225 34.7 - GFRP 19 40.336 567 1.1 36.8 - 30.9 29.0 -
2FRP-a 4.06 178 225 34.7 - GFRP 19 40.336 567 1.4 28.1 - 26.9 23.3 -
2FRP-b 4.06 178 225 34.7 - GFRP 19 40.336 567 1.4 35.0 - 26.9 23.0 -
2FRP-c 4.06 178 225 34.7 - GFRP 19 40.336 567 1.4 32.1 - 26.9 23.1 -
3FRP-a 4.06 229 225 34.7 - GFRP 19 40.336 851 1.7 40.0 - 37.0 30.4 -
3FRP-b 4.06 229 225 34.7 - GFRP 19 40.336 851 1.7 48.6 - 37.0 30.1 -
3FRP-c 4.06 229 225 34.7 - GFRP 19 40.336 851 1.7 44.7 - 37.0 30.1 -
4FRP-a 4.06 279 225 34.7 - GFRP 19 40.336 1134 1.8 43.8 - 46.9 38.0 -
4FRP-b 4.06 279 225 34.7 - GFRP 19 40.336 1134 1.8 45.9 - 46.9 37.8 -
4FRP-c 4.06 279 225 34.7 - GFRP 19 40.336 1134 1.8 46.1 - 46.9 37.7 -
5FRP-a 4.08 254 224 34.7 - GFRP 22 40.336 1140 2.0 37.7 - 44.5 37.9 -
5FRP-b 4.08 254 224 34.7 - GFRP 22 40.336 1140 2.0 51.0 - 44.5 37.0 -
5FRP-c 4.08 254 224 34.7 - GFRP 22 40.336 1140 2.0 46.6 - 44.5 37.1 -
6FRP-a 4.08 229 224 34.7 - GFRP 22 40.336 1140 2.2 43.5 - 42.0 33.7 -
6FRP-b 4.08 229 224 34.7 - GFRP 22 40.336 1140 2.2 41.8 - 42.0 33.8 -
6FRP-c 4.08 229 224 34.7 - GFRP 22 40.336 1140 2.2 41.3 - 42.0 33.8 -

El-Sayed et al. [34]
SN-1.7 3.10 250 326 43.6 - steel 16 200 1407 1.7 144.5 - 124.7 101.1 -
SH-1.7 3.10 250 326 63.0 - steel 16 200 1407 1.7 160.0 - 146.5 110.3 -
SH-2.2 3.10 250 326 63.0 - steel 16 200 1810 2.2 184.0 - 161.0 125.7 -

Guadagnini et al. [47] SB40 3.35 150 224 43.4 20 steel 12 207 452 1.3 45.3 50.2 48.3 43.2 47.8

Tureyen and Frosch [32]
V-S-1 3.4 457 360 40.9 - steel - 199.8 1579 1.0 180.5 - 198.6 - -
V-S-2 3.4 457 360 41.3 - steel - 200 3159 1.9 205.2 - 261.6 - -
V-D-2 3.4 457 360 43.6 - steel - 200 592 0.4 135.7 - 134.3 - -

Yost et al. [50]
1Steel-a 4.03 229 227 34.7 - steel 16 200 804 1.5 60.7 - 70.7 58.2 -
1Steel-b 4.03 229 227 34.7 - steel 16 200 804 1.5 56.3 - 70.7 59.3 -
1Steel-c 4.03 229 227 34.7 - steel 16 200 804 1.5 58.0 - 70.7 58.9 -

Olivito and Zuccarello [39] S-1 5.56 150 180 19.2 20 steel - 200 340 1.3 18.1 29.1 26.7 - 24.4
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Table 1. Cont.

Specimen/
Symbol a/d bw

(mm)
d

(mm)
fc

(MPa) dg (mm) Type φ (mm) E (GPa) Al (mm2) ρl (%) Vmax
(kN) [MR] [Z] [Y] [C]

Kotynia and Kaszubska [28]

G-512-30-15 2.90 150 379 30.10 8 GFRP 12 50.5 565 0.99 34.27 25.92 40.81 22.73 28.09
G-316-30-15 2.92 150 377 31.10 8 GFRP 16 50.5 603 1.07 31.75 29.13 42.49 25.91 28.63
G-318-30-15 2.93 150 376 31.10 8 GFRP 18 50.5 763 1.35 38.57 30.24 46.93 26.97 30.86
G-416-30-15 2.92 150 377 30.50 8 GFRP 16 50.5 804 1.42 34.77 33.57 47.67 28.25 31.52
G-418-30-15 2.93 150 376 31.10 8 GFRP 18 50.5 1018 1.80 38.14 37.61 53.33 30.41 33.97

G-312/212-30-15 2.99 150 367.8 32.30 8 GFRP 12 50.5 565 1.02 34.78 25.66 39.83 22.87 28.76
G-318/118-30-15 3.00 150 367 32.30 8 GFRP 18 50.5 1018 1.85 47.72 32.14 51.50 28.19 32.88

G-512-30-35 3.06 150 359 31.10 8 GFRP 12 50.5 565 1.05 32.47 25.82 36.47 22.90 26.37
G-316-30-35 3.08 150 357 30.50 8 GFRP 16 50.5 603 1.13 31.01 27.64 36.51 24.77 26.56
G-318-30-35 3.09 150 356 30.50 8 GFRP 18 50.5 763 1.43 34.42 30.57 40.28 26.54 28.60
G-418-30-35 3.09 150 356 30.10 8 GFRP 18 50.5 1018 1.91 39.41 34.19 45.25 28.26 31.23
G-316-35-15 2.92 150 377 37.05 8 GFRP 16 50.5 603 1.07 31.31 32.04 48.35 27.92 30.24
G-318-35-15 2.93 150 376 37.05 8 GFRP 18 50.5 763 1.35 33.76 36.13 53.43 30.15 32.56
G-416-35-15 2.92 150 377 36.02 8 GFRP 16 50.5 804 1.42 32.43 38.13 53.97 31.17 32.66
G-316-35-35 3.08 150 357 35.00 8 GFRP 16 50.5 603 1.13 29.90 30.34 40.26 26.48 28.59
G-418-35-35 3.09 150 356 35.00 8 GFRP 18 50.5 1018 1.91 35.14 39.56 50.43 31.17 33.85

Kotynia and Kaszubska [28]

S-512-30-15 2.90 150 379 31.10 8 steel 12 201 565 0.99 55.59 51.48 76.64 50.25 39.38
S-316-30-15 2.92 150 377 32.30 8 steel 16 201 603 1.07 52.59 55.68 79.88 53.42 40.42
S-318-30-15 2.93 150 376 33.80 8 steel 18 201 763 1.35 56.10 62.81 90.37 59.59 41.77

S-312/212-30-15 2.99 150 367.8 32.30 8 steel 12 201 565 1.02 50.93 53.13 72.70 52.09 40.20
S-318/118-30-15 3.00 150 367 33.80 8 steel 18 201 1018 1.85 61.79 68.51 94.37 67.21 41.64

S-512-30-35 3.06 150 359 31.10 8 steel 12 201 565 1.05 45.24 53.90 66.21 53.67 39.16
S-418-30-35 3.09 150 356 33.80 8 steel 18 201 1018 1.91 52.94 70.18 86.62 69.58 41.66
S-512-35-15 2.90 150 379 34.95 8 steel 12 201 565 0.99 45.14 60.21 83.90 58.50 42.36
S-316-35-15 2.92 150 377 36.33 8 steel 16 201 603 1.07 44.52 63.55 87.47 60.67 43.55
S-318-35-15 2.93 150 376 37.35 8 steel 18 201 763 1.35 47.04 70.69 97.62 67.35 44.55
S-512-35-35 3.06 150 359 35.00 8 steel 12 201 565 1.05 43.40 58.10 72.27 57.74 42.13
S-316-35-35 3.08 150 357 36.33 8 steel 16 201 603 1.13 41.72 61.90 75.09 59.03 43.31
S-318-35-35 3.09 150 356 36.33 8 steel 18 201 763 1.43 46.89 66.23 81.85 62.60 43.70

[MR]—Muttoni and Ruitz; [Z]—Zhang et al.; [C]—Cladera et al.; [Y]—Yang.
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