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Abstract: Like other plastic materials, geosynthetics can undergo changes in their properties due
to weathering. These changes must be known and, if necessary, duly accounted for in the design
phase. This work evaluates the resistance of a nonwoven polypropylene geotextile to weathering,
both in the field (under natural degradation conditions) and in the laboratory (under accelerated
degradation conditions). The damage experienced by the geotextile in the field weathering tests
was evaluated by monitoring changes in its physical (mass per unit area and thickness), mechanical
(tensile, tearing and puncture behaviour) and hydraulic (water permeability normal to the plane)
properties. Microscopic damage was assessed by scanning electron microscopy. In the laboratory
weathering tests, only the tensile behaviour of the geotextile was monitored. The results showed
that all geotextile properties were affected by weathering. The mechanical strength of the geotextile
decreased in the field weathering tests. Microscopic transverse cracks were found in the weathered
polypropylene fibres, which may explain the reduction in mechanical strength. The accumulation
of dirt on the nonwoven structure altered the physical and hydraulic properties of the geotextile.
Comparing the field and laboratory weathering tests, the reduction in tensile strength found after
24 months outdoors (roughly 30%) was very similar to that observed after 4000 h in the laboratory.
This relationship may not be valid for other geotextiles or other exposure locations.

Keywords: geosynthetics; geotextiles; durability; weathering; UV-ageing; polypropylene; Chimassorb 944;
carbon black

1. Introduction

Geosynthetics are construction materials mostly manufactured from thermoplastics,
such as polyolefins (e.g., polypropylene (PP)) or polyesters. These materials are not only
easy to use but also cost-effective, which, combined with their versatility and good per-
formance over time, makes them suitable materials for many engineering applications.
According to their structure, geosynthetics can be divided into different categories, the most
common being geotextiles, geomembranes, geogrids and geocomposites. Geotextiles are
the most used geosynthetics, being able to perform several functions, including filtration,
drainage, separation, protection and reinforcement. The applications of these materials
are numerous, having been successfully used, for example, in road infrastructure, erosion
control, drainage systems, waste containment and coastal protection structures.

Like other plastic materials, geotextiles are prone to degradation at all stages of
their life cycle, including manufacture, storage, installation phase and in-service. These
materials typically have high resistance to chemical and biological attack [1], but are
susceptible to solar radiation, mainly ultraviolet (UV) radiation [2,3]. The UV zone (≈295 to
400 nm) corresponds to only a small part of the solar radiation reaching the Earth’s surface
(≈295 to 3000 nm), but it is the one with the highest energy. Other outdoor degradation
agents include heat, oxygen and moisture [4].

Photo-oxidation is the degradation of polymers induced by the combined action of
light and oxygen [5,6]. In the case of PP, the oxidation process occurs via an autocatalytic
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mechanism with initiation, propagation, branching and termination reactions [3,7]. The
initiation reaction requires an energy source for the formation of free radicals, which start
the mechanism. Energy can be provided by heat (thermo-oxidation) and by UV radiation
(photo-oxidation). More information on the oxidation process of PP can be found, for
example, in Greenwood et al. [3].

Chemical additives, which are added to polymers during processing, can be used to
control the photo-oxidation of plastic materials [5,8]. These compounds can interrupt or
slow down the degradation process, being essential to improve the weathering resistance
of polymeric products. Examples of effective additives include light stabilisers and antioxi-
dants. As shown in previous works [9–11], the weathering resistance of PP geotextiles can
be highly enhanced by the presence, in relatively small amounts, of a hindered amine light
stabiliser or carbon black.

Predicting the behaviour of geotextiles over time is a complicated process, as it usually
requires many aspects to be considered. The predictions are often based on material testing,
where they are exposed to degrading conditions. Over the years, standards organisations,
such as the European Committee for Standardization or the American Society for Testing
and Materials, have developed methods to help evaluate the resistance of geotextiles to
degradation. In the case of weathering, the methods developed for geotextiles include EN
12224 [12], ASTM D4355 [13] and ASTM D5970 [14].

Weathering tests can be conducted in the field or in the laboratory. In the field,
materials degrade under natural conditions, providing accurate information about their
behaviour. The downside is that the tests are usually time-consuming—they can take
years [10,11,15]. In the laboratory, artificial weathering tests under accelerated degradation
conditions can be carried out in weatherometers. This equipment tries to simulate the
degradation suffered by materials exposed outdoors, usually allowing control of the light
intensity, temperature and humidity.

Over the years, researchers have evaluated the resistance of geotextiles to weathering
by performing field [10,11,15–18] or laboratory [9,19–21] tests. Some works [22–25] carried
out both tests, comparing the results obtained and trying to find relationships between
them. The effect of weathering tests on geotextiles is usually evaluated by detecting
and quantifying changes in their properties. Tensile properties have been monitored in
many works [9–11,15–17,21,24], being the most used for this purpose. Technics such as
microscopy [9,10,15,20,21,24], spectrophotometry [25], infrared spectroscopy [22], thermal
analysis [15,20,21] and chromatography [22,23] have also been used to determine the effect
of weathering on geotextiles.

The results of previous works have shown that it is practically unavoidable for geo-
textiles to degrade when exposed to weathering for a long period of time. If permanently
exposed, the lifetime of these materials (often measured by the deterioration of their tensile
behaviour) can range from a few months to a few years [10,11,15–17,24]. Field weathering
tests on an unstabilised PP geotextile revealed that degradation occurs relatively fast, with
a reduction in tensile strength close to or greater than 50% after 6 months [10,11]. By month
12, the unstabilised PP geotextile was extremely damaged (reduction in tensile strength of
around 94% or more) [10,11]. For stabilised materials, degradation is slower. In a previous
work [10], reductions in tensile strength ranging from 39 to 82% were reported for three
PP geotextiles with different stabilisation packages exposed to natural weathering for 36
months. In another work [15], a PP geotextile experienced a reduction in tensile strength of
84%, also after 36 months.

In many applications, geotextiles are exposed to UV radiation and other weathering
agents for a short period of time, corresponding to the time required for installation
activities. Indeed, to perform some functions (e.g., separation, filtration or drainage) the
materials must be covered. To prevent premature failure, the uncovered use of these
materials is often limited by setting a maximum allowable time (which can be determined
from the results of an artificial weathering test, such as EN 12224 [12]). In some cases (e.g.,
in reinforcement applications), the mechanical properties of geotextiles can be affected



Materials 2022, 15, 8216 3 of 18

by reduction factors to account for degradation. There are some cases, for example in
reservoirs, where the materials can be exposed to weathering for long periods of time,
sometimes for their entire service life. In this situation, laboratory tests such as EN 12224 [12]
do not provide information that allows estimating the lifetime of geotextiles. Laboratory
methods to simulate long-term weathering in a short period of time are not available.
The existing methods can be extended, and their conditions modified to represent more
demanding scenarios, but establishing laboratory–field relationships has proven to be
hard to accomplish.

This work studies the weathering resistance of a nonwoven PP geotextile, both under
natural and accelerated degradation conditions. The main goals of the work included:
(1) determine not only how the tensile properties of the geotextile were affected by nat-
ural weathering, but also how other mechanical properties, as well as physical and hy-
draulic properties, were affected, and (2) compare the degradation suffered by the geo-
textile outdoors and in the laboratory, looking for relationships between natural and
artificial weathering.

2. Materials and Methods

The experimental campaign of this work included subjecting a geotextile to weathering
under natural degradation conditions. After that, the physical (mass per unit area and
thickness), mechanical (tensile, tearing and static puncture behaviour) and hydraulic
(water permeability normal to the plane) properties of the geotextile (exposed samples)
were evaluated and compared to those obtained before degradation (unexposed sample).
Scanning electron microscopy (SEM) was used to analyse the nonwoven structure before
and after exposure to natural weathering. Laboratory weathering tests (under accelerated
degradation conditions) were also conducted, and the results (only tensile strength) were
compared to those found under natural degradation conditions.

2.1. Geotextile

A nonwoven geotextile (designated as GT500 in this article) was studied in this work.
GT500 was made by needle punching using PP fibres stabilised with two chemical additives:
Chimassorb 944 (a hindered amine light stabiliser) and carbon black (a pigment that can also
protect polymers from UV attack). Chimassorb 944 and carbon black were present in the
PP fibres with the mass percentages of 0.2% and 1.08%, respectively. Accordingly, the fibres
had a PP mass percentage of 98.72%. The manufacturer stated that GT500 had a mass per
unit area of 500 g·m−2. GT500 was anisotropic, with its tensile and tearing properties being
direction-dependent (tensile and tearing strength were higher in the machine direction of
production than in the cross-machine direction of production).

GT500 was supplied as a roll and the procedures for sampling and preparation of
test specimens were conducted in accordance with the guidelines of EN ISO 9862 [26].
Specimens were taken for two purposes: (1) for exposure to weathering (in the field and in
the laboratory), and (2) for physical, mechanical and hydraulic characterisation of GT500
before weathering. The specimens exposed to weathering tests were also later characterised
by physical, mechanical and hydraulic tests.

2.2. Field Weathering Tests

GT500 was exposed to weathering under natural degradation conditions in Portugal.
The latitude and longitude coordinates of the exposure site were, respectively, 41◦13′ N
and 8◦39′ W. The altitude was 49 metres. GT500 was installed in an exposure stand facing
south with an inclination of 30◦. The tests lasted for 24 months, with samples collected for
characterisation at 6, 12, 18 and 24 months.

The air temperature, solar radiant energy (between 300 and 3000 nm), precipitation and
relative humidity were registered during the outdoor exposure (Table 1). For the different
exposure periods, the data shown in Table 1 correspond to average values of air temperature
and relative humidity (TAir and RH, respectively) and accumulated values of solar radiant
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energy (E), UV radiant energy (EUV) and precipitation (P). Based on the intervals given
by EN 13362 [27] and Greenwood et al. [3], which are respectively 6–9% and 5–10%, UV
radiant energy has been estimated to be 7.5% of solar radiant energy—7.5% corresponds to
the average value of both intervals.

Table 1. Climate parameters of the exposure site. (Notation: TAir—average air temperature; E—
accumulated solar radiant energy; EUV—accumulated UV radiant energy; P—accumulated precipita-
tion; RH—average relative humidity).

Period (Months) TAir (◦C) E 1 (MJ·m−2) EUV
2 (MJ·m−2) P (mm) RH (%)

1–6 14.0 2189 164 318 72.3
7–12 21.6 3423 257 256 70.5
13–18 14.5 534 40 547 74.7
19–24 20.3 3329 250 460 74.5

1 Measured between 300 and 3000 nm. 2 Obtained by estimate—7.5% of the accumulated solar radiant energy.

Two types of specimens were prepared for the field weathering tests: (1) type I, with a
width of 200 mm and a length of 300 mm. The top and bottom 100 mm (in length) were used
for gripping to the exposure stand and were protected from weathering. These specimens
were intended for subsequent tensile tests; (2) type II, which had a width of 250 mm and a
length of 400 mm—exposed length of 300 mm (the top and bottom 5 mm were used for
gripping to the exposure stand). At the end of the outdoor exposure, the type II specimens
were reduced in size (by cutting) in order to have adequate dimensions for mass per unit
area, thickness, tearing, static puncture or water permeability normal to the plane tests.
They were also used to collect specimens for SEM analysis.

2.3. Laboratory Weathering Tests

GT500 was exposed to artificial weathering in a testing equipment from Q-Panel Lab
Products (Westlake, OH, USA)—the QUV Weathering Tester, model QUV/spray. This ap-
paratus allows exposing materials to weathering cycles composed of three steps: exposure
to UV radiation, simulating the effect of sunlight (UV step), water spray and condensation
(these last two simulating the effect of rain and moisture). The UV and condensation steps
are conducted at elevated temperatures in order to accelerate the degradation process and,
thereby, allow results to be obtained in a relatively short period of time.

The laboratory weathering tests involved the exposure of GT500 to UV radiation,
water spray and condensation. UV radiation was provided by UVA-340 lamps. The water
used in the spray step was treated microbiologically, purified by reverse osmosis and,
finally, deionised in ionic exchange columns. Water was sprayed at room temperature with
a flow of 5 L·min−1. The condensation step used water from the public supply network,
which upon heating produced water vapour that condensed on the surface of the exposed
specimens. Both the water spray and condensation steps were carried out in the dark, i.e.,
the UVA-340 lamps were turned off.

Two different tests were performed using GT500: (1) tests following, as closely as pos-
sible, the method described in EN 12224 [12], and (2) adapted tests. The main characteristics
of the weathering cycles used in those tests can be seen in Table 2.

GT500 was exposed to around 70 weathering cycles, each lasting for 5 h and 10 min,
during the 362 h of the EN 12224 [12] test. Each weathering cycle was composed of a UV
step (5 h at 50 ◦C) followed by a water spray step of 10 min. The duration of the water
spray step was shorter than that specified in EN 12224 [12], which is 60 min. This change
was necessary due to the water purification system, which was not able to produce enough
water for continuous spraying for 60 min—good quality water is needed to avoid clogging
the sprinklers of the weatherometer. At a flow of 5 L·min−1, 60 min of spray would require
300 L of purified water every 5 h (time period corresponding to the UV step interspersed
with the water spray step). This modification in the EN 12224 [12] test conditions allowed
a reduction in water consumption with a low expected impact on the results since it is
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well-known that UV radiation is the most harmful weathering agent for plastic materials.
The UVA-340 lamps operated with an irradiance of 0.68 W·m−2. The total radiant energy
during the 362 h of testing was 50 MJ·m−2 between 290 and 400 nm, which is the value
specified in EN 12224 [12].

Table 2. Main characteristics of the weathering cycles.

Test Weathering Cycle Temperature (◦C) Duration (Hours)

Standard
Step 1. UV 50 5

Step 2. Water spray 1 - 0.167

Adapted
Step 1. UV 60 4

Step 2. Water spray - 0.167
Step 3. Condensation 1 45 4

1 After this step, the system returns to step 1.

Regarding the adapted tests, GT500 was exposed to a weathering cycle for different
periods of time, namely 500, 1000, 2000 and 4000 h. As shown in Table 2, the weathering
cycle was composed of a UV step (4 h at 60 ◦C), followed by a water spray step (10 min)
and a condensation step (4 h at 45 ◦C). As in the EN 12224 [12] test, the UVA-340 lamps
operated with an irradiance of 0.68 W·m−2. The total radiant exposure at 340 nm (E340nm)
and the total UV (290–400 nm) radiant exposure, EUV, increased with the increase of the
test duration (greater number of weathering cycles, N), as can be observed in Table 3.

Table 3. The number of weathering cycles and total radiant exposure for the different labora-
tory weathering tests. (Notation: N—number of cycles; E340nm—total radiant exposure at 340 nm;
EUV—total UV radiant exposure).

Test Time (Hours) N E340nm (MJ·m−2) EUV (MJ·m−2)

Standard 362 70.1 0.86 50

Adapted

500 61.2 0.60 35
1000 122.4 1.20 69
2000 244.9 2.40 138
4000 489.8 4.80 276

The specimen holders of the weatherometer had an area to expose specimens 80 mm
wide by 200 mm long. This way, the specimens used in the laboratory weathering tests had
a width of 50 mm and a length of 400 mm—the top and bottom 100 mm, in length, were
not exposed. These dimensions are compatible with tensile tests according to EN 29073-
3 [28]—the resistance of GT500 to artificial weathering was only evaluated by monitoring
changes in its tensile behaviour.

2.4. Evaluation of the Damage Suffered by GT500

Following the weathering tests, the physical, mechanical and hydraulic properties of
GT500 were determined. In addition, a microscopic analysis of GT500 was performed. The
results obtained for the weathered samples were compared with those found for an unex-
posed sample (intact) and, based on the changes that occurred in the properties of GT500,
the damage caused by weathering was evaluated. The physical, mechanical and hydraulic
properties of GT500 were determined following standard methods (Sections 2.4.1–2.4.6).
The number of specimens used in each test was defined by the respective test standard.
Furthermore, in all characterisation tests, and for each weathering period, fresh specimens
were used, i.e., there was no reuse of specimens in the non-destructive tests.

The results (average values of at least 5 or 10 specimens, as will be indicated below)
are presented with 95% confidence intervals. In addition, some results are expressed in
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terms of variation: ∆X, where X generically represents a property. ∆X was determined in
accordance with Equation (1):

∆X =
X(Exposed) − X(Unexposed)

X(Unexposed)
× 100 (1)

where X(Unexposed) and X(Exposed) is a property of GT500 obtained, respectively, before and
after the weathering tests. Using Equation (1), variations were determined for mass per unit
area (∆µA), thickness (∆t), tensile strength (∆T), tearing strength (∆FR), puncture strength
(∆FP) and velocity index for a head loss of 50 mm (∆VH50).

2.4.1. Mass per Unit Area Tests

Mass per unit area (µA, in g·m−2) was determined by measuring and weighing square
specimens (side of ≈ 100 mm) of GT500. The specimens were measured with a calliper and
weighed on an AND (Tokyo, Japan) balance (model HF 300G). For each sample, at least ten
specimens were tested. The tests followed the guidelines of EN ISO 9864 [29].

2.4.2. Thickness Tests

Thickness tests were conducted according to EN ISO 9863-1 [30]. Thickness (t, in mm)
was measured as the distance between a reference plate (where the specimen was placed)
and the contacting face of a circular presser foot. For each sample, a minimum number of
ten specimens was tested (square specimens with a side of 100 mm). The pressure exerted
on the specimens was 2 kPa. A Karl Schröder KG (Weinheim, Germany) testing equipment
was used in the thickness tests.

2.4.3. Tensile Tests

Two different methods were used in the tensile tests, depending on the origin of
the samples. For the samples exposed to natural weathering, tensile tests were carried
out following the EN ISO 10319 [31] method. The EN 29073-3 [28] method was used for
the samples exposed to artificial weathering. The need for two methods was due to the
characteristics of the laboratory weatherometer, whose specimen holders did not allow
using specimens with the same dimensions as those used in the field weathering tests.

The tensile tests were performed in a Lloyd Instruments (Bognor Regis, UK) testing
machine (model LR 50K). These tests were carried out at different displacement rates,
depending on the testing method: 20 and 100 mm·min−1 for the EN ISO 10319 [31] and
EN 29073-3 [28] methods, respectively. In both methods, at least five specimens from
each sample were tested (specimens tested in the machine direction of production). The
specimens that were subjected to the EN ISO 10319 [31] method had a length of 100 mm
(between grips) and a width of 200 mm. In the other method, the specimens were 200 mm
long (between grips) and 50 mm wide. Figure 1 schematically represents the specimens
used in the tensile tests, as well as those used in the tearing (Section 2.4.4) and static
puncture (Section 2.4.5) tests.

Tensile force (F, in N) and elongation were continuously monitored during the tensile
tests. Tensile strength (T, in kN·m−1), i.e., the maximum tensile force per unit width, was
calculated by Equation (2):

T =
Fmax

1000
× 1

B
(2)

where Fmax corresponds to the maximum tensile force (in N) and B is the width (in m)
of the specimen. Elongation at tensile strength (ET, in %) was also an output of the
tensile tests. Regardless of the tensile test method, elongation was measured based on the
relative displacement of the grips, representing the percentage increase in the length of the
specimens in relation to their original length (i.e., the initial distance between grips).
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2.4.4. Tearing Tests

The tearing tests were carried out according to ASTM D4533 [32] on the same testing
machine used for the tensile tests. For each sample, at least ten specimens (in the machine
direction of production) were tested. The specimens were rectangular (76 mm wide and
200 mm long) and had an isosceles trapezoid (25 and 100 mm, respectively, at the top and
at the base) marked on the centre (area between grips) (Figure 1c). Before the test, a 15 mm
cut was made in the middle of the 25 mm side (cut perpendicular to the parallel sides of the
trapezoid). Test velocity was 300 mm·min−1. Tearing strength (FR, in N), i.e., the maximum
tearing force, was the property determined in the tearing tests.

2.4.5. Static Puncture Tests

The static puncture tests followed the guidelines of EN ISO 12236 [33] and were
conducted on the same testing machine used for the tensile and tearing tests. In these
tests, a plunger (stainless steel cylinder with a diameter of 50 mm) was pushed through
circular specimens (diameter of 150 mm between grips) at a velocity of 50 mm·min−1

(Figure 1d). For each sample, a minimum number of five specimens was tested. The
properties determined in the static puncture tests were puncture strength (FP, in kN)
(maximum puncture force) and push-trough displacement at maximum force (hP, in mm).

2.4.6. Water Permeability Normal to the Plane Tests

The water permeability normal to the plane tests were carried out according to
the constant head method of EN ISO 11058 [34]. The specimens (five for each sample)
were submitted to a unidirectional flow of water under a series of constant head losses,
H—14, 28, 42, 56 and 70 mm. Circular specimens with a useful diameter (area exposed to
the flow of water) of 83.5 mm were used. The tests were conducted on prototype equip-
ment developed at the Faculty of Engineering of the University of Porto, Portugal, in
accordance with the instructions of EN ISO 11058 [34] (Figure 2). The equipment had the
following main components: a water reservoir, a piping system, a flow controller, a head
loss reading system, a specimen mount and a water collector. The internal diameter of the
piping system was 83.5 mm.
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plane tests (the water course is indicated by arrows).

The hydraulic property obtained in the test was the velocity index for a head loss of
50 mm (VH50, in mm·s−1). To calculate VH50, the velocity index at 20 ◦C (v20, in mm·s−1)
was first determined for each of the head losses H. The determination of v20 followed
Equation (3), where V is the volume of water (in mm3) collected during the time interval t
(in s), RT is a correction factor for a water temperature of 20 ◦C (RT calculated as indicated
in EN ISO 11058 [34]) and A is the exposed area (in mm2) of the specimens.

v20 =
V RT

A t
(3)

The head losses H (from 14 to 70 mm) were plotted as a function of the respective v20
and a quadratic curve that passed through the origin of the graph was fitted to the data.
The VH50 was obtained by interpolation in the quadratic regression curve.

2.4.7. Scanning Electron Microscopy

The SEM analyses were conducted on a JEOL (Tokyo, Japan) electronic microscope
(model JSM 6310F) equipped with a secondary electron detector. The specimens of GT500
(area of about 1 cm2) were metallized with a layer of gold to make them electrically conductive.

3. Results and Discussion
3.1. Natural Weathering
3.1.1. Physical Properties

The colour of GT500, originally black, did not change significantly over the 24 months
of field exposure. However, GT500 became noticeably stiffer, which can be explained
by the accumulation of dirt (small particles, e.g., dust, brought by the wind or rain) on
its nonwoven structure. The dimensions of the exposed specimens remained practically
unchanged. Table 4 summarizes the results obtained for the mass per unit area and
thickness of GT500 before and after the field weathering tests.

An analysis of Table 4 shows that the mass per unit area of GT500 had no relevant
changes after 6 months (∆µA of +1.4%). However, for longer periods, an increase in mass
per unit area was observed (maximum ∆µA of +15.4% after 18 months). This may seem like
an odd result, but it can be explained by the dirt that had accumulated on the nonwoven
structure of GT500, which is inevitably being taken into account in the mass per unit
area test. Therefore, this increase should be seen as a “false increase” as it obviously
does not represent a real gain in polymeric mass. It is also relevant to mention that the
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dirt did not accumulate on top of the specimens but filled the empty spaces that existed
between the PP fibres.

Table 4. Physical properties of GT500 before and after the field weathering tests. (Notation: µA – mass
per unit area; ∆µA – variation in mass per unit area; t – thickness; ∆t – variation in thickness).

Time (Months) µA (g·m−2) ∆µA (%) t (mm) ∆t (%)

0 499 ± 27 - 3.68 ± 0.06 -
6 506 ± 14 +1.4 3.84 ± 0.06 +4.3
12 545 ± 25 +9.2 4.02 ± 0.06 +9.2
18 576 ± 31 +15.4 3.92 ± 0.13 +6.5
24 542 ± 23 +8.6 4.05 ± 0.06 +10.1

Like the mass per unit area, the thickness of GT500 also increased after natural weath-
ering. The increases were relatively small, ranging between 4.3 and 10.1%, with no clear
relationship between the magnitude of the increase and the exposure time. The reason for
the increase in thickness is the same as previously mentioned for the increase in mass per
unit area. The accumulation of dirt on the nonwoven structure has made the material less
compressible and, as thickness is determined by applying pressure (in this case, 2 kPa), this
resulted in greater thickness.

3.1.2. Mechanical Properties

The exposure to natural weathering also had an impact on the mechanical properties
of GT500. However, the changes that occurred varied with the exposure time and did not
occur on the same scale for all properties. The tensile, tearing and puncture properties of
GT500, before and after the field weathering tests, can be seen in Table 5.

Table 5. Mechanical properties of GT500 before and after the field weathering tests.
(Notation: T—tensile strength; ET—elongation at tensile strength; FR—tearing strength; FP—puncture
strength; hP—push-trough displacement at maximum force).

Time
(Months) T (kN·m−1) ET (%) FR (N) FP (kN) hP (mm)

0 25.58 ± 0.85 116.8 ± 3.3 572 ± 41 2.51 ± 0.19 63.3 ± 0.7
6 25.89 ± 2.47 93.4 ± 6.5 305 ± 30 2.42 ± 0.19 52.7 ± 1.2

12 20.81 ± 1.02 50.6 ± 3.9 223 ± 26 1.90 ± 0.14 47.5 ± 0.4
18 17.07 ± 3.57 50.5 ± 5.1 232 ± 23 1.89 ± 0.26 45.8 ± 2.9
24 17.86 ± 1.25 36.8 ± 1.4 202 ± 23 1.68 ± 0.19 45.4 ± 2.4

The tensile strength of GT500 (∆T of +1.2%) was practically unchanged after 6 months
of natural weathering. The increase in exposure time from 6 to 12 months resulted in a
decrease in tensile strength (∆T of −18.6%). Further decreases, namely of 33.3 and 30.2%,
were observed after 18 and 24 months, respectively. Comparing these last two periods, the
average value of tensile strength was slightly higher after 24 months than after 18 months.
However, the dispersion associated with the value obtained for 18 months was relatively
high, as shown in Table 5. The elongation at tensile strength of GT500 decreased after
all exposure times, with the greatest reduction (from 116.8 to 36.8%) being found after
24 months. As will be seen in Section 3.1.4, SEM analysis will contribute to explaining
the reason for the degradation of the tensile behaviour (and also the tearing and puncture
behaviour) of GT500.

Like tensile strength, the tearing strength of GT500 also experienced relevant changes
during outdoor exposure. However, the variations found in tearing strength had some
differences compared to those observed in tensile strength, showing that these properties
were affected differently by weathering. Tearing strength experienced a considerable and
rapid decrease in the early months of exposure. Indeed, just after 6 months, this property
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was reduced by almost half (∆FR of−46.7%). Increasing the exposure time to 12 months led
to a more marked reduction in tearing strength (∆FR of−61.0%). However, after 12 months,
no further meaningful decreases were observed (∆FR of −59.4 and −64.7% after 18 and
24 months, respectively).

The puncture strength of GT500 was also affected by the outdoor exposure, as were
the tensile and tearing strengths. This property was almost unchanged after 6 months
(∆FP of −3.6%) but changes were noticeable after 12 months (∆FP of −24.3%). The increase
in the exposure time tended to result in further, although not very pronounced, reductions
in puncture strength (∆FP of −33.1% after 24 months). The push-trough displacement
at maximum force of GT500 also decreased after weathering, with the highest reduction
(28.3%) found after 24 months.

Contrary to the physical characterisation tests, the mechanical tests revealed that the
outdoor exposure induced some damage to GT500, which resulted in the deterioration of
its mechanical behaviour. The changes found in the tensile, tearing and puncture strengths
of GT500 were not the same. As illustrated in Figure 3, which compares the variations in
the previous properties over time, tearing strength was much more affected than tensile
or puncture strengths. Indeed, after 6 months, a 46.7% reduction in tearing strength had
already occurred, while the other two properties had no remarkable changes compared to
their original values (∆T and ∆FR of, respectively, +1.2 and −3.6%). For longer exposure
times, the reductions observed in tearing strength were always higher than those found
in the tensile or puncture strengths. Another important conclusion to be drawn from
Figure 3 is that, with some relatively small differences, the reductions in tensile strength
tended not to be very different from those in puncture strength. Indeed, these properties
were more or less identically affected by natural weathering. This result agrees with that
observed by Carneiro and Lopes [10]. It also corroborates the existence of a relationship
between the tensile strength and puncture strength of nonwoven geotextiles, as reported
by Cazzuffi et al. [35]. However, GT500 was anisotropic and the relationship between
these two properties did not follow the empiric equation proposed by Cazzuffi et al. [35],
which is intended for isotropic nonwoven geotextiles and indicates that tensile strength (in
kN·m−1) can be estimated by multiplying puncture strength (in N) by 2π. As additional
information, it should be mentioned that this equation involves puncture strength values
determined according to the method described in EN ISO 12236 [33].
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3.1.3. Hydraulic Properties

As with the previous physical and mechanical properties, the water permeability
behaviour of GT500 was also affected by natural weathering. Figure 4 illustrates the mean
quadratic curves H = f (v20) obtained for GT500 before and after the field weathering tests.
The values found for VH50 are summarised in Table 6.
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Table 6. VH50 of GT500 before and after the field weathering tests. (Notation: VH50—velocity index
for a head loss of 50 mm; ∆VH50—variation in VH50).

Time (Months) VH50 (mm·s−1) ∆VH50 (%)

0 39.4 ± 5.0 -
6 20.3 ± 6.0 −48.5
12 26.1 ± 7.4 −33.8
18 30.2 ± 9.7 −23.4
24 23.7 ± 8.1 −39.8

The exposure to natural weathering had a significant impact on the VH50 of GT500.
After 6 months, the value of this property was 20.3 mm·s−1, configuring a decrease to
almost half (∆VH50 of −48.5%) of its original value. The tests with higher exposure times
also induced variations in VH50, but in all cases the values obtained were lower than the
original value (∆VH50 between −23.4 and −39.8% for the samples exposed for 12, 18 and
24 months). As can be concluded from the analysis of Table 6, there was no relationship
between the increase in exposure time and the change in VH50.

The reduction in the VH50 of GT500 can be explained by the dirt present in its nonwo-
ven structure. Dirt accumulated over time can fill or clog the free spaces between the fibres
of nonwoven geotextiles, and hence make it more difficult, or even prevent, the flow of
water. Therefore, the accumulated dirt, while not expected to cause chemical or biological
damage to the polymeric structure, can significantly affect the water permeability behaviour
normal to the plane of nonwoven geotextiles. This way, weathering can influence the ability
of these materials to act as filters. In this case, it may be relevant to study the behaviour
of nonwoven geotextiles for shorter exposure times (e.g., 1 month), compatible with the
expected outdoor exposure in most applications where the materials have a filter function.
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3.1.4. SEM Analysis

In addition to monitoring changes in its physical, mechanical and hydraulic properties,
the effect of natural weathering on GT500 was also analysed by SEM. As can be seen in
Figure 5b,c, the PP fibres of GT500 were covered with dirt after 6 months, which prevented
their observation. For this reason, it was not possible to conclude if they had damage that
could explain the decrease found in the tearing strength (∆FR of −46.7%) of GT500. It
should be noted that the longitudinal cracks shown in Figure 5b, and in greater detail in
Figure 5c, are in the layer of dirt and not in the PP fibres.

Materials 2022, 15, x FOR PEER REVIEW 13 of 19 
 

 

was around 1.5 µm. Compared to 12 months, the cracks were now larger and more abun-
dant. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 5. PP fibres of GT500 before and after natural weathering: (a) unexposed (2000×); (b) 6 
months (500×); (c) 6 months (2000×); (d) 12 months (500×); (e) 12 months (2000×); (f) 18 months (500×); 
(g) 18 months (1000×); (h) 24 months (500×); (i) 24 months (2000×). The magnifications correspond 
to original on-screen values. 
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(g) 18 months (1000×); (h) 24 months (500×); (i) 24 months (2000×). The magnifications correspond
to original on-screen values.
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The PP fibres were still mostly covered with dirt after 12 months (Figure 5d,e). How-
ever, the amount of dirt was low in some areas, making it possible to observe the PP fibres
and detect some transverse cracks in these. The cracks were very small, with a maximum
width of about 0.6 µm and a length which tended not to exceed 5 µm. The cracking of
PP fibres, which is a consequence of photo-oxidation, may explain the decrease found in
the mechanical strength of GT500 (Section 3.1.2). The layer of dirt covering a PP fibre can
be observed in some detail in Figure 5e. In this case, the layer of dirt had a thickness of
about 1 to 2 µm.

Compared to 6 and 12 months, the PP fibres were less dirty after 18 months (Figure 5f,g).
This may seem contradictory considering that the maximum mass per unit area value of
GT500 was observed precisely at 18 months. However, there is no contradiction, as SEM
analysis only shows the top surface of GT500 (the area directly exposed to weathering)—the
nonwoven structure had, before weathering, a thickness of 3.68 mm. Despite less dirt on
the top surface, there was still a lot of dirt accumulated inside the nonwoven structure of
GT500, as indicated by the mass per unit area and thickness values. SEM analysis also
showed the existence of many transverse cracks in the PP fibres (Figure 5f,g). These cracks
had different lengths, reaching up to about 25 µm, and their maximum width was around
1.5 µm. Compared to 12 months, the cracks were now larger and more abundant.

The SEM images obtained after 24 months of natural weathering (Figure 5h,i) showed
that the existing cracks in the PP fibres were not much different from those found after
18 months. Indeed, they had a maximum width of about 1.5–2 µm and a length of up
to ≈23 µm. The mechanical results obtained after 18 and 24 months (Section 3.1.2) also
tended not to be very different. It is interesting to note that, as observed in previous
works [9,15,24] for different geotextiles and exposure conditions, the cracks in the PP fibres
were always transverse.

3.2. Artificial Weathering

Before starting with the results of artificial weathering, it is relevant to make a short
analysis of the tensile results obtained for the unexposed sample. As mentioned in Section 2,
different tensile test methods were used to evaluate the tensile behaviour of the samples ex-
posed to natural and artificial weathering. Therefore, it was necessary to test the unexposed
sample (which provides the reference values for monitoring degradation) by both methods.
As it can be seen in Tables 5 and 7, the values obtained for the tensile strength of GT500 were
identical regardless of the tensile test method: 25.58 and 25.65 kN·m−1, respectively, when
determined by EN ISO 10319 [31] and EN 29073-3 [28]. By contrast, elongation at tensile
strength was significantly lower when GT500 was tested according to EN 29073-3 [28].
This difference can be explained by the particularities of the methods, which, among other
things, use specimens with different lengths and widths, as described in Section 2.4.3.

Table 7. Tensile properties of GT500 before and after the laboratory weathering tests.
(Notation: EUV—total UV radiant exposure; T—tensile strength; ET—elongation at tensile strength;
∆T—variation in tensile strength).

Time (Hours) EUV (MJ·m−2) T (kN·m−1) ET (%) ∆T (%)

0 0 25.65 ± 1.46 63.0 ± 2.7 -
362 * 50 26.72 ± 3.14 61.2 ± 5.0 +4.2
500 35 25.93 ± 2.78 59.8 ± 2.7 +1.1

1000 69 27.56 ± 3.13 59.4 ± 6.7 +7.4
2000 138 22.58 ± 3.09 41.9 ± 2.7 −12.0
4000 276 17.50 ± 1.64 38.8 ± 1.5 −31.8

* Test according to EN 12224 [12].

In the laboratory, the weathering resistance of GT500 was initially evaluated following
EN 12224 [12] as closely as possible. As shown in Table 7, testing according to this method
did not lead to meaningful changes in the tensile properties of GT500. Indeed, a ∆T



Materials 2022, 15, 8216 14 of 18

of +4.2% was observed and the corresponding elongation at tensile strength was also
practically unaffected.

UV radiation is considered as one of the main damaging agents for plastic materials
exposed outdoors. In order to further investigate the weathering resistance of GT500,
additional laboratory tests were carried out with higher exposure times (i.e., higher radiant
exposures) than those considered in EN 12224 [12]. In order to accelerate the degradation
process (it is well known that the velocity of many chemical reactions increases with
increasing temperature), the UV step of these tests was performed at 60 ◦C instead of the
50 ◦C used in the EN 12224 [12] method (an increase of 10 ◦C in temperature often results in
the duplication of the reaction rate). In addition, a condensation step was also introduced
in the weathering cycle.

GT500 had no visible damage after the different modified weathering tests. However,
there were some changes in its tensile behaviour (Table 7). The tests with shorter exposure
times did not significantly affect the tensile strength of GT500 (∆T of +1.1 and +7.4% after
500 and 1000 h, respectively). Likewise, they also had no impact on its elongation at tensile
strength. The increase in the exposure time, namely to 2000 and 4000 h, resulted in a
decrease in tensile strength (∆T of −12.0 and −31.8%, respectively). These reductions were
accompanied by decreases in elongation at tensile strength.

3.3. Natural Weathering vs. Artificial Weathering

In this section, the degradation of GT500 under natural and artificial weathering
conditions is compared. The comparison will be based on the changes undergone by its
tensile strength, which was a property measured after both weathering tests.

The method described in EN 12224 [12] intends to differentiate materials with little or
no resistance to weathering from those that have this resistance. According to this method,
GT500 showed good resistance to weathering, without any relevant changes in its tensile
behaviour. With this result, and following the guidelines of ISO/TR 20432 [36], it would be
acceptable to expose GT500 outdoors for at least 1 month, without the need to apply any
reduction factor to allow for weathering. As shown by the results obtained under natural
weathering (Table 5), GT500 maintained its tensile strength for at least 6 months. Indeed,
a ∆T of +1.2% was observed after 6 months, with only a reduction in tensile strength
found after 12 months (∆T of −18.6%). This shows that, in the case of GT500, the exposure
conditions and test results of EN 12224 [12] were able to ensure its correct behaviour, in
terms of tensile strength, for 6 months.

Regarding the adapted laboratory weathering tests, the analysis of the residual tensile
strengths of GT500 shows that some relationship can be found between natural and artificial
weathering (Figure 6). Residual tensile strength (in %) was, regardless of the tensile test
method, obtained by dividing the tensile strength of the exposed samples by the tensile
strength of the unexposed sample.

The change in tensile strength caused by 12 months outdoors (∆T of −18.6%) was
not very different (only slightly more pronounced) than that occurred after 2000 h of ex-
posure in the laboratory weatherometer (∆T of −12.0%). Doubling the exposure time to
24 months and 4000 h, the changes found in tensile strength were very similar (∆T of,
respectively, −30.2 and −31.8%). This showed that 4000 h in the laboratory weatherom-
eter (EUV of 276 MJ·m−2) was practically equivalent to 24 months outdoors (predicted
EUV of 711 MJ·m−2). The reduction in tensile strength observed after 18 months out-
doors (∆T of −33.3%) was also similar to that induced by 4000 h in the laboratory weath-
erometer. However, it is difficult to establish a reliable relationship based on these re-
sults due to the high dispersion associated with the tensile strength value obtained after
18 months outdoors.

When comparing the field and laboratory weathering tests, it is possible to conclude
that different UV radiant exposures (outdoors and in the laboratory) resulted in identical
changes in tensile strength. For example, the reductions of about 30% in tensile strength
found after 24 months and 4000 h of natural and artificial weathering, respectively, support
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this conclusion. The results also allow us to conclude that, despite having higher UV
radiant exposures, the field weathering tests did not have a more pronounced impact on
tensile strength than the laboratory weathering tests. This can be illustrated, for example,
by comparing the results obtained after 12 months outdoors (predicted EUV of 421 MJ·m−2)
and 4000 h in the laboratory weatherometer (EUV of 276 MJ·m−2). Indeed, ∆T of −18.6 and
−31.8%, respectively, were found after these tests. The faster degradation in the laboratory
may be explained by the temperature to which GT500 was exposed, which was predictably
higher in the accelerated weathering tests (60 ◦C in the UV step) than in the field weathering
tests (temperature not monitored at the surface of GT500, which had a black colour). In
addition, it is possible that the dirt accumulated in the nonwoven structure of GT500 during
the outdoor exposure had a positive contribution to retarding degradation by preventing
sunlight from reaching the PP fibres.
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The relationship found in this work between natural and artificial weathering should
be considered with care and should not be generalized or extrapolated directly to other
materials. Three reasons can be pointed out for this: (1) the results obtained for GT500,
which had a particular stabilisation package, may not be valid for other materials with other
stabilisation packages; (2) geotextiles made from other polymers may not have the same
behaviour when exposed in the laboratory and outdoors; and (3) a different exposure site,
with different weather conditions, may not lead to the same results. Even the same exposure
site at different time periods may result in different results. Therefore, obtaining a universal
relationship between natural and artificial weathering is a difficult, if not impossible, task.

Despite the difficulty in extrapolating the results to other materials, the outcomes
of this work may be useful to help foresee the damage that other PP geotextiles (with
a stabilisation package identical to that of GT500) may suffer due to weathering. For
this, it will be necessary to account for the different climatic conditions (e.g., UV radiant
exposure and temperature) to which the materials are expected to be exposed (weather is
not reproducible). The relationship found between natural and artificial weathering may
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be helpful, based on laboratory test results, in providing an indication of the behaviour of a
material under natural degradation conditions. However, any prediction must be made
carefully, knowing in advance that the result may not be the most accurate.

4. Conclusions

This work evaluated the resistance of a PP geotextile (designated as GT500) to weath-
ering, both outdoors (under natural degradation conditions) and in the laboratory (under
accelerated degradation conditions). The damage experienced by GT500 in the weather-
ing tests was assessed by monitoring changes in its physical, mechanical and hydraulic
properties, and by microscopic analysis. The main results of the work are as follows:

• The mass per unit area and thickness of GT500 increased (less than 10% in most cases)
after the field weathering tests. This was due to the presence of dirt on the nonwoven
structure and, obviously, not to an increase in polymeric mass.

• The mechanical properties of GT500 degraded during outdoor exposure. The percent-
age reductions observed in tensile and puncture strength were not very different from
each other (around 30% after 24 months) but were less pronounced than those found
in tearing strength (around 65% after 24 months).

• The water permeability normal to the plane of GT500 was affected by natural weath-
ering, with the material becoming less permissive—reductions in the velocity index
for a head loss of 50 mm ranging from 23.4 to 48.5%. This can be attributed to the dirt
existing in the nonwoven structure, which filled the free spaces between the PP fibres
and reduced the flow of water.

• SEM analysis showed that outdoor exposure induced transverse cracks in the PP fibres,
which may explain the deterioration in the mechanical behaviour of GT500. It also
showed the presence of dirt on the nonwoven structure.

• According to the method of EN 12224 [12], GT500 had adequate resistance to artificial
weathering, without changes in its tensile behaviour. Compared to outdoor results,
the test conditions and results of this method were able to ensure, in terms of tensile
strength, the correct behaviour of the material for 6 months.

• The adapted laboratory weathering tests, with exposure conditions more severe than
those of the EN 12224 [12] method, caused the deterioration of the tensile behaviour
of GT500. The reduction in tensile strength observed after 4000 h in the laboratory
weatherometer (EUV of 276 MJ·m−2) was very close to that found after 24 months
outdoors (predicted EUV of 711 MJ·m−2). This relationship may not be valid for other
geotextiles (e.g., made from different polymers or with different stabilisation packages)
or other exposure locations.

Overall, GT500 showed some resistance to weathering. For most applications, where
the exposure time to UV radiation and other weathering agents is short (less than 1 month,
corresponding to the period required for installation), this type of degradation may not
be a problem for a properly stabilised PP geotextile. However, for applications where
exposure over a long period of time is expected, weathering can significantly affect the
behaviour of geotextiles, even if they are stabilised against UV radiation (as GT500 was).
In the latter cases, care should be taken when selecting materials to be applied, and it is
essential to ensure that their weathering resistance is in compliance with the expected
exposure conditions.
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strength, the correct behaviour of the material for 6 months. 

• The adapted laboratory weathering tests, with exposure conditions more severe than 
those of the EN 12224 [12] method, caused the deterioration of the tensile behaviour 
of GT500. The reduction in tensile strength observed after 4000 h in the laboratory 
weatherometer (EUV of 276 MJ·m−2) was very close to that found after 24 months out-
doors (predicted EUV of 711 MJ·m−2). This relationship may not be valid for other ge-
otextiles (e.g., made from different polymers or with different stabilisation packages) 
or other exposure locations. 
Overall, GT500 showed some resistance to weathering. For most applications, where 

the exposure time to UV radiation and other weathering agents is short (less than 1 month, 
corresponding to the period required for installation), this type of degradation may not 
be a problem for a properly stabilised PP geotextile. However, for applications where ex-
posure over a long period of time is expected, weathering can significantly affect the be-
haviour of geotextiles, even if they are stabilised against UV radiation (as GT500 was). In 
the latter cases, care should be taken when selecting materials to be applied, and it is es-
sential to ensure that their weathering resistance is in compliance with the expected expo-
sure conditions. 
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Notation

A—area; B—width; E—solar radiant energy; E340nm—radiant exposure at 340 nm; ET—elongation at
tensile strength; EUV—UV radiant energy; F—tensile force; Fmax—maximum tensile force; FP—puncture
strength; FR—tearing strength; H—head loss; hP—push-trough displacement at maximum force;
N—number of weathering cycles; P—precipitation; RH—relative humidity; RT—correction factor
for a water temperature of 20 ◦C; t—time interval; t—thickness; T—tensile strength; TAir—air tem-
perature; V—volume; v20—velocity index at 20 ◦C; VH50—velocity index for a head loss of 50 mm;
X—property X (generic); X(Exposed)—property X after the weathering tests; X(Unexposed)—property X
before the weathering tests; ∆FP—variation in puncture strength; ∆FR—variation in tearing strength;
∆t—variation in thickness; ∆T—variation in tensile strength; ∆VH50—variation in the velocity in-
dex for a head loss of 50 mm; ∆X—variation in property X; ∆µA—variation in mass per unit area;
µA—mass per unit area.
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