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Abstract: Two-dimensional nanosheets of semiconductor metal oxides are considered as promising
for use in gas sensors, because of the combination of a large surface-area, high thermal stability
and high sensitivity, due to the chemisorption mechanism of gas detection. In this work, 2D SnO2

nanosheets were synthesized via the oxidation of template SnS2 nanosheets obtained by surfactant-
assisted one-pot solution synthesis. The 2D SnO2 was characterized using transmission and scanning
electron microscopy (TEM, SEM), X-ray diffraction (XRD), low-temperature nitrogen adsorption,
X-ray photoelectron spectroscopy (XPS) and IR spectroscopy. The sensor characteristics were studied
when detecting model gases CO and NH3 in dry (RH25 = 0%) and humid (RH25 = 30%) air. The com-
bination of high specific-surface-area and increased surface acidity caused by the presence of residual
sulfate anions provides a high 2D SnO2 sensor’s signal towards NH3 at a low temperature of 200 ◦C
in dry air, but at the same time causes an inversion of the sensor response when detecting NH3 in a
humid atmosphere. To reveal the processes responsible for sensor-response inversion, the interaction
of 2D SnO2 with ammonia was investigated using diffuse reflectance infrared Fourier transform spec-
troscopy (DRIFTS) in dry and humid air at temperatures corresponding to the maximum “positive”
and maximum “negative” sensor response.

Keywords: 2D nanomaterials; template synthesis; SnS2 nanosheets; SnO2 nanosheets; gas sensor;
carbon monoxide; ammonia

1. Introduction

Two-dimensional (2D) semiconductor nanomaterials have attracted a great deal of
research interest due to their unique dimension-dependent electronic properties. Two-
dimensional semiconductors may find a variety of applications, such as high-mobility
transistors [1] and sensitive photodetectors [2], as well as gas sensors [3,4]. The family
of 2D materials significantly increased in 2010–2020, and now includes materials that are
diverse in nature: phosphorene, an analog of graphene consisting of atomically thin lay-
ers of phosphorus [5,6]; a group of materials with the common name MXenes, including
2D carbides, nitrides and carbonitrides [7,8]; boron nitride [9]; molybdenum, tungsten
and rhenium dichalcogenides [10,11]; layered semiconductor chalcogenides GaS, GaSe,
SnS2 [12–14] and layered oxides (MoO3) [15]. It should be noted that for practical applica-
tion in the field of gas sensors, 2D materials such as graphene and its derivatives or MoS2,
MoSe2, WS2, WSe2 have a number of significant limitations [16–18]. The main disadvantage
of 2D materials is their low stability and fully saturated surface. Temperature rise and
thermal cycling in air, to clean the surface of layered chalcogenides, phosphorene, and
carbides (MXenes) leads to surface oxidation, degradation of adsorption properties and
increased resistance. A common disadvantage of 2D materials is their reasonably low
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sensitivity due to the primary contribution of physical adsorption instead of chemisorption
into the sensor signal.

The 2D nanosheets of semiconductor metal oxides may be considered as promising
for use in gas sensors, since the combination of a large surface-area, high thermal stability
and high sensitivity, due to the chemisorption mechanism of gas detection, is expected.
However, the semiconductor oxides ZnO, SnO2, In2O3, WO3, most commonly used as gas-
sensitive materials, do not have a layered structure, which makes it difficult to synthesize
them in the form of 2D nanosheets by traditional methods such as the exfoliation route.
For example, various methods of hydrothermal synthesis have been proposed to obtain
SnO2 [19–26], but they allow the acquirement only of hierarchical 3D structures (of the
nanoflowers type) formed by 2D nanosheets. An interesting example is the synthesis of
2D indium oxide, InO, in the spatial confinement between SiC and graphene using the
MOCVD method [27]. It was found that the predicted atomic arrangement of intercalated
In atoms is consistent with the In–In distances predicted for the stable 2D InO structure [28].
The authors of [28] also reported on the structural and electronic properties of In2O3 2D
structures with planar hexagonal geometry.

An alternative approach may be template synthesis, in which 2D nanosheets of layered
sulfide are oxidized to form an oxide while preserving the morphology of the particles. The
recent works in this direction are the articles by V. Paolucci et al. [29,30], presenting SnSe2
2D nanosheets as a template for obtaining amorphous SnO2 layers.

Tin disulfide SnS2, a widely known layered material, is an indirect semiconductor with
an energy gap of approximately 2.07 eV [31]. It has attracted interest in photovoltaic [32],
photocatalytic [33,34] and sensor [35] applications and also as a material for Li-ion bat-
teries [36,37]. Recently, SnS2 nanoparticles with a morphology of nanoflowers [33,34]
or nanosheets [36,37] were synthesized using surfactant-assisted hydrothermal routes.
Growth of SnS2 nanoplatelets in nonpolar solutions using the solvotermal method starting
from SnCl4·5H2O [32] or by the thermal decomposition of Sn(S2CNEt2)4 single-molecular
precursor [38] with the use of oleylamine as the surfactant, was reported.

Here, we report a simple method of producing 2D SnO2 nanosheets via the oxidation
of template SnS2 nanosheets obtained by surfactant-assisted one-pot solution synthesis.
The 2D SnO2 was characterized in detail, in terms of microstructure parameters and surface
composition, and also tested as a gas-sensitive material when detecting CO and NH3.

2. Materials and Methods

All chemicals were purchased from Sigma Aldrich in the purest form available and
used for the syntheses without further purification.

Colloidal SnS2 nanosheets were synthesized under argon atmosphere, following
the protocol outlined here. Tin (IV) acetate Sn(CH3COO)4 (0.023 mmol) and oleic acid
(0.09 mmol) were added to 1-octadecene (2 mL) followed by heating at 200 ◦C for approx-
imately 1 h under argon flow to remove the acetic acid and form the tin oleate complex.
The solution was then cooled to room temperature, and dodecylamine (0.09 mmol) and
elemental sulfur (0.045 mmol) were added. The mixture was heated again to 220 ◦C under
vigorous stirring and held at this temperature for approximately 5 min. As the desired
temperature was reached, the initial colorless solution changed to yellow and then to turbid
orange. The resultant solution was cooled, mixed with an equal volume of acetone, and
centrifuged at 6000 rpm for 10 min. The supernatant was discarded, and the sediment
nanosheets were redispersed in toluene. The SnS2 nanosheets were additionally precipi-
tated using an equal volume of acetone, separated by centrifugation, and redispersed in the
toluene. The resultant orange dispersion was slightly turbid and was stable to aggregation
for several days.

The conditions of complete SnS2 to SnO2 oxidative transformation were determined
by thermogravimetric analysis with mass spectral analysis of gaseous products (TG-MS),
using a NETZSCH STA 409 PC/PG instrument (heating in air, 5K/min) (Figure 1). The
oxidation of organic stabilizers (oleic acid and dodecylamine) occurs in the temperature
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range of 250–600 ◦C, as evidenced by a symbiotic increase in ionic currents, corresponding
to the mass numbers m/z = 18 (H2O), 44 (CO2) and 30 (NO). The oxidation of sulfide
anions, which is accompanied by the release of SO2 (m/z = 64) occurs in a narrower
temperature range of 250–550 ◦C. To obtain 2D SnO2, the SnS2 sol was dried in air at room
temperature until the solvent was removed. The SnS2 powder was annealed at 500 ◦C
for 6 h. The annealing temperature of 500 ◦C was chosen to obtain 2D SnO2 with high
specific-surface-area.
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Figure 1. TG curve and temperature dependencies of ionic current for m/z = 18 (H2O), 30 (NO),
44 (CO2), 64 (SO2) for SnS2 oxidation in air.

The size and morphology of the SnS2 nanoparticles were determined by transmission
electron microscopy (TEM), with the LEO19 AB OMEGA microscope operated at 100 kV
and the JEOL JEM2100 microscope operated at 200 kV. The morphology of the SnS2 and 2D
SnO2 powders was studied with scanning electron microscopy (SEM), using a Carl Zeiss
SUPRA 40 FE-SEM instrument with Inlens SE detector (accelerating voltage 5 kV, aperture
30 µm). The specific surface area of 2D SnO2 was measured by the low-temperature
nitrogen adsorption, using a Chemisorb 2750 instrument (Micromeritics).

The phase composition was analyzed using X-ray diffraction (XRD) and Raman spec-
troscopy. A Panalytical Aeris Research diffractometer (CuKα radiation, Bragg–Brentano
geometry, PiXCel detector, with a total angular range of 3.000–60.000◦ 2θ, a step size of ca.
0.005◦ and variable exposure time) was used for X-ray-powder-diffraction measurements.
For this investigation, concentrated solutions of the purified nanocrystals were spread on
top of a silicon wafer. The SnO2 crystallite size was estimated using the Scherrer formula.
Raman spectra of SnS2 were acquired on a Renishaw InVia Raman microscope equipped
with a 514 nm argon laser. Raman spectra of 2D SnO2 were collected on the i-Raman Plus
spectrometer (BW Tek) equipped with a BAC 151C microscope and a 532 nm laser.

The surface composition was analyzed using X-ray photoelectron spectroscopy (XPS)
and Fourier transform infrared (FTIR) spectroscopy. XP spectra were obtained on Omicron
ESCA+ (monochromatic AlKα anode, E = 1486.6 eV) using a neutralizer (scanning step
0.1 eV/s, transmission energy 20 eV). The spectra were processed using the UNIFIT soft-
ware. The peaks were approximated by convolution of the Gauss and Lorentz functions,
with the simultaneous optimization of the background parameters. The FTIR spectra
were registered in transmission mode using a Frontier (Perkin Elmer) spectrometer in the
4000–400 cm−1 region, with a step of 1 cm−1. For these experiments, 0.3–0.5 mg of the
powder was ground with 40 mg KBr (FT-IR grade, Sigma-Aldrich, St. Louis, MO, USA) and
pressed into tablets (~0.5 mm thick, 12 mm in diameter). The baseline was preliminarily
taken from pure KBr.
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Diffuse reflectance infrared fourier-transformed (DRIFT) spectra were recorded on
a Frontier (Perkin Elmer) spectrometer using a DiffusIR annex and heated-flow chamber
HC900 (Pike Technologies, Fitchburg, WI, USA) sealed by a ZnSe window. DRIFT spectra
were registered in the 4000–1000 cm−1 region with resolution 4 cm−1 and with accumulation
of 30 scans with automatic H2O/CO2 compensation. The 2D SnO2 powder (30 mg) was
placed in alumina crucibles (5 mm diameter). The measurements were performed under
100 mL/min flow of dry (relative humidity at 25 ◦C RH25 = 0%) or humid (RH25 = 30%) air,
containing 100 ppm NH3 at 200 ◦C and at 350 ◦C.

To manufacture the 2D SnO2 sensors, concentrated SnS2 sol in toluene was deposited
dropwise on the alumina substrates with Pt contacts and Pt heaters (Figure 2). To form a
sensitive film, the deposition of SnS2 was repeated three times. After each deposition, the
layer was dried in air at room temperature until the solvent evaporated, and then slowly
heated to 500 ◦C, using a substrate heater. To oxidize SnS2 into 2D SnO2, the formed films
were additionally annealed in air at 500 ◦C for 6 h. The selected annealing temperature
of 500 ◦C allows for complete oxidation of the SnS2, and provides the necessary thermal
stability of 2D SnO2 during sensor measurements in the temperature range of 50–500 ◦C.
Certified gas mixtures containing 2530 ppm CO in N2 and 240 ppm NH3 in N2 were used
as gas sources. The concentration of the target gas in the air was set and controlled using
EL-FLOW mass-flow controllers (Bronkhorst). The flow rate through the measuring cell
in all measurements was constant 100 ± 0.5 mL/min. The humidity of the gas mixture
(relative humidity at 25 ◦C RH25 = 0% for dry conditions and RH25 = 30% for humid
conditions) was set and controlled by a P-2 Humidifier (Cellkraft). The sensor resistance
was measured at 1.3 V DC-voltage at a temperature fixed in the range of 50–500 ◦C, with
the step of 50 ◦C. For each temperature, three cycles of measurements (15 min in pure
air, 15 min in the presence of air containing the target gas), were performed. The sensor
response was calculated as S = (Ggas − Gair)/Gair, where Gair is the sensor conductance in
air, and Ggas is the sensor conductance in the CO- or NH3-containing gas mixture.
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Figure 2. SEM image of alumina substrate with Pt contacts: (a) bare substrate, (b) covered with
2D SnO2.

3. Results
3.1. Microstructure, Phase Composition and Surface Composition

The nanosheet morphology was studied using the transmission and scanning electron
microscopy (TEM and SEM) methods. Figure 3 shows a series of representative TEM
images of the SnS2 sample. The SnS2 nanosheets have 2D morphology. The sample is
formed by~ 5 nm thick nanosheets packed in agglomerates of 4–5 pieces (Figure 3b). The
electron-diffraction pattern (inset in Figure 3a) taken from an ensemble of nanosheets shows
that particles have the crystal structure of SnS2 (berndtite). When oxidized at 500 ◦C, the
structure of the 2D nanosheets is mostly preserved. (Figure 3c,d). SEM images (Figure 4)
reveal the formation of nanosheets with lateral lengths > 500 nm.
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Figure 4. SEM images of SnS2 nanosheets before (a) and after (b) oxidation at 500 ◦C.

The X-ray diffraction pattern of the SnS2 nanosheets (Figure 5) is close to the diffrac-
togram of the SnS2 Berndtite-2T standard (ICDD No. 23-677). The diffraction pattern
contains broadened reflections (100) and (110), which refer to the directions lying in the
plane of the sheet. At the same time, the reflection (001) corresponding to the normal to the
plane of the sheet does not appear. This may be due to the extremely small thickness of
the sheet that indicates the implementation of a 2D structure. The oxidation of the SnS2
nanosheets leads to the formation of SnO2 with a cassiterite structure (ICDD No. 41-1445).
The diffraction maxima of 2D SnO2 are greatly broadened, which indicates the small size of
the crystal grains. The crystallite size of the 2D SnO2 calculated using Sherrer’s formula
with (110) and (101) reflections is 4.0 ± 0.5 nm, which correlates with the high specific area
of 44 ± 2 m2/g.
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Figure 5. X-ray diffraction patterns of SnS2 nanosheets and 2D SnO2 powder.

Figure 6 compares the Raman spectra of the SnS2 and 2D SnO2 nanosheets. Assign-
ments of Raman vibrational modes are presented in Table 1. Two peaks with maxima
at 230 cm−1 and 317 cm−1 are observed in the Raman spectrum of the SnS2 nanosheets
(Figure 6a). The latter corresponds to the A1g mode of SnS2 [39]. The line at 230 cm−1 is
shifted towards large wavenumbers compared with Eg SnS2 (205–210◦ cm−1 for a single
crystal [39,40]) and is very intense, compared with A1g. Such modification of the spectrum
may be due to the dimensional effect and the formation of a 2D structure [41]. In the Raman
spectrum of the 2D SnO2 sample (Figure 6b), there are A1g, Eg, B2g, B1g tin dioxide modes
as well as a wide band in the range of 400–700 cm−1, corresponding to the superposition
of surface modes [42]. The assignment of Raman bands corresponding to volume modes
is made on the basis of the literature data [43]. The appearance of surface modes is asso-
ciated with the small size of the SnO2 particles, and may be due to the manifestation of
symmetry-forbidden oscillations, due to a disturbance of the long-range order in systems
of reduced dimension [42]. An alternative explanation is the formation of a highly defective
near-surface layer, the contribution of which is maximal for materials with the smallest
particle size [44]. In the range of 900–2000 cm−1 in the spectrum of 2D SnO2, there are lines
corresponding to the residues of the oleic acid stabilizer used in the synthesis of the SnS2
nanosheets (Table 1).
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Table 1. Assignments of IR bands and Raman vibrational modes (cm−1).

Sample IR Band/Region,
cm−1 Assignment Raman Shift,

cm−1 Assignment

SnS2 400–800 ν (Sn-S) + ν (Sn-O) 230 Eg
970, 1130 ν (C-O) 317 A1g

1372 νs (COO−)
1462, 2852, 2924 ν (C-H)

1534 νas (COO−)
1633 ν (C=O)
2955 ν (=C-H)

2D SnO2 400–800 ν (Sn-O) 110.5 B1g
970, 1048, 1122 ν (SO4

2−) 270 IR Eu
1255 δ (CH2) 513.5 Eg
1400 νs (COO−) 564.8 surface mode
1626 δ (H2O) + ν (C=O) 627 A1g
1728 ν (C=O) 851.7 B2g

2850–3700 “free” OH groups 997.5 ν (C-C)
1282.6 δ (CH2)
1609.6 ν (C=O)
1727.7 ν (C=C)

XP-spectra SnS2 and 2D SnO2 are shown in Figure 7. In both cases, tin is present in the
oxidation state +4. The positions of the S2p lines correspond to the sulfide anion (162.3 eV,
163.5 eV) in the case of SnS2, and the sulfate anion (169.6 eV, 170.8 eV) in the case of 2D
SnO2. The ratio of the integral intensities of the sulfur and tin signals is [S]/[Sn] = 0.24
and 0.04 for SnS2 and 2D SnO2, respectively. This indicates that in 2D SnO2, sulfates are
surface residues. The O1s spectra contain two components corresponding to oxygen of
the oxide (OL, 530.7–531.2 eV) and oxygen from the surface oxygen-containing species (OS,
532.0–532.4 eV). The ratio of the integral intensities of oxygen and tin signals [O]/[Sn] = 0.37
and 0.24 for SnS2 and 2D SnO2, respectively. Such a large amount of oxygen from oxygen-
containing particles on the SnS2 surface is due to the presence of an organic stabilizer,
oleic acid. The C1s spectrum is also complex, and contains two or three components
corresponding to the presence of C-C bonds (C1, 284.8–285.0 eV), C-OH and C-O-C bonds
(C2, 285.9–286.5 eV) and carboxyl groups COO− (C3, 289.1–289.8 eV). The C3 component
appears only in the 2D SnO2 spectrum. The ratio of the carbon and tin signal-intensities is
[C]/[Sn] = 2.22 and 0.04 for SnS2 and 2D SnO2, respectively. The main part of the carbon
on the surface of the SnS2 is obviously represented by a long-chain hydrocarbon radical of
oleic acid.
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The FTIR spectra shown in Figure 8 are consistent with the results of the Raman
spectroscopy and XPS. The assignment of absorption bands is presented in Table 1 [45].
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There are many hydrocarbon fragments and carboxylic groups which may be attributed to
oleic acid ligands covering the SnS2 surface. On the surface of the 2D SnO2, only residues
of the organic-stabilizer oxidation products and sulfate anions were found.
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3.2. Gas Sensor Properties

To evaluate the sensor properties of the 2D SnO2 model, reducing gases CO (which
does not have specific acid-base properties) and NH3 (which exhibits basic properties) were
selected. The measurements were carried out when detecting 20 ppm CO and 20 ppm NH3
in dry (RH25 = 0%) and humid (RH25 = 30%) air. Examples of changes in the resistance
of the 2D SnO2 when detecting 20 ppm CO and 20 ppm NH3 in dry air (RH25 = 0%) are
shown in Figure 9. The sensor’s resistance decreases in the presence of reducing, due to
their oxidation by oxygen chemisorbed on the SnO2 surface:

CO(gas) + Oα−
β(ads) → βCO2(gas) + αe− (1)

2NH3(gas) +
3
β

Oα−
β(ads) → N2(gas) + 3H2O(gas) +

3α
β

e− (2)

where CO(gas), NH3(gas) are CO and NH3 molecules in the gas phase, O−α
β(ads) is the

chemisorbed oxygen species (α = 1 and 2 for once- and twice-charged particles, respectively;
β = 1 and 2 for atomic and molecular forms, respectively), e− is an electron injected into the
conduction band, and CO2(gas), N2(gas), H2O(gas) are products of CO and NH3 oxidation
desorbed into the gas phase.
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In the temperature range 350–500 ◦C, the independence of the 2D SnO2 resistance in
air on the measurement temperature is observed. Such an unusual type of temperature
dependence of the semiconductor resistance may be due to the small thickness of the
sensitive layer formed from the sol during the oxidation of the SnS2 nanosheets. Therefore,
the surface of all 2D SnO2 particles is accessible for oxygen chemisorption, which occurs
with electron localization. As a result, the 2D SnO2 particles with a thickness of several
nanometers turn out to be completely depleted of electrons. This corresponds to the
situation of the “flat zones”, with the same concentration of electrons in the bulk and
near the surface of the crystallite [46], in which the barriers at the grain boundaries that
determine the value of the conductivity activation-energy are small. With a decrease in
the operating temperature, the thickness of the depleted layer near the 2D SnO2 surface
decreases. This leads to a difference in the electron concentration in the bulk and near
the crystallite surface, which leads to the formation of significant surface barriers and a
transition to the activation character of conductivity.

At temperatures below 200 ◦C, baseline drift (the change in resistance in air at the same
operating temperature) is observed. This effect may be due to incomplete desorption and
accumulation of the products of CO and NH3 oxidation on the surface of sensitive material.

The temperature dependencies of the sensor’s response are shown in Figure 10. When
detecting CO (Figure 10a), there is a significant decrease in the response value. Such a
change in signal is apparently because of a decrease in the number of oxidative active-
centers on the SnO2 surface, namely, chemisorbed oxygen anions, which are responsible for
the formation of a sensor response when detecting CO [47]. In humid air, dissociative ad-
sorption of water vapor leads to the substitution of both lattice and chemisorbed oxygen by
hydroxyl groups [48]. It can be expected that for thin 2D SnO2 sensitive layers formed from
the sol during the oxidation of the SnS2 nanosheets, the process of surface hydroxylation in
humid air occurs to a high extent.
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The temperature dependencies of the sensor’s response towards NH3 have a more
complex form (Figure 10b). In dry air, a maximum sensor signal is observed at T = 200 ◦C.
The surface sulfate anions act as additional acid centers, favored for NH3 adsorption [49].
The temperature range of 250–350 ◦C corresponds to the minimum sensor response, and
a further temperature increase leads to an increase in the sensor signal. When NH3 is
detected in moist air, the sensor response of 2D SnO2 acquires “negative” values in this
temperature range, due to the fact that the resistance of this material in the presence of
ammonia becomes greater than in pure air.
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Such a change in the response type was reported for various materials: from n- to
p-type for MoO3 [50], In2O3 [51], SnO2 [52–54], SnO2(Fe) [55], SnO2(Pd,Pt) [56], ZnO [57],
WO3 [58,59], TiO2 [60], and from p- to n-type conductivity for α-Fe2O3 [61], Co3O4 [62],
graphene [63,64], and SnO2- and WO3-decorated graphene [65]. The inversion of the sensor
response was explained by different reasons: (i) a change in the type of main charge-carriers
in the semiconductor oxide, due to either the surface reactions under certain conditions, or
because of the effect of impurities; (ii) kinetic reasons related to the adsorption barrier of
the detected gas; (iii) the formation of new donor or acceptor species, which contributes to
the change in the sensor conductivity.

The results obtained in this work and in our previous article [54] allow us to conclude
that when detecting ammonia, the most likely cause of signal inversion is precisely the
appearance of new acceptor species. The reason for the decrease in the SnO2 response in
the temperature range of 250–350 ◦C is the possible NH3 to NO oxidation by chemisorbed
oxygen. Further interaction of NO molecules with ambient oxygen molecules leads to
the formation of surface-bound nitrite and nitrate groups [66]. This process occurs with
the localization of charge carriers from the conduction band of the semiconductor, which
leads to a decrease in the electrical conductivity of the n-type semiconductor material and
a formal decrease in the sensor response. The adsorption of water vapor on the SnO2
surface occurs with an increase in the electron concentration in the conduction band of
the semiconductor [48]. This should stimulate the formation of surface nitrite and nitrate
groups which occurs with the localization of electrons, and cause a greater increase in the
resistance of the sensitive layer.

3.3. In Situ DRIFTS Analysis of 2D SnO2 Interaction with NH3

To confirm the above reasoning, the interaction of the 2D SnO2 with ammonia was
investigated using DRIFTS in dry (RH25 = 0%) and humid (RH25 = 30%) air at temperatures
of 200 ◦C and 350 ◦C, corresponding to the maximum "positive" and maximum "negative"
sensor response, respectively. The DRIFT spectra recorded after 100 min exposure in dry or
humid air containing 100 ppm NH3 are shown in Figure 11. Spectra in dry and humid air
at 200 ◦C and 350 ◦C were used as the baselines.
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In general, the spectra obtained at 200 ◦C and 350 ◦C in dry and humid air are similar
(Table 2), but there are also differences corresponding to the type of change in conductivity.
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It can be assumed that the adsorption of ammonia molecules proceeds to a greater extent on
the Brønsted acid active-sites, which results in a decrease in the intensity of the υ(OH) and
δ(H2O) groups, the protonation of NH3 and the appearance of bands corresponding to the
bending vibrations of NH4

+ at 1460 and 1476 cm−1. The bands in the range of 1246–1260
cm−1 are associated with vibrations of the NH3

+ coordinated at the Lewis acid sites (tin
ions), while the N-H stretching-vibration region of coordinated NH3 is revealed in the form
of many narrow peaks in the range of 3042–3340 cm−1 [67,68].

Table 2. Assignments of IR absorption bands (cm−1) appeared in DRFIT spectra on the surface of
2D SnO2 in dry (RH25 = 0%) and in humid (RH25 = 30%) air containing 100 ppm NH3 at 200 ◦C and
350 ◦C.

Functional Groups 200 ◦C 350 ◦C

RH25 = 0% RH25 = 30% RH25 = 0% RH25 = 30%

NH3
+ on Lewis acid site 1258 1246 1268 1260

chelating bidentate nitrate (NO3
−) or nitrite (NO2

−) - - 1310 1309
SO2 in (-SO2·NH-) or SO4

2− 1368 1352 1385 1378
NH4

+ on Brønsted acid site 1476 1460 - -
δ(H2O) 1620 1625 - 1625
ν(N-H) in NH4

+ 3046 3042 3046 3042
ν(N-H) in NH3 3185, 3280 3184, 3270 3190, 3280 3189, 3278
ν(OH) 3330–3770 3330–3780 3330–3730 3330–3780

At 200 ◦C, the presence of intense peaks related to NH3
+ and NH4

+ assumes that
ammonia is the main reagent interacting with the surface of the sensitive layer of the
sensor. Comparing the intensities of these peaks, one can see that a humid atmosphere
is a more favorable condition for the adsorption of NH3 species, at both the Brønsted
and Lewis acid sites. At the same time, at 350 ◦C, a decrease in the intensity of peaks
related to the NH3 species and the appearance of an additional peak at 1310 cm−1 can be
noticed. The latter corresponds either to chelating bidentate nitrate or chelating bidentate
nitrite groups [43,44,69]. The presence of nitrate groups on the surface at high temperature
conditions may indicate the oxidation of ammonia molecules to NO (process (3)), and
then, with the participation of ambient oxygen, further conversion to NO2 (processes (4)
and (5)). As was shown earlier by Wang et al. [70], the maximum conversion of NO to NO2
in NH3-pre-adsorbed samples is achieved in the temperature range of 350–400 ◦C.

2NH3(gas) +
5
β

Oα−
β(ads) → 2NO(ads) + 3H2O(gas) +

5α
β

e− (3)

2NO(ads) + O2(gas) + 2e− → 2NO−2(ads) (4)

2NO−2(ads) + O2(gas) → 2NO−3(ads) (5)

Processes (4) and (5) can lead to a decrease in the conductivity of the sample, and
might be the main reason for the reversing of the sensor signal (Figure 10b). Our results are
in agreement with the observations of Zhou et al. [68] and Ramis et al. [71], who observed
NH3 over-oxidation to NO or N2 at high temperatures above 300 ◦C.

The appearance of negative IR-adsorption-bands after NH3 adsorption at the range
of 1352–1385 cm−1, depending on the sample, is directly related to the presence of sulfate
groups on the surface [43,44]. Hadjiivanov et al. have reported the formation of a negative
band in this region, and explained it by the adsorption of species in the immediate vicinity
of sulfate anions [72]. Ramis et al. have attributed the negative band at 1362 cm−1 to the
perturbation of the S=O band of traces of sulphate impurities in γ-Fe2O3 [71].

However, it should be noted that this negative absorption-peak also appears during
the interaction of ammonia with the sample with pre-adsorbed SO2. Thus, according
to Zhang et al., the formation of the negative band at 1368 cm−1 is associated with the
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replacement of the sulfate species by the ammonia ones, while the interaction of SO2 with
the NH3 pre-treated sample leads to the production of (NH4)2SO4 or NH4HSO4 [67].

4. Conclusions

In summary, we have developed a new route to obtain two-dimensional SnO2 for sen-
sor applications. The 2D SnO2 nanosheets were successfully synthesized via the oxidation
(at 500 ◦C) of SnS2 nanosheets obtained in solution during the simple chemical reaction.
TEM and SEM data confirmed that the as-grown SnS2 nanosheets and oxidized SnO2
nanosheets have 2D morphology. The 2D SnO2 is characterized by a high specific-surface
area and increased surface-acidity, caused by the presence of residual sulfate anions. The
combination of these characteristics provides a high 2D SnO2 sensor signal towards NH3
at a low temperature of 200 ◦C in dry air, but at the same time causes an inversion of the
sensor response when detecting NH3 in a humid atmosphere. We have to conclude that
SnS2 nanosheets are a good template for synthesizing 2D SnO2. Moreover, the features of
the active surface-centers formed may be useful when creating sensors for a particular gas
with pronounced basic properties. We believe that synthesized 2D SnO2 will be interesting
for the design of new sensitive materials with high sensor performances.
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