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Abstract: The drop hammer impact test was carried out to investigate the dynamic response of
closed-cell Al foams. A relatively reasonable method was also developed to evaluate the velocity
sensitivity of cellular material. The typical impact load–displacement curve exhibited two stages
containing the initial compression stage and the progressive crushing stage. Three compressive
damage behaviors and four failure modes of closed-cell Al foams were revealed, while the effect of
velocity on the impact properties and the energy absorption capacity of different specimens were
investigated. The results showed that the specific energy absorption of the specimens increased
with the increasing density of the specimen and the impact velocity. However, the specimens with
higher specific energy absorption seemed not to indicate better cushioning performance due to
the shorter crushing displacement. In addition, the uniaxial impact simulation of two-dimensional
(2D) Voronoi-based foam specimens was conducted at higher impact velocities. The simulation
results of impact properties and deformation behavior agreed reasonably well with the experimental
results, exhibiting similar velocity insensitivity of peak loads and deformation morphologies during
uniaxial impact.

Keywords: cellular materials; drop hammer impact; dynamic response; energy absorption; finite
element analysis

1. Introduction

Metal foams attract growing attention due to the heterogeneous and discontinuous
porous structure [1–4]. The plastic plateau in the stress–strain response of the metal foam
resulted from the special pore structure is the principal reason for the excellent cushioning
energy absorption characteristics of the metal foams [5–8]. Metal foams have been widely
used in various applications such as transportation, aerospace, and defense industries,
challenged by different service environments.

The research aiming at deformation behavior and mechanical properties under quasi-
static conditions is relatively well established. Almost all the results conclude that quasi-
static response goes through three stages containing the linear elastic stage, the plastic
plateau stage, and the densification stage. Gibson and Ashby [9] first developed the
most representative prismatic model, giving the quantitative relationship between density
and cellular structure strength. On the basis of the prismatic model, researchers have
systematically investigated the effects of a cell’s size, shape, anisotropy, cell wall thickness,
and related factors on the mechanical properties of the material [10–15]. In addition, the
deformation mechanism and deformation process of closed-cell aluminum foam during
quasi-static compression were also revealed [16]. Four failure modes at the cell/membrane
level including bending and plastic hinges, ductile tearing, fracture, and stretching were
characterized, which corresponded to diverse energy absorption mechanisms.

In recent years, many attempts have been made to study the dynamic response of
metal foams [17–20]. Stress enhancement is a significant characteristic during dynamic
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response. The micro-inertia effect has been proposed to explain stress enhancement under
impact by many researchers [21,22]. The mechanical responses of circular aluminum
extrusions filled with aluminum foams under different strain rates were investigated [23].
The result showed that the mean load under dynamic loading conditions was higher than
the static case, which was due to the inertia effects arising in the extrusion walls during
crushing. The stress enhancement was usually considered for impact velocity greater than
45 m/s. The deformation mode and energy absorption characteristics under dynamic
impact were also evaluated. Ramachandra [24] reported that the absorbed energy increased
marginally with the velocity within the quasi-static regime, but increased significantly at
velocities greater than 10 m/s. The appearance of shockwave effects may be responsible
for the diverse phenomenon. Tan [25] explored the relationship between the deformation
mode of aluminum foam and impact velocity. For static compression as well as sub-critical
impact, the aluminum foam deformed through the cumulative multiplication of discrete
crush bands. The impact surface is crushed first and propagated progressively inward at
super-critical impact velocity. Moreover, several reinforcing materials such as expanded
perlite, ceramic spheres, nanotubes, and nanowhiskers have been added to aluminum
foam matrix nowadays, and the dynamic response of metal matrix syntactic foams (MMSF)
was investigated by a number of workers [26–29]. The micro-inertial effect also affects
the rate sensitivity of the MMSFs [30]. However, there are still no definite conclusions on
whether the MMSF itself is sensitive to strain rates [30,31]. Yang [26] reported the same
shear deformation mode of the MMSFs at different strain rates, which was different from
the test results of metal foams. In summary, the dynamic responses of metal foams and
MMSFs still demand further exploration.

However, it is hard to appreciate the intermediate states of collapse and the evolution of
the in situ collapse through post-impact observation of specimens due to the instantaneous
deformation process during dynamic impact. Thus, more investigations based on the
finite element analysis aiming at the deformation behavior of metal foams were performed.
Different strain rate conditions comprising quasi-static [32,33] and dynamic [34,35] were
imposed on various foam models. A number of researchers have employed multifarious
models to reproduce the real foam structure and deformation behavior as much as possible,
e.g., homogeneous foam structure model [36,37], X-ray micro-computed tomography
(XCT) reconstructed foam geometry [38–40], random Voronoi foam [41,42], etc. Among
these modeling strategies, the meshing of complex models and the selection of materials’
constitutive relationships are still urgent problems to be solved.

In the present study, we expect to develop a relatively reasonable method to evaluate
the reliability and reproducibility of uniaxial impact behavior for closed-cell aluminum
foams. Thus, the main objective of this paper is not only to obtain specific impact mechanical
property parameters, but more importantly to provide an analytical method for the dynamic
response of the cellular structure.

Consequently, the drop hammer impact test was carried out to investigate the dynamic
response of the closed-cell Al foams under different impact velocities. Additionally, a
constant initial impact energy was subjected to the impact system and the initial velocity of
the hammer was adjusted by varying the mass of the hammer. The impact performance and
energy absorption capacity of Al foams at different impact velocities were characterized.
Meanwhile, two-dimensional (2D) Voronoi models were built to replicate the deformation
of closed-cell aluminum foam at higher velocities by finite element simulation.

2. Materials and Methods
2.1. Materials and Specimens

The closed-cell aluminum foams studied in present work were prepared from melt
foaming method. Pure Al (Fushun Aluminum Co., Ltd., Fushun, China, 99.9%) was selected
as the raw material for the experimental specimens. The manufacturing method involved
the following steps: (1) the pure Al and Ca (Sichuan Jianzhong Company, Chengdu, China,
98.0%) were melted in crucible furnace; (2) the TiH2 (Fushun Aluminum Co., Ltd.) foaming
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agent was added into the melt; (3) after holding for a certain period, the crucible was taken
out for the furnace; (4) the melt was cooled to room temperature in air. Further details
about the fabrication process were described in ref. [43]. All the specimens were ground
into cylinders with dimensions of Φ 40 × 50 mm and the density of the specimens ranged
from 0.267 g/cm3 to 0.657 g/cm3. Figure 1 depicts the morphology of impact test specimen.

Materials 2022, 15, x FOR PEER REVIEW 3 of 18 
 

 

The closed-cell aluminum foams studied in present work were prepared from melt 
foaming method. Pure Al (Fushun Aluminum Co., Ltd., Fushun, China, 99.9%) was se-
lected as the raw material for the experimental specimens. The manufacturing method 
involved the following steps: (1) the pure Al and Ca (Sichuan Jianzhong Company, 
Chengdu, China, 98.0%) were melted in crucible furnace; (2) the TiH2 (Fushun Aluminum 
Co., Ltd.) foaming agent was added into the melt; (3) after holding for a certain period, 
the crucible was taken out for the furnace; (4) the melt was cooled to room temperature in 
air. Further details about the fabrication process were described in Ref. [43]. All the spec-
imens were ground into cylinders with dimensions of Φ 40 × 50 mm and the density of 
the specimens ranged from 0.267 g/cm3 to 0.657 g/cm3. Figure 1 depicts the morphology 
of impact test specimen. 

  
Figure 1. The closed-cell Al foam specimen for impact testing. 

2.2. Testing Method 
The uniaxial impact tests (ASTM D2444) were carried out with Instron9250HV drop 

hammer system (INSTRON, Canton, OH, USA). The impact test system was equipped 
with a drop tower testing machine, a system for measuring momentary pressure force, 
and a system for acquiring data. Additionally, the instantaneous crushing distance was 
recorded using a laser-grating-photoelectron system. An accelerometer was mounted on 
the upper bottom of the hammer to measure the momentary acceleration.  

In the present study, all specimens were subjected to 246.84 ± 3.27 J initial kinetic 
energy to investigate the dynamic impact velocity sensitivity of the closed-cell Al foam. 
Impact tests of different velocities of 3 m/s, 5 m/s and 7.8 m/s were conducted, correspond-
ing to the various hammer mass of 55.64 Kg, 19.68 Kg, and 7.98 Kg. The kinetic energy 
values in this test were determined after extensive experiments to ensure that the speci-
mens could absorb all the energy. 

The quasi-static compression tests (ASTM E9) were performed using CMT5105 Uni-
versal Testing Machine (MTS, Eden Prairie, Minnesota, USA) with a constant compression 
velocity of 2 mm/min. 

2.3. Experimental Principles and Data Processing 
The momentary impact load can be expressed as [17] 𝑃ሺ𝑡ሻ = 𝑀ሾ𝑔 + 𝑎ሺ𝑡ሻሿ (1)

where P(t) is the momentary compression load, M is the tup mass, g is the acceleration of 
gravity, and a(t) is the measured momentary acceleration. 

The corresponding momentary velocity and displacement can be calculated by inte-
grating the acceleration once and twice, respectively. 𝑣ሺ𝑡ሻ = 𝑣ሺ0ሻ + ׬ 𝑎ሺ𝜏ሻ𝑑𝜏௧଴   (2)𝑠ሺ𝑡ሻ = ׬ 𝑑𝜏 ׬ 𝑎ሺ𝑡ሻ𝑑𝑡 െ 𝑠ሺ0ሻ௧଴ఛ଴   (3)

10mm 

Figure 1. The closed-cell Al foam specimen for impact testing.

2.2. Testing Method

The uniaxial impact tests (ASTM D2444) were carried out with Instron9250HV drop
hammer system (INSTRON, Canton, OH, USA). The impact test system was equipped with
a drop tower testing machine, a system for measuring momentary pressure force, and a
system for acquiring data. Additionally, the instantaneous crushing distance was recorded
using a laser-grating-photoelectron system. An accelerometer was mounted on the upper
bottom of the hammer to measure the momentary acceleration.

In the present study, all specimens were subjected to 246.84 ± 3.27 J initial kinetic
energy to investigate the dynamic impact velocity sensitivity of the closed-cell Al foam.
Impact tests of different velocities of 3 m/s, 5 m/s and 7.8 m/s were conducted, corre-
sponding to the various hammer mass of 55.64 Kg, 19.68 Kg, and 7.98 Kg. The kinetic
energy values in this test were determined after extensive experiments to ensure that the
specimens could absorb all the energy.

The quasi-static compression tests (ASTM E9) were performed using CMT5105 Univer-
sal Testing Machine (MTS, Eden Prairie, MN, USA) with a constant compression velocity of
2 mm/min.

2.3. Experimental Principles and Data Processing

The momentary impact load can be expressed as [17]

P(t) = M[g + a(t)] (1)

where P(t) is the momentary compression load, M is the tup mass, g is the acceleration of
gravity, and a(t) is the measured momentary acceleration.

The corresponding momentary velocity and displacement can be calculated by inte-
grating the acceleration once and twice, respectively.

v(t) = v(0) +
∫ t

0
a(τ)dτ (2)

s(t) =
∫ τ

0
dτ

∫ t

0
a(t)dt− s(0) (3)
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where v(0) and s(0) are initial impact velocity and initial compression displacement sepa-
rately. The load–displacement relationship P(s) can be achieved by combining Equations (1)
and (3). Integrating P(s) yields the impact energy absorbed by the specimens.

E =
∫ ∆L

0
P(s)ds (4)

The impact energy delivered to the specimens is

E′ = Mg(H + ∆L) (5)

where H is the distance between the bottom surface of the hammer and the upper surface
of the specimens, ∆L is the crushed length of the specimens. Among all the impact tests,
|E’ − E/E’| < 5%, verifying the excellent accuracy of the impact testing system.

The instantaneous specific load can be obtained by instantaneous loads divided by
cross-section areas and densities of specimens, for eliminating the effect of size and den-
sity on the analysis. Processing the data with this simplified normalization method is a
preliminary attempt with some errors.

Fs(t) = P(t)/Aρ (6)

where A and ρ are the cross-section area and average density of the specimens.
In regard to the energy absorption ability, a significant parameter is specific energy

absorption, established as the energy dissipated per unit sample weight.

Es = E/Aρ∆L (7)

when the specific load is expressed as a function of displacement,

Es =
1

∆L

∫ ∆L

0
Fs(s)ds (8)

2.4. Finite Element Models

In this work, the uniaxial impact tests at higher velocities (higher than 7.8 m/s)
were not performed due to the limitation of the experimental device. In addition, it was
hard to appreciate the intermediate states of collapse and the evolution of the in situ
collapse through post impact observation of specimens. In order to explore the complete
deformation behavior of the specimens at greater impact velocities, the uniaxial impact
simulation based on the finite element analysis was carried out. The simulation results will
be contrasted with the experimental results for analysis.

The 2D Voronoi structure was employed to generate the closed-cell aluminum foam.
To eliminate the size effect [44], the transverse and longitudinal direction of the foam model
shall include at least seven cells. The closed-cell foam specimen with 73.0% (0.729 g/cm3)
and 85.7% (0.386 g/cm3) porosity was constructed in a size of 10 × 10 mm with about
80 nuclei, as shown in Figure 2. The porosity of the specimens was altered by changing
the cell walls’ thickness. Figure 2 also presents the cell size distributions of 2D Voronoi
foam specimens. The cell size was the equivalent diameter obtained by counting the area
of the cell.

The matrix material is assumed to be linear strain hardening material with density
ρ = 2700 kg/m3, Young’s modulus Es = 70,000 MPa, Poisson’s ration υs = 0.33, yield strength
σys = 110 MPa and tensile strength σts = 160 MPa. As Figure 3 depicts, two discrete rigid
lines were built and assigned on the top and bottom of 2D Voronoi foam specimens, with
reference points on each left end. The top rigid line functioned as a drop hammer during
impact simulation, assigning the velocity and mass through the reference point, while the
bottom rigid line was used as a fixed platform to carry the specimen. Contact between the
foam specimen and the rigid line and that between all possible surfaces within the foam
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specimen were considered with a friction coefficient of 0.2. The 2D Voronoi-based foam
model was meshed by using S4R, with the Medial axis algorithm and the element shape of
Quad-dominated. The characteristic lengths of element size of the models with 73.0% and
85.7% porosity were set to approximately 0.07 mm and 0.02 mm, respectively, through a
mesh sensitivity study. Figure 4 shows the schematics of the model with 73.0% porosities
after meshing and the enlarged local meshing details.
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The numerical uniaxial impact behavior of the closed-cell Al foam was also investi-
gated using a research methodology identical to the impact experiment. Specimens with
porosities of 73.0% (0.729 g/cm3) and 85.7% (0.386 g/cm3) were subjected to the constant
initial kinetic energies of 0.6 J and 0.15 J, respectively. The initial impact energy for differ-
ent foam specimens was also determined through multiple impact simulations to satisfy
the energy absorption requirements according to Equations (4) and (5). The variation in
initial kinetic energy between experiments and simulations was attributed to the size and
two-dimensional nature of the specimens during the impact simulation. Uniaxial impact
simulations of different velocities of 10 m/s, 20 m/s, and 30 m/s were carried out with the
FE code Abaqus/Explicit. The analysis step times of the models with impact velocities of
10 m/s, 20 m/s, and 30 m/s were 0.0010 s, 0.0007 s, and 0.0004 s, respectively, to ensure
sufficient time for the complete impact simulation process. The specific parameter settings
for the impact simulation were listed in Table 1. The load–displacement curves of the
top rigid line (hammer) will be used in the analysis of the simulation results for the 2D
Voronoi-based foam specimens. In addition, this simulation study was particularly aimed
at the deformation process of the specimens at higher impact velocities.

Table 1. Parameters settings for the impact simulation.

Porosity of
Specimen

Initial Kinetic
Energy (J)

Impact Velocity
(m/s)

Mass of
Hammer (Kg)

Step Time
(s)

73.0% 0.6 10 0.0120 0.0010
73.0% 0.6 20 0.0030 0.0007
73.0% 0.6 30 0.0014 0.0004
85.7% 0.15 10 0.00300 0.0010
85.7% 0.15 20 0.00075 0.0007
85.7% 0.15 30 0.00033 0.0004

3. Results and Discussion
3.1. Uniaxial Impact Test Curves

Figures 5 and 6 depict the typical acceleration, velocity, and displacement curves by
processing the test data by the method recorded in Section 2.3. The acceleration curve
approximated a rectangular pulse, causing the impact velocity to decrease almost linearly
from the initial contact velocity to zero. Figure 6 shows the dynamic velocity and displacement
history of closed-cell Al foam with different densities at the same initial impact energy and
velocity (5 m/s). All data processing and analysis in the following were based on Figure 6.
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Figure 7 displays the typical load–displacement curve and specific load–displacement
curve of closed-cell Al foam specimens under uniaxial impact compression. Most of the
test data in this study exhibited a similar pattern. Figure 8 presents the corresponding
deformation process, which could be roughly divided into two stages containing the initial
compression stage and the progressive crushing stage. Stage I shown in Figure 7 was
the initial compression stage, i.e., the elastic compression stage, where the load increased
almost linearly with displacement. The specimens underwent local buckling and the
compression load decreased as the load reached Pcr. At stage II, the progressive crushing
stage, localized larger-scale damage appeared within the specimens. Additionally, the
impact load oscillated along a horizontal line (the average load P), companied by the little
varied compression load. Higher average load P and longer compression stroke during the
progressive crushing stage indicated a stronger energy absorption of the specimens. In the
following, we applied the specific load curve instead of the load curve unless otherwise
specified to eliminate the influence of materials and structures.
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3.2. Compression Damage Behaviors

Uniaxial impact test results of all foam specimens revealed three typical damage
modes: steady state compression, nonsteady state compression and mixed compression.
The load–displacement curves for the three damage modes and the corresponding damaged
specimens are depicted in Figures 9–11.
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Figure 11. Load–displacement curve for mixed compression and damaged specimen.

During steady-state compression, the specimen primarily suffered local damage,
followed by successive crushing with further loading. As a result, the specimen underwent
global plastic deformation. In the next stage, the compressive load was approximately
sawtooth-shaped fluctuations and increased slightly as shown in Figure 9. The compression
behavior of most of the foam specimens revealed steady-state compression, which was also
the main subject of this study.

The specimens suddenly occurred in the whole damage and lost load-bearing capacity
under the action of compression load. The compression load increased to Pcr and then
rapidly decreased, i.e., nonsteady state compression. The typical load–displacement curve
of nonsteady state compression and the related damaged specimen are given in Figure 10.
During nonsteady state compression, the specimens generated fewer cracks with larger
residual fragments, resulting in less absorbed energy. It was found that the specimens with
higher density were more likely to exhibit nonsteady state compression.

Figure 11 displays the typical load–displacement curve for mixed compression and
the corresponding damaged specimen. After the initial stage of plastic deformation, the
accumulation of several defects within the specimen such as a large deformation slip band
gradually became obvious and achieved dominance. The subsequent compression stage
was unable to maintain the progressive damage and the load-bearing capacity degraded
rapidly. It was evident that the energy absorption of the mixed compression lay between
the steady state compression and the nonsteady state compression. In addition, the mixed
compression was more commonly observed in the specimens with lower densities.

3.3. Energy Absorption Analysis

Figure 12 shows four various failure modes of closed-cell aluminum foam specimens
during uniaxial impact testing: (a) “V”-shaped deformation mode; (b) end crack damage
mode; (c) shear failure mode; (d) localized buckling failure mode. The different failure
modes of the specimens during compression represented separate energy absorption
mechanisms. In addition, the specimens mostly presented multi-mode mixed deformation
in the impact process, which was responsible for the complexity of the foam structure.

It can be found from Figure 6 that the crushing duration of the specimens depended on
the densities of the specimens. The results revealed that the specimen with higher density
had a shorter crushing duration and higher peak load when subjected to impact load
(5 m/s). The shorter crushing duration indicated the smaller final crushing displacement of
the specimen. It was clear from Equations (7) and (8) that, with the constant impact energy
input, even though the specific energy absorption of the high-density specimen was similar
or much higher than low-density specimen, the cushioning performance will not be ideal
due to the small crush displacement.

The quasi-static compression strain energy density of the closed-cell aluminum foam
specimen was converted to the specific energy absorption under quasi-static compression
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by dividing the apparent density of the specimen. Since the crushing length of the uni-
axial impact specimen was between 32–40 mm, which was comparable to the quasi-static
compression strain of about 0.7. Thus, the specific energy absorption at the quasi-static
compression strain of 0.7 and the impact velocity of 5 m/s is plotted in Figure 13. It can
be observed from Figure 13 that the dynamic specific energy absorption value was slightly
higher than the quasi-static value. The strain rate effect and inertia effect of the material
under dynamic loading conditions increased the value of the load, resulting in more impact
energy being absorbed by the closed-cell aluminum foam for the same deformation displace-
ment. Combined with the analysis above, the high specific energy absorption value did not
indicate good cushioning performance. Therefore, materials with suitable specific energy
absorption should be reasonably selected when designing the energy absorption structure.
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3.4. Impact Performance’s Velocity Sensitivity

Figure 14 statistically presents the specific peak loads, average specific loads, and
crushing displacements of the closed-cell aluminum foam specimens under uniaxial im-
pact velocities of 3 m/s, 5 m/s, and 7.8 m/s. The average specific loads increased from
14.83 N·m·g−1 to 17.74 N·m·g−1 as the impact velocities increased, while the specific peak
loads did not exhibit significant impact velocity dependence. Meanwhile, the crushing
displacement exhibited the opposite pattern to the average specific load, decreasing with
growing impact velocity. Since all specimens were given the same initial kinetic energy
and the specimens satisfied the requirement of absorbing the total energy, a higher average
specific load necessarily implied a shorter crushing displacement, which could account
for the phenomenon in Figure 14. In addition, although the values of the specific loads
have been simply normalized to eliminate the effect of specimen density, it can also be
found from the figure that the specific peak load value fluctuated in a relatively large range
at impact velocities of 5 m/s and 7.8 m/s. This error in data fluctuation mainly came
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from the following aspects. On the one aspect, the specimens with different densities or
even the same density had different pore distributions due to the randomness of the pore
structure. Another aspect was the error of the test brought by the influence of the device.
Moreover, the data processing method of the specific load derived from Equation (6) had
errors. Figure 15 depicts the effect of impact velocity on the contrasted energy absorption
and crushing displacement. The results demonstrated that as the impact velocity increased,
the specific energy absorption of the specimen increased and the crushing displacement
decreased, verifying the inference of Figure 13.
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3.5. Simulation Results

The uniaxial impact simulation based on finite element analysis was carried out to
investigate the impact properties of the specimens and the evolution of in situ collapses
within the specimens. The constant initial kinetic energies of 0.6 J and 0.15 J were subjected to
the specimens with porosities of 73.0% (0.729 g/cm3) and 85.7% (0.386 g/cm3), respectively.

Figures 16 and 17 depict the impact velocity duration, the displacement duration,
and the load–displacement curve of 2D Voronoi-based Al foam specimens with porosi-
ties of 73.0%, and 85.7% at various impact velocities of 10 m/s, 20 m/s, and 30 m/s. It
can be noticed that the load–displacement curve conformed to the pattern of the typical
load–displacement curve of the impact experiment but showed an obvious hardening phe-
nomenon during the second stage. The load of the specimen tended to increase significantly
and exceeded Pcr as the compression displacement exceeded 3 mm, and several experimen-
tal impact curves also presented similar characteristics as shown in Figure 18. The peak
load and average load of the specimens during the dynamic impact were distinctly lower
with the growing porosity. While the impact load of specimens with the same porosity at
different impact velocities did not appear significantly different, the corresponding stress
and deformation nephograms of the specimens under different impact velocities were
also almost identical. This may be associated with the neglect of several material effects,
e.g., gas compression effect, inertia effect, and thermal effect. Table 2 captured the critical
impact properties of the specimens with porosity of 73.0% and 85.7% during compression
at different impact velocities. The peak load of the specimen with a porosity of 73% had
a slight increase from 53.88 N to 61.12 N with increasing impact velocity. However, com-
bining the variation of peak loads for two specimens with different porosities at different
impact velocities, the peak loads did not present obvious velocity dependence over the
range of velocity variation, which was similar to the results in Figure 14. In addition, the
specimens with higher porosity (lower density) have a longer crushing displacement at the
same impact velocity, matching the inference in Section 3.3. Most of the initial energy from
the hammer was absorbed and the requirement for energy absorption of the impact system
simulation was satisfied, which indicated that the simulation achieved the expected results.
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Table 2. Impact properties of closed-cell Al foam specimens.

Specimen’s
Porosity

(%)

Impact
Velocity

(m/s)

Peak
Load
(N)

Crushing
Displacement

(mm)

Energy
Absorption (J)

73.0 10 53.88 6.77 0.603
73.0 20 56.25 6.73 0.599
73.0 30 61.12 6.86 0.601
85.7 10 13.70 6.82 0.146
85.7 20 12.50 6.90 0.145
85.7 30 14.26 7.02 0.143

Figure 19 shows the deformation process of the specimens during uniaxial impact
(10 m/s), exhibiting the complete in situ collapse evolution of internal foam structure.
Mises stress contour plots were employed to indicate the local stress variations within
the samples at different compression stages. The legend in the figure depicts the range
of Mises stress denoting from blue to red, in ascending order from blue (0 MPa) to red
(160 MPa) color. Specimens with porosities of 73.0% and 85.7% demonstrated the slightly
different deformation behavior. The impact deformation process of the specimens could be
divided into three stages: (1) end deformation; (2) formation of internal deformation band;
(3) overall compaction. At the initial stage of impact deformation, the cells near the impact
surface of the specimen with 85.7% porosity deformed first, which was consistent with the
actual initial compressive deformation under impact observed for the closed-cell Al foam
specimen in Figure 8. In contrast, the cells close to the impact and back-impact surfaces of
the specimen with 73.0% porosity distorted almost simultaneously. As the strain reached
0.26, the cells that first underwent deformation were almost compacted and the inner cells
gradually formed a distinct deformation band. Figure 20a displays the typical deformation
band observed during the impact experiment for comparison. The initial deformation
band progressively hardened with the proceeding compression, while the cells near the
back-impact surface of the specimen with 85.7% porosity also transformed from buckling
to compaction. The continuous formation and compaction of multiple deformation bands
constituted the main deformation pattern of the specimens in the second stage under the
uniaxial impact. Figure 19a (ε = 0.35) and Figure 20b show the X-shaped quasi-conjugate
shearing deformation. At the end of the impact compression (ε = 0.68), almost all the cells
within the specimen of 73.0% porosity were compacted, forming a nearly compacted body
under the drop hammer. However, the specimen with 85.7% porosity at the same strain
still contained numerous cells that were not compacted. Similarly, the different post-impact
morphologies for specimens of different densities were frequently observed during the
impact experiment, as shown in Figure 20c,d.
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(a) initial deformation band (b) X-shaped quasi-conjugate shearing deformation (c,d) post-impact
morphologies of specimens with different densities.
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4. Conclusions

An analytical method for dynamic responses of the cellular structure was developed
to evaluate the reliability and reproducibility of uniaxial impact behavior. The dynamic
response of closed-cell Al foams was investigated by drop hammer impact test at velocities
of 3 m/s, 5 m/s, and 7.8 m/s. From the above-presented analysis, the following important
conclusions could be drawn:

(1) The constant initial kinetic energy of 246.84± 3.27 J was subjected to the drop hammer
impact system to ensure the tested specimen could fully absorb the energy.

(2) During uniaxial impact crushing, specimens with different densities presented three
damage modes containing steady state compression, nonsteady state compression,
and mixed compression. In addition, the closed-cell Al foam specimens that under-
went steady-state compression showed two deformation stages: the initial compres-
sion stage and the progressive crushing stage. Four failure modes during uniaxial
impact were also found, representing separate energy absorption mechanisms.

(3) The average specific loads increased from 14.83 N·m·g−1 to 17.74 N·m·g−1 as the
impact velocities increased, while the specific peak loads did not exhibit significant
impact velocity dependence.

(4) The dynamic-specific energy absorption value was higher than the quasi-static value.
Additionally, the specific energy absorption of the specimens increased with the
increasing density (0.267 g/cm3–0.653 g/cm3) and the impact velocity. However,
the specimens with higher specific energy absorption seemed not to indicate better
cushioning performance due to the shorter crushing displacement.

(5) The uniaxial impact simulations of two-dimensional (2D) Voronoi-based foam speci-
mens with 73.0% and 85.7% porosity were conducted at higher impact velocities of
10 m/s, 20 m/s, and 30 m/s.

(6) The simulation results of impact properties and deformation behavior agreed reason-
ably well with the experimental results, exhibiting similar velocity insensitivity of
peak loads and deformation morphologies during uniaxial impact.

(7) The numerical impact deformation process of closed-cell Al foam specimens could be
summarized sequentially as end deformation and internal progressive deformation
through the formation of multiple deformation bands.
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